DOI:10.2298/CSIS111102003A

A Design Specification and a Server
Implementation of the Inverse Referential Integrity
Constraints

Slavica Aleksi¢', Sonja Risti¢®, Ivan Lukovi¢', and Milan Celikovié'

'University of Novi Sad, Faculty of Technical Sciences,
Department of Computing and Control
Trg Dositeja Obradovi¢a 6
21000 Novi Sad, Serbia
{slavica, ivan, milancel}@uns.ac.rs
2University of Novi Sad, Faculty of Technical Sciences,
Department for Industrial Engineering and Management
Trg Dositeja Obradovi¢a 6
21000 Novi Sad, Serbia
2sdristic@uns.ac.rs

Abstract. The inverse referential integrity constraints (IRICs) are
specialization of non-key-based inclusion dependencies (INDs). Key-
based INDs (referential integrity constraints) may be fully enforced by
most current relational database management systems (RDBMSs). On
the contrary, non-key-based INDs are completely disregarded by actual
RDBMSs, obliging the users to manage them via custom procedures
and/or triggers. In this paper we present an approach to the automated
implementation of IRICs integrated in the SQL Generator tool that we
developed as a part of the [IS*Studio development environment. In the
paper the algorithms for insertion, modification and deletion control are
presented, alongside with parameterized patterns for their
implementation for DBMSs MS SQL Server 2008 and Oracle 10g. It is
also given an example of generated procedures/triggers.

Keywords: Inclusion Dependencies, Inverse Referential Integrity
Constraint, Declarative Constraint Specification.

1. Introduction

A common approach to database design is to describe the structure and
constraints of the Universe of Discourse (UoD) in a semantically rich
conceptual data model. The Entity-Relationship (ER) diagrams or the UML
(Unified Modelling Language) class diagrams are widely used to represent
the conceptual database schemas. The obtained conceptual database (DB)
schema is translated latter on into a logical DB schema, representing a
design specification of the future database. Such design specification is to be

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

implemented by means of a database management system (DBMS).
Contemporary DBMSs are mostly based on the relational or object-relational
data models. Therefore, logical DB schemas are still expressed by the
concepts of relational data model. Furthermore, logical DB schemas as the
design specifications are normally transformed into error free SQL
specifications of relational or object-relational DB schemas. In this way, a
designed database may be implemented. These SQL specifications are
implementations of the structure and constraints of UoD specified in the
conceptual DB schema. A goal of this paper is to present an approach to the
specification and implementation of a relational integrity constraint type
called the inverse referential integrity constraint (IRIC).

The most fundamental integrity constraints that arise in practice in
relational databases are functional dependencies (FDs) and inclusion
dependencies (INDs). There are two basic kinds of INDs: key-based INDs and
non-key-based INDs. More often key-based INDs are called referential
integrity constraints (RICs). On the contrary, IRICs are a kind of non-key-
based INDs. More details about INDs, as well as definitions of different kinds
of INDs, including the IRICs, are given in Section 3.

In ER data model or UML class meta-model, cardinality or multiplicity
constraints are used, among all, to express the existential dependency
between two entity types, i.e. classes. Namely, the existential dependency is
modelled by setting the minimal multiplicity to one. Such existential
dependency between two entity types in a conceptual DB schema causes an
IRIC to be specified in a relational DB schema, as its consequence. More
precisely, an IRIC specification in a relational DB schema is caused by a
minimal multiplicity set to one, together with the maximal multiplicity set to
many on the same side of the association between the two entity types in a
conceptual DB schema.

While the referential integrity constraints may be fully enforced by most
current relational database management systems (RDBMSs), non-key-based
INDs are completely disregarded by actual RDBMSs, obliging the users to
manage them via stored program units and triggers. This implies an
excessive effort to maintain integrity and develop applications.

There are numerous contemporary software tools aimed at an automated
conceptual database schema design and its implementation under different
(mostly relational or object-relational) database management systems, such
as: DeKlarit, ERwin Data Modeler, Oracle Designer, Power Designer etc.
Some of them are described in [7], [14], [24], [28]. All of them enable setting
the relationship minimal multiplicity to one. Therefore, they support the
specification of the existential dependency between two entity types in the
conceptual database schema. However, all of them ignore this specification
when generate the SQL code to implement a relational or an object-relational
database schema. Even more, to the best of our knowledge, neither of the
other CASE tools offers such functionality, as well. As a rule, they do not
employ any procedural DBMS mechanisms to provide the automatic
implementation of IRICs.

284 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

Our approach to the specification and implementation of the IRICs is
implemented through the development environment [1IS*Studio (IIS*Studio
DE, current version 7.1). The development of 11S*Studio DE is spanned
through a number of research projects lasting for several years, in which the
authors of the paper are actively involved. One of its integral parts is
Integrated Information Systems*Case (11IS*Case) — a software tool that
supports a model driven approach to information system (IS) design. It
supports conceptual modelling of database schemas and generating
executable application prototypes. A case study illustrating main features of
[1IS*Case is given in [19]. Methodological aspects of its usage may be found
in [20]. A description of information system design and prototyping using form
types is given in [25].

Many commercial CASE tools, e.g. ERwin Data Modeler, Oracle Designer,
Power Designer, use ER data model or UML class meta-models to express a
conceptual schema. Unlike them, 11S*Case provides a specific platform
independent meta-model that does not rely on the ER or UML meta-models.
Among the other, this meta-model provides the concepts of form types,
component types and their attributes, at the abstraction level of a conceptual
DB schema.

The attribute and the form type concepts are explained in details in [19]
and [26]. The multiplicity constraints are included in the set of constraints that
may be specified by means of form types. [IS*Case uses the set of attributes
and the set of form type specifications as the input data for database design
to generate logical DB schemas as 3" normal form (3NF) relational DB
schemas with all the relation scheme keys, null value constrains, unique
constrains, referential and inverse referential integrity constraints, derived
from an 11S*Case conceptual data model. These schemas are stored in the
[1IS*Case repository. The specification of the [IS*Case repository is given in
[25].

In order to provide an efficient transformation of design specifications into
error free SQL specifications of relational database schemas we developed
the SQL Generator [2]. It is a tool that utilizes SQL, as one of the most
common domain-specific languages applied at the level of DB servers. One
of the main reasons for the development of such a tool was to make DB
designer's and developer's job easier, and particularly to free them from
manual coding and testing of SQL scripts for the creation of tables, views,
indexes, sequences, procedures, functions and triggers. The SQL Generator
implements one transformation in the chain of all 11S*Case transformations
from the conceptual model, which is platform independent, towards the
executable program code. The input into SQL Generator is a relational
database schema, obtained by a transformation of the conceptual DB
schema and stored in the repository.

Our SQL Generator implements constraints of the following types: domain
constraints, key constraints, unique constraints, tuple constraints, native and
extended referential integrity constraints, referential integrity constraints
inferred from nontrivial inclusion dependencies, and inverse referential
integrity constraints ([18], [23]). Constraints are implemented by the

ComSIS Vol. 10, No. 1, January 2013 285

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

declarative DBMS mechanisms, whenever it is possible. However, the
expressiveness of declarative mechanisms of commercial DBMSs may be
limited. Therefore, SQL Generator implements a number of constraints
through the procedural mechanisms [3]. In this paper we present a feature of
SQL Generator that provides an automated implementation of IRICs that are
caused by the multiplicity specifications in the [1IS*Case conceptual model.
Apart from the Introduction and Conclusion the paper has five sections.
Section 2 presents the related work. In Section 3 the notion of an IRIC is
explained, illustrated with a real life example to point out the necessity of
IRICs implementation. The algorithms for insertion, modification and deletion
control in the presence of IRICs are presented in Section 4. In Section 5 we
present parameterized patterns of the aforementioned algorithms for DBMSs
MS SQL Server 2008 [21] and Oracle 10g [24]. In [4] we introduce patterns
for the insertion of mutually blocked tuples via a view created over the
relations r(N;) and r(N;). Apart from these patterns, here in Section 5, we also
present in details patterns for the insertion of mutually blocked tuples via
custom db procedures. In Section 6 we present an example of an IRIC design
specifications and transformation of design specifications into error free SQL
specifications of relational DB schemas by means of 11S*Studio.

2. Related work

Integrity has always been an important issue for database design and
implementation. Its importance grows with increasing demands according the
quality and reliability of data. Integrity constraint specifications are translated
into constraint enforcing mechanisms provided by the DBMS used to
implement a database. Most of the commercial DBMSs offer efficient
declarative support for the domain constraints, null value constraints,
uniqueness constraints and foreign key constraints (key-based IND) [16]. For
more complex constraints, using triggers and stored procedures as the
procedural mechanisms instead of declarative ones is recommended. Turker
and Gertz in [30] emphasize the importance of embedding integrity
constraints in the database schema rather then in the application. They state
that enforcing integrity constraints and rules identified in the application
domain with declarative constraints and/or triggers often is less costly than
enforcing the equivalent rules by issuing SQL statements in an application.
Preserving of logical data independence is another important reason to
embed integrity constraints into database schema. Attaulah and Tompa in [9]
stress that the absence of a centralized policy and constraint management
system within database systems leads to several problems like the lack of
transparency, manageability and compliance of business rules. The
approaches presented in [5], [6], [12], [15], [16], [27] and [31] comply with the
aforementioned attitudes. We advocate a similar stance and this is an
important reason why we develop our SQL Generator to implement the
IRICs, besides other integrity constraints.

286 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

The growing interest in the Model-Driven Software Development (MDSD)
approaches has largely increased the number of tools and methods including
code-generation capabilities. Given a platform-independent model (PIM) of
an application, these tools generate the application code either by defining an
intermediate platform-specific model (PSM) or by executing a direct PIM to
code transformation. A conceptual database schema may be seen as a PIM.
A transformation of conceptual DB schema into a logical DB schema is a
model-to-model (M2M) transformation, while the SQL script generation based
on a logical DB schema is a model-to-text (M2T) transformation. Nowadays,
almost all tools that support MDSD are able to generate the relational
database schemas from PIMs. The major drawback of these tools is that
most of them tend to ignore some of the integrity constraints specified in
PIMs. Cabot and Teniente in [13] present a survey on the capabilities of
current tools regarding the explicit definition of integrity constraints in a PIM
and the code generation to enforce them. They classified the different tools in
the four categories: CASE tools, MDA (Model-Driven Architecture) specific
tools, MDSD tools and OCL (Object Constraint Language) tools. From CASE
tools they selected: Poseidon, Rational Rose, MagicDraw, Objecteering/UML
and Together. In the class of MDA tools ArcStyler, OptimalJ and AndroMDA
are evaluated. OO-Method, WebML and Executable UML are selected
beyond MDSD tools, while Dresden OCL, OCLtoSQL, OCL2J, OCL4Java
and BoldSoft are evaluated in the OCL tool class. Most of them do not take
the multiplicity constraints into account. The Objecteering/UML is an
exception to the other tools reviewed in [13], since it allows the use of a
trigger system to map the multiplicity constraints, including the minimal
multiplicity equal to 1. However, in contrast to our approach, it ignores tuple
deletions and updates.

Al-Jumaily, Cuadra and Martinez in [5] present a module to generate
triggers for multiplicity constraints verification that is integrated into Rational
Rose. In the paper they consider only Oracle DBMS. Although they are
tackling similar problem as we are, they are not taking into account mutual
dependencies caused by a RIC that exists simultaneously with a considered
IRIC. We present the solution of that problem and consider it as the one of
the contributions of the paper.

Berrabah and Boufarés in [11] recognize the triggers as a good mean to
implement integrity constraints. They distinguish two classes of constraints
specified on a UML class diagram: multiplicity and participation constraints.
However, furthermore they consider the participation constraints only.

Badaway and Richta in [10] propose an extension to OCL for automatic
translation of object level constraints in the modelling language to database
level triggers and Zimbrao et al. in [31] proposed a mechanism for translating
an OCL constraint to a SQL assertion.

Rybola and Richta in [27] define the multiplicity constraints in a formal way
in OCL. They take into consideration both minimal and maximal multiplicity,
like we do in our approach. The transformation of OCL specification of
constraints into the relational database schema is presented. In the contrast
to our approach, the OCL constraints are implemented in SQL as views

ComSIS Vol. 10, No. 1, January 2013 287

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

selecting records violating the multiplicity restrictions. The authors were
motivated with the solutions used in the Dresden OCL toolkit.

Some commercial DBMSs supported triggers before they were covered by
the SQL-99 standard. Currently, all major relational DBMS vendors have
some support for triggers. However, such support may vary from one to the
other DBMS, showing typical deviations from the standard [15]. That is the
main reason why we present here the implementation of IRICs for two
DBMSs: Oracle 10g and MS SQL Server 2008. They are widely used
commercial DBMSs. Besides the similarities, there are significant differences
between them in the context of trigger mechanisms. We consider that the
examples of IRICs implementation for these two platforms may guide
practitioners in solving the similar problems. An automated generation of
triggers for IRICs implementation may lead towards less error prone solutions
compared to handcrafted database trigger.

Summarizing the related work we may say that we have found just a few
approaches tackling the problem of automated implementation of IRICs.
Some of them use SQL views to select records violating the multiplicity
restrictions. Others use a trigger system, but neither of them consider mutual
dependencies caused by a RIC that exists simultaneously with a considered
IRIC. Because of that, mechanisms for IRIC's validation require deferred
trigger consideration during the transaction. Unfortunately, most of the
contemporary DBMSs do not support it and solely use the immediate trigger
consideration. Oracle and MS SQL Server have different means that may be
used to emulate deferred trigger consideration. In our approach we deal with
these differences and suggest possible solutions for both of the DBMSs.

3. Inverse Referential Integrity Constraint

Here we give the definitions of IND, key-based IND, non-key-based IND and
IRIC.

Let N(R,, C) and N((R;, C,) be two relation schemes, where N, and N, are
theirs names, R, and R, corresponding sets of attributes, and C, and C,
corresponding sets of relation scheme constraints. An inclusion dependency
is a statement of the form N[LHS] < N,[RHS], where LHS and RHS are non-
empty arrays of attributes from R, and R, respectively. Having the inclusion
operator (<) orientated from the left to right we say that relation scheme N; is
on the left-hand side of the IND, while the relation scheme N; is on its right-
hand side. We use the indexes | and r, and the names of attribute arrays LHS
and RHS, in order to indicate the left and right hand side of IND, respectively.
To define a validation rule of IND we use the following notation: (i) the
relation r(N)) is a set of tuples u(R)) (or just u) satisfying all constraints from
the constraint set C;; (ii) X-value is a projection of a tuple u on the set of
attributes X; and (iii) according to the aforementioned orientation of the
inclusion operator, r(N)) is called the referencing relation, while r(N;) is called
the referenced relation. Informally, a database satisfies the inclusion

288 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

dependency if the set of LHS-values in the referencing relation r(N)) is a
subset of the set of RHS-values in the referenced relation r(N,).

There are two basic kinds of INDs: key-based INDs and non-key-based
INDs. An IND is said to be key-based if RHS is a key' of the relation scheme
N;. Otherwise, it is a non-key-based. More often key-based IND is called
referential integrity constraint. Non-key-based IND with LHS that is a key of
the relation scheme N, where RIC N/[RHS] < N[LHS] is specified at the
same time, is called inverse referential integrity constraint [22]. In Fig. 1 a
UML class diagram is used to visually represent this classification of INDs.
The associations between the different classes of INDs are also given. A key-
based IND, as well as a non-key-based IND, may be seen as a specialization
of IND, while an IRIC may be seen as a specialization of a non-key-based
IND.

Fig. 1. A classification of different kinds of INDs

Business rules that are to be modelled by the inverse referential integrity
constraints often exist in a real world. They are consequences of the mutual
existential dependency of the entities of two entity types in a real system.

Example 1. According to the business rules of the university, a department
can be established only as a part of a faculty, and a faculty has at least one
department. The conceptual database schema expressed by UML class
diagram is presented in Fig. 2. The minimal multiplicity of the association
Has between the class Faculty and the class Department is one, while the
maximal multiplicity is many. After mapping the conceptual DB schema to a

" According to [17], a key of a relation scheme N(R, C) is a minimal superkey.
Informally, a superkey is any non-empty subset S of R such that no two distinct
tuples in any relation r(N) can have the same S-value. In general, a relation
scheme may have more than one key (each of them may be called a candidate
key). It is common to designate one of them as the primary key. If a relation
scheme has only one key it is, at the same time, the primary key of the relation
scheme.

ComSIS Vol. 10, No. 1, January 2013 289

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

relational DB schema according to the transformation rules suggested in [17]
we produce a relational database schema containing two relation schemes:
Faculty and Department, with the keys Facld and Facld+Depld respectively,
and two inclusion dependencies IND1 and IND2:

Faculty({Facld, FacShortName, FacName, Dean}, {Facld}),
Department({Facld, Depld, DepName}, {Facld+Depld}),
IND1: Department [Facld] < Faculty [Facld],

IND2: Faculty[Facld] < Department[Facld].

Since that Facld is the key of relation scheme Faculty, IND1 is the key-
based inclusion dependency, i.e. the referential integrity constraint. It is
modelling the business rule that a department can be established only as a
part of a faculty. The constraint IND2 is the non-key-based inclusion
dependency, since that Facld is not the key of relation scheme Department.
The Facld is the key of the relation scheme Faculty, which is on the left-hand
side of the inclusion dependency's specification and the referential integrity
constraint IND1 is specified as well. Therefore, the constraint IND2 is the
inverse referential integrity constraint. It is modelling the business rule that
faculty must have at least one department. [

Fig. 2. A university conceptual database schema

Programmers are obliged to manage IRICs via procedural mechanisms
(procedures and triggers). That is the reason why the IRICs are mostly
implemented at the middle layer instead at the DB server. Still, the validation
of the IRICs at the DB server: (i) cuts the costs of the application maintaining;
(ii) provides better performances due to the less traffic in the typical client-
server architecture; (iii) enables the same way of preventing the violation of a
database consistency.

In this paper the methods for the implementation of IRICs, using the
mechanisms provided by relational database systems are presented. These
methods are implemented in the SQL Generator that provides creating SQL
scripts according to the syntax of: (i) ANSI SQL:2003 standard [8], (ii)) DBMS
Microsoft (MS) SQL Server 2008 with MS T-SQL [21], and (iii) DBMS Oracle
10g with Oracle PL/SQL [24]. In the context of the approach presented in this
paper, there are no crucial syntax differences in SQL languages of the
DBMSs used in this paper, in comparison to the newer releases of the same
DBMSs, i.e. MS SQL Server 2012 and Oracle 11g, respectively. Therefore,
considerations given in this paper may be applied also at these DBMSs,
without any limits.

290 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

4. Algorithms for IRIC Validation

By specifying the IRIC Nj[Y] < Ni[X] it comes towards the bogus mutual
insertion blocking of the instances of the relation schemes N; and N;, since
the RIC Ni[X] c Nj[Y] is also specified. The notion ,mutual insertion blocking*
is used to illustrate the following situation: (i) it is not possible to insert a new
tuple into the relation r(N;) with not null values for all attributes AeX, unless
there is a tuple in the relation r(N;) with the Y value same as the X value of
the inserted tuple (due to the RIC Nij[X] = Nj[Y]); and, also (ii) it is not possible
to insert a new tuple into the relation r(N;) with a Y value given, unless there
is a tuple in the relation r(N;) with the X value same as the aforementioned Y
value (due to the IRIC Nj[Y] < Ni[X]) [23].

Example 2. In Fig. 3 it is presented a database instance of the database
schema from Example 1. Due to the existence of the referential integrity
INDL1 it is not possible to insert the tuple (2, D2, 'Dentistry’) into the relation
Department. However, due to the specified inverse referential integrity IND2
it is even not possible to insert the tuple (2, 'FOM’, 'Faculty of Medicine’,
'Simpson’) into the relation Faculty. These tuples are said to be mutually
blocked. [

Faculty
Facld FacShortName FacName Dean
1 MAT Mathematics Smith
Department
Facld Depld DepName
1 D1 Geometry

Fig. 3. A University database instance

The algorithms for insertion, deletion and modification control in the
presence of inverse referential integrity constraints are presented in Fig. 4,
Fig. 5 and Fig. 6, respectively.

Apart from the notation already introduced at the beginning of Section 3, in
the algorithms we use the following notation: u[X] denotes X-value of a tuple
u, |X| denotes the cardinality of an array of attributes X, ® denotes the null
value, and Ky(R;) denotes the primary key of a relation scheme N;.

In the following text these algorithms are described in more details.

Let Nj[Y] < Ni[X] is an IRIC. In the context of the IRIC, r(N;) is the
referencing relation, while r(N;) is the referenced relation, since the relation
scheme N; is on the left-hand side and the relation scheme N; is on the right-
hand side of the IRIC. The IRIC may be violated in three cases: (i) when a
tuple is inserted into the referencing relation, (ii) when a tuple is deleted from
the referenced relation or (ii) when a tuple's X-value is modified in the
referenced relation.

ComSIS Vol. 10, No. 1, January 2013 291

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

Trigger: INSERTION CONTROL IN THE PRESENCE OF
IRICs

Definition area:
Relation schemes: N;, N;
Attributes: X = (A1, . A|X|), Y = (B1, vy B|Y|)
X[=Y A(VIe{1, ..., I XH)(dom(A) c dom(B) A A e RiAB e R)

Specification of the constraint: i: Nj[Y] < Ni[X]

Specification of the operation:
Time: AFTER OPERATION
Operation: INSERT

Data Inputs
FromDB NN
Input v: tuple that would be inserted into r(N;)

Local declarations:ind
(ind = 1 — constraint is satisfied,
ind = 0 — constraint is violated)

Pseudo code:
BEGIN PROCESS Insert_inv_ref_int
SET ind« 0
FOR ALL uer(N;) DO /I Search in the relation r(N;) for v[Y] value
IF v[Y]=u[X] THEN
SET ind « 1
BREAK
ENDIF
ENDFOR
IF ind =0 THEN
CANCEL_OPERATION(‘Error description’)
ENDIF
ENDPROCESS Insert _inv_ref int

Fig. 4. An algorithm for insertion control

An algorithm for the control of insertions (Fig. 4) will reject the insert
operation of the v tuple into the referencing relation if the referenced relation
doesn't contain any tuple with X-value matching the Y-value of the tuple v.

292 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

Trigger: DELETION CONTROL IN THE PRESENCE OF IRICs

Definition area:
Relation schemes: N;, N;
Attributes: X = (A1, . A|X|), Y = (B1, vy B|Y|)
X| =Y A(VIe{1, ..., I XP)(dom(A) c dom(B) A A e RiAB eR)

Specification of the constraint: i: Nj[Y] < Ni[X]

Specification of the operation:
Time: AFTER OPERATION
Operation: DELETE

Data Inputs
FromDB . IO TN
Input ! u: tuple that would be deleted from r(N;)

Local declarations:ind
(ind = 1 — constraint is satisfied,
ind = 0 — constraint is violated)
Pseudo code:
BEGIN PROCESS Delete_inv_ref _int
SET ind« 0
FOR ALL AcX DO /l Search for null value in X-value
IF u[A] = ® THEN
SET ind « 1
BREAK
ENDIF
ENDFOR
IF ind = 0 THEN
FOR ALL ter(N;) DO /I Search in r(N;)
IF t[Kp(Ri)] # U[Ky(Ri)] A u[X]=t[X] THEN
SET ind « 1
BREAK
ENDIF
ENDFOR
ENDIF
IF ind = 0 THEN
EXECUTE ACTIVITY
ENDIF
ENDPROCESS Delete _inv_ref int

Fig. 5. An algorithm for deletion control

ComSIS Vol. 10, No. 1, January 2013 293

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

Trigger: MODIFICATION CONTROL IN THE PRESENCE
OF IRICs

Definition area:
Relation schemes: N;, N;
Attributes: X = (A1, . A|X|), Y = (B1, vy B|Y|)
X[=Y A(VIe{1, ..., I XP)(dom(A) c dom(B) A A e RiAB e R)
Specification of the constraint: i: Nj[Y] < Ni[X]

Specification of the operation:
Time: AFTER OPERATION
Operation: UPDATE

Data Inputs
FrombDB N, Ny
Input u: original tuple to be modified in r(N;)
1 U new tuple obtained by the modification of
tuple u

Local declarations:ind
(ind = 1 — constraint is satisfied,
ind = 0 — constraint is violated)
Pseudo code:
BEGIN PROCESS Update_inv_ref int
IF u'[X]# u[X] THEN
SET ind« 0
FOR ALL AcX DO // Search for null value in X-value
IF u[A] = ® THEN
SET ind « 1
BREAK
ENDIF
ENDFOR
IF ind = 0 THEN
FOR ALL ter(N;) DO // Search in r(N;)
IF t[Kp(Ri)] # U[Ky(Ri)] A u[X]=t[X] THEN
SET ind « 1
BREAK
ENDIF
ENDFOR
ENDIF
IF ind = 0 THEN
CANCEL_OPERATION(‘Error description’)
ENDIF
ENDIF
ENDPROCESS Update inv_ref int

Fig. 6. An algorithm for modification control

294 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

An algorithm for the control of deletions (Fig. 5) detects an IRIC's violation
when a tuple u from the referenced relation is deleted and if the conjunction
of conditions is satisfied: (i) X-value of the tuple u doesn't contain null values;
and (ii) the referenced relation doesn't contain another tuple t (strictly
different from the tuple u) with X-value matching the X-value of the tuple u.
The first condition needs additional explanation. Namely, Y is the key for the
left-hand side relation scheme. Consequently, neither of the tuples from the
referencing relation can contain null value in the Y-value sequence.
Therefore, neither of the tuples from the referenced relation that contains null
values can be referenced by some tuple from referencing relation. It may be
concluded that by the deletion of such a tuple from r(N;), IRIC cannot be
violated. If a constraint violation is detected, the algorithm will reject the
delete operation or, alternatively it will delete all tuples from the referencing
relation having the Y-value matching the X-value of the tuple u. During the
IRIC implementation pseudo-instruction EXECUTE ACTIVITY will be
replaced with an appropriate program code for the selected action.

An algorithm for the control of modifications (Fig. 6) will reject the update
operation of the tuple u from the referenced relation if the conjunction of
conditions is satisfied: (i) the update operation changes the tuple's X-value
(Uu'[X] = u[X], where u is the tuple before the modification and u' is the tuple
after the modification); (ii) the original X-value (X-value of the tuple u before
the modification) doesn't contain null values; and (iii) the referenced relation
doesn't contain any other tuple t (strictly different from the original tuple u)
with X-value matching the original X-value. The explanation for the second
condition is analogous to the explanation for the first condition in the previous
paragraph.

5. Implementation of IRICs by Procedural Mechanisms

DBMSs have different mechanisms for the implementation of relational
database constraints (RDBCs). We are going to classify these mechanisms
into two categories. The core mechanisms use the CONSTRAINT clause
within the CREATE / ALTER TABLE statements of SQL, to implement a
RDBC. The additional mechanisms use the CREATE ASSERTION statement
or the CREATE TRIGGER statement to implement a RDBC. The
fundamental mechanisms are declarative, while the additional mechanisms
may be declarative (e.g. assertions) or procedural (e.g. triggers). An IRIC
cannot be implemented by means of core mechanisms of contemporary
DBMSs. Therefore, it has to be implemented via declarative assertions or
procedural triggers. Albeit SQL standards allow assertions, most of the
contemporary DBMSs do not support them. Therefore, we have to implement
the IRICs via DBMS procedural mechanisms, by creating triggers, alongside
with the required functions and procedures. Another problem to be solved
occurs due to a mutual insertion blocking, caused by an IRIC specification.
Because of that, mechanisms for IRIC's validation require deferred trigger

ComSIS Vol. 10, No. 1, January 2013 295

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

consideration during the transaction. Some DBMSs support the deferred
constraint consideration. Unfortunately, most of the contemporary DBMSs do
not support deferred trigger consideration and provide the immediate trigger
consideration only.

Our SQL Generator enables an automated implementation of the IRICs for
DBMSs MS SQL Server 2008 [21] and Oracle 10g [24]. One of the reasons
for their selection is that they are widely used commercial DBMSs. Another
reason is that besides the similarities, there are significant differences
between them.

In the context of IRICs implementation the main similarities are that: (i)
both of them do not support assertions and deferred trigger consideration;
and (ii) there are many similarities concerning trigger specification. The major
difference in the same context is that Oracle and MS SQL Server have
different means that may be used to emulate deferred trigger consideration.
Oracle enables global variables declaration in packages. We can use them to
pass the information that a trigger has to skip an IRIC checking. The global
variables can’'t be declared in MS SQL Server. Instead, we use tuple in
auxiliary table to pass the information that a trigger has to skip an IRIC
checking. In this section we will illustrate the differences between IRICs'
implementation techniques for MS SQL Server 2008 and Oracle 10g, used in
our SQL Generator.

In our approach the procedural implementation of a constraint, can be
unified. It consists of the following steps: (i) specifying a parameterized
pattern of the algorithm for a specific DBMS, (ii) replacing the pattern
parameters with real values, and (iii) generating an SQL script comprising
necessary triggers, procedures and functions [1].

5.1. IRIC Implementation for MS SQL Server 2008

In this section, parameterized patterns of the algorithms for controlling the
IRIC validation during the insert, update and delete operations for DBMS MS
SQL Server 2008 (MS SQL) are given.

5.1.1. Patterns for tuple insertion in the presence of an IRIC

In order to keep the DB consistency in the presence of the IRICs, mutually
blocked tuples (like those in Example 2) must be inserted in one transaction.
There are two ways to do that: (i) a view created over the relations r(N;) and
r(N;) may be used for the double insertion; or (ii) a custom DB procedure for
double insertion may be developed.

The pattern of the trigger using views for tuple insertion is presented in Fig.
7. For each specified IRIC Nj[Y] c Ni[X] the trigger based on that pattern
would be generated. We use a special MS SQL Server table, named
Inserted, that stores copies of the affected tuples during the execution of
INSERT and UPDATE statements. The values of attributes from R; and R;are

296 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

separated and two INSERT statements are specified for tuple insertion into
relations r(N;) and r(N;), respectively. Since these tuples are mutually blocked,
a trigger for tuple insertion in r(N;) (Fig. 10), will raise the error. To prevent
that, we emulate the deferred trigger consideration, using an auxiliary DB
relation Trigger_Stat. The tuple with given trigger name and transaction ID is
to be written in the Trigger_Stat relation, by calling the procedure Trigger Ex
(Fig. 8) with 0 as the first argument. This tuple is aimed to pass the
information that the trigger for tuple insertion in r(N;) (Fig. 10) has to skip an
IRIC checking. In that way we emulate the deferred trigger consideration.
Thus, the tuple insertion in r(N;) is enabled. Afterwards, the insertion of
corresponding tuple in r(N;) is allowed, since it does not violate the RIC
Ni[X] < Nj[Y] any more. The next step is to re-enable IRIC checking in the
trigger for tuple insertion in r(N;) (Fig. 10). In order to do it, the previously
inserted tuple in the Trigger_Stat relation, with given trigger name and
transaction ID, is to be deleted, by calling the procedure Trigger Ex (Fig. 8)
with 1 as the first argument. At the end, the function ContainmentIRI_<N;>
(Fig. 9) is called in order to check if the IRIC Nj[Y] < Nij[X]is violated.

CREATE TRIGGER TRG_<Const_Name>_View
ON View_<N;>_<N;> INSTEAD OF INSERT
AS
DECLARE @]ldt int, @Count int, <Decl_Var_For_Ni_Nj>
SELECT <Var_array_For_Ni_Nj> FROM Inserted
SET @Idt = @@SPID
exec dbo.Trigger_Ex 0, 'WriteRI_<N;>', @Idt
INSERT INTO <N;> VALUES (<Var_array_For_Nj>)
INSERT INTO <N;> VALUES (<Var_array_For_Ni>)
exec dbo.Trigger_Ex 1, '"WriteRI_<N;>', @Idt
IF dbo.ContainmentIRI_<N;>(<Var_For_Y>) =0
BEGIN
RAISERRORC('IRIC violation!',16,1)
ROLLBACK TRAN
END

Fig. 7. A pattern of the trigger over view

The trigger generator creates the trigger from the pattern presented in Fig.
7. by replacing:

- <N;> with the name of relation scheme Nj;

- <N;> with the name of relation scheme N;;

- <Const_Name> with IRI_<N;>_<N;>, where IRl marks that it is the
inverse referential integrity constraint, and <N;> and <N> will be
replaced with the names of relation schemes N; and N; respectively;

- <Decl_Var_For_Ni_Nj> with the list of variable declarations of the form
@<Attribute_Name> data type, for each attribute from R; and R;;

- <Var_array_For_Ni_Nj> with the list of variables declared by the list of
declarations that replaced <Decl_Var_For_Ni_Nj>. These variables are

ComSIS Vol. 10, No. 1, January 2013 297

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

set to appropriate values from a tuple contained in the MS SQL Server
table Inserted;

- <Var_array_For_Nj> and <Var_array_For_Ni> with the lists of variables
containing the input value for each attribute from R; and R;, respectively;
and

- <Var_For_Y> with the list of variables declared by the list of declarations
that replaced <Decl_Var_For_Ni_Nj>, containing only those variables
that are related to the attributes from Y. List elements are of the form
@<Name_of_Attribute_From_Y>. The list of variables represents the
argument of function ContainmentIRI_<N;>.

The procedure Trigger Ex and the pattern of the function

ContainmentIRI_<N;>, that are called from a trigger based on the pattern in
Fig. 7, are presented in Fig. 8 and Fig. 9 respectively.

CREATE PROCEDURE dbo.Trigger_Ex
(@Stat int, @Trigger_Name varchar(50), @Idt int)
AS
IF @Stat = 1
DELETE FROM Trigger_Stat WHERE
Trigger = @Trigger_Name AND |dTransaction = @Idt
ELSE
INSERT INTO Trigger_Stat (Trigger, IdTransaction)
VALUES (@Trigger_Name, @Idt)

Fig. 8. A SQL procedure for trigger execution control

The procedure Trigger Ex in Fig. 8 is used in the process of trigger's
execution control. In the suggested solution an auxiliary DB relation
Trigger_Stat is used, as we already explained, earlier in this section.

CREATE FUNCTION dbo.ContainmentIRI_<N;>(<Decl_Var_For_Y>)
RETURNS int
AS
BEGIN
DECLARE @Count int, @Ret int
SELECT @Count = COUNT(*) FROM <N;> u
WHERE (<Selection_Cond>)

IF @Count =0
SELECT @Ret =1
ELSE

SELECT @Ret =0
RETURN @Ret
END

Fig. 9. A pattern of the ContainmentIRI_<N;> function

A DB function ContainmentIRI_<N;> is to be called from a trigger based on
the pattern in Fig. 7. It is generated from the function pattern in Fig. 9, by
replacing:

- <N;> with the name of relation scheme Nj;

298 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

- <Decl _Var_For_Y> with the list of parameter declarations of the form
@<Name_of_Attribute_From _Y> data type, for each attribute from Y;
and

- <Selection_Cond> with a conjunction of relational expressions of the
form:

u.<Name_of Attribute From X> = @<Name_of Attribute From _Y>.

SQL code for view creation is trivial, and therefore it is omitted here. We
only emphasize that it should contain all attributes from both R; and R;.

In order to prevent the IRIC violation due to the separate insertion of
mutually blocked tuples, a trigger adhering the pattern in Fig. 10 is created.
The replacement of the parameters during the trigger generation is analogous
to the replacement of corresponding parameters in patterns from figures 7, 8
and 9.

Finally, the SQL function for trigger execution is presented in Fig. 11. This
function is aimed to detect if there is a tuple, with given trigger name and
transaction ID, in the auxiliary table Trigger_Stat. It is called from a trigger for
tuple insertion in r(N;) (Fig. 10). The return value O (a tuple exists) indicates
that IRIC check is to be done, while the return value 1 (a tuple doesn't exist)
indicates that it is to be skipped.

CREATE TRIGGER TRG_<N;>_<Const_Name>_INS
ON <N;> FOR INSERT
AS
IF dbo.ExecuteTrigger(TRG_<N;>_<Const_Name>_INS)=0
BEGIN
RAISERROR('Data have to be inserted via view:
View_<N;>_<N;> or procedure Insert_<Const_Name>',16,1)
ROLLBACK TRAN
END

Fig. 10. A tuple insertion control pattern

CREATE FUNCTION dbo.ExecuteTrigger(@Trigger_Name varchar(50))
RETURNS int
AS
BEGIN

DECLARE @Count int, @Idt int, @Ret int

SELECT @Idt = @@SPID

SELECT @Count = COUNT(*) FROM Trigger_Stat

WHERE (Trigger = @Trigger_Name) AND (IdTransaction = @Idt)

IF @Count =0
SELECT @Ret =1
ELSE

SELECT @Ret =0
RETURN @Ret
END

Fig. 11. A SQL function for trigger execution control

ComSIS Vol. 10, No. 1, January 2013 299

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

CREATE PROCEDURE dbo.Insert_<Const_Name>
(<Decl_Var_For_Ni_Nj>)
AS
DECLARE @]dt int
BEGIN TRANSACTION
SET @Idt = @@SPID
exec dbo. Trigger_Ex 0, 'WriteRI_<N;>', @Idt
INSERT INTO <N;> VALUES (<Var_array_For_Nj>)
INSERT INTO <N;> VALUES (<Var_array_For_Ni>)
exec dbo.Trigger_Ex 1, 'WriteRI_<N;>', @Idt
IF dbo.ContainmentIRI_<N;>(<Var_For_Y>) =0
BEGIN
RAISERRORC('IRIC violation!',16,1)
ROLLBACK TRAN
END
COMMIT TRANSACTION

Fig. 12. A pattern of the procedure for tuple insertion

Another way for providing insertion of mutually blocked tuples in one
transaction is by creating a custom DB procedure for double insertion.
Parameterized pattern for such a procedure is given in Fig. 12. The meaning
of parameters is similar to that in the pattern of the trigger for double insertion
using views, and therefore is omitted here.

5.1.2. Patterns for tuple deletion in the presence of an IRIC

The pattern of the trigger for tuple deletion is presented in Fig. 13. For each
specified IRIC Nj[Y] < Ni[X] the trigger based on that pattern would be
generated. The trigger generator creates the trigger from the pattern by
replacing:

- <N;> with the name of relation scheme N;;

- <Const_Name> with IRI_<N;>_<N;>, where IRl marks that it is the
inverse referential integrity constraint, and <N;> and <N> will be
replaced with the names of relation schemes N; and N; respectively;

- <Decl Var_For_X> with the list of variable declarations of the form
@c<Attribute_Name> data type, for each attribute from X;

- <Attr_from_X> with the list containing the names of attributes from X;

- <Condition> with the conjunction of relational expressions of the form:

@<Name_of_Attribute_From _X> IS NOT NULL;

- <Selection_Cond> with the conjunction of relational expressions of the
form:

u.<Name_of_Attribute_From_X> = @<Name_of_Attribute_From_X>; and

300 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

- <Var_For_X> with the list of variables' names declared by the list of
declarations that replaced <Decl Var_For_X>. List elements are of the
form @<Name_of_Attribute_From_X>.

CREATE TRIGGER TRG_<N;>_<Const_Name>_DEL
ON <N;> FOR DELETE
AS
DECLARE @Count int, <Decl_Var_For_X>
DECLARE Cursor_<N;> CURSOR
FOR SELECT <Attr_From_X> FROM Deleted
OPEN Cursor_<N;>
FETCH NEXT FROM Cursor_<N;> INTO <Var_For_X>
WHILE @@FETCH_STATUS=0
BEGIN
IF <Condition>
BEGIN
SELECT @Count = COUNT(*) FROM <N;> u
WHERE (<Selection_Cond>)
IF @Count=0
<Execute_Activity>
END
FETCH NEXT FROM Cursor_<N;> INTO <Var_For_X>
END
CLOSE Cursor_<N;>
DEALLOCATE Cursor_<N;>

Fig. 13. A pattern of the delete trigger

Deleted table, used in a declaration of cursor Cursor_<N;>, is a special MS
SQL Server table that stores copies of the affected tuples during the
execution of DELETE and UPDATE statements. Depending on the selected
activity, <Execute_Activity> is replaced with CascadelRIl_Del <N;> (Fig. 14)
procedure call (Cascade delete) or with SQL code for activity restriction (Fig.
15).

The procedure generator creates the procedure for cascade deletion (Fig.
14) from the pattern by replacing:

- <N;> with the name of relation scheme N;;

- <Decl Var_For_X> with the list of variable declarations of the form

@c<Attribute_Name> data type, for each attribute from X; and

- <Selection_Cond> with the conjunction of relational expressions:

v.<Name_of_Attribute_From_Y> = @<Name_of_Attribute_From_X>.

CREATE PROCEDURE dbo.CascadelRI_Del_<N>(<Decl_Var_For_X>)
AS
DELETE FROM <N;> v WHERE (<Selection_Cond>)

Fig. 14. A pattern of procedure for cascade deletion

ComSIS Vol. 10, No. 1, January 2013 301

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

BEGIN
RAISERROR('The tuple from relation <N;> could not be deleted',16,1)
ROLLBACK TRAN

END

Fig. 15. A pattern of SQL code for operation restriction

5.1.3. Patterns for tuple modification in the presence of an IRIC

The pattern of the trigger for tuple modification for MS SQL Server is
presented in Fig. 16.

CREATE TRIGGER TRG_<N;>_<Const_Name>_UPD
ON <N;> FOR UPDATE
AS
DECLARE @Count int, <Decl_Var_For_X>
IF <Modification_Cond>
BEGIN
DECLARE Cursor_<N;> CURSOR
FOR SELECT <Attr_From_X> FROM Deleted
OPEN Cursor_<N;>
FETCH NEXT FROM Cursor_<N;> INTO <Var_For_X>
WHILE @@FETCH_STATUS=0
BEGIN
IF <Condition>
BEGIN
SELECT @Count = COUNT(*) FROM <N;> u
WHERE (<Selection_Cond>)
IF @Count =0
BEGIN
RAISERROR('The tuple from relation <N;> could not be updated',16,1)
ROLLBACK TRAN
END
END
FETCH NEXT FROM Cursor_<N;> INTO <Var_For_X>
END
CLOSE Cursor_<N;>
DEALLOCATE Cursor_<N;>
END

Fig. 16. A pattern of the modification trigger

The replacement of the parameters is same as the replacement of
parameters for the deletion trigger. The modification trigger has one more
parameter, <Modification_Cond>. During the trigger generation it is replaced
by the disjunction of SQL functions UPDATE(<Name_of_Attribute_from_X>)
for each attribute belonging to the attribute set X.

302 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

5.2. IRIC Implementation for Oracle 10g

Existence of the SQL standard may be considered as one of the major
reasons for the commercial success of relational databases. The RDBMSs'
vendors make efforts to achieve high SQL standard compliance. Despite this,
in practice, there are many differences between various RDBMSs. In the
context of IRICs implementation, the differences concerning the means that
may be used to emulate deferred trigger consideration are crucial. The global
variables can’t be declared in MS SQL Server. Instead, we use a tuple in
auxiliary table to pass the information that a trigger has to skip an IRIC
checking, as it is shown in Section 5.1. Oracle DBMS enables global
variables declaration in packages. They can be used to pass the information
that a trigger has to skip an IRIC checking. Therefore, here we present the
parameterized patterns for triggers and procedures implementing algorithms
from Section 4, for Oracle DBMS. Some of parameters in the patterns for
Oracle DBMS are same as the parameters in the corresponding patterns for
MS SQL Server. The explanation of their replacement will be omitted in the
following text. The replacement of the parameters those are specific for
patterns for Oracle Server will be explained in details.

5.2.1. Patterns for tuple insertion in the presence of an IRIC

As well as for MS SQL Server, there are two ways to insert mutually blocked
tuples in one transaction: (i) a view created over the relations r(N;) and r(N;)
may be used for the double insertion; or (ii) a custom DB procedure for
double insertion may be developed. The pattern of the trigger using views for
tuple insertion is presented in Fig. 17.

Here we notify the basic differences between the patterns for tuple
insertion in the presence of an IRIC for MS SQL Server and Oracle. The MS
SQL Server has the Inserted table that stores copies of the affected tuples
during the execution of INSERT and UPDATE statements. In Oracle notation
key-words NEW and OLD are used for that purpose. NEW is used to refer to
a newly inserted or newly updated tuple. OLD is used to refer to a deleted
tuple or to a tuple before it was updated. The values of attributes from R; and
R; are separated and two INSERT statements are specified for tuple insertion
into relations r(N;) and r(N;), respectively. Since these tuples are mutually
blocked, a trigger for tuple insertion in r(N;) (Fig. 20), will raise an error. To
prevent that, we need to emulate the deferred trigger consideration. Unlike
MS SQL Server, Oracle enables global variables declaration in packages.
So, in a package (Fig. 18) the global variable Trigger_Ex is declared. Before
the first INSERT statement in Fig. 17, the Trigger_Ex is set to FALSE,
indicating that a trigger for tuple insertion in r(N;) (Fig. 20) has to skip an IRIC
checking. In that way we emulate the deferred trigger consideration. Thus,
the tuple insertion in r(N;) is enabled, without raising an application error.
Afterwards, the insertion of corresponding tuple in r(N;) is allowed, since it

ComSIS Vol. 10, No. 1, January 2013 303

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

does not violate the RIC Ni[X] < Nj[Y]any more. The next step is to re-enable
IRIC checking in the trigger for tuple insertion in r(N;) (Fig. 20). In order to do
it in Oracle, the Trigger_Ex is set to TRUE, indicating that a trigger for tuple
insertion in r(N;) (Fig. 20) has to enforce an IRIC checking. At the end, the
function ContainmentIRI_<N;> (Fig. 19) is called in order to check if the IRIC
Nj[Y] < Ni[X] is violated.

CREATE OR REPLACE TRIGGER TRG_<Const_Name>_View
INSTEAD OF INSERT ON View_<N;>_<N;>
FOR EACH ROW
DECLARE
| NUMBER;
Exc EXCEPTION;
t <N>%ROWTYPE;
BEGIN
SELECT COUNT(*) INTO | FROM <N;> WHERE (<Selection_Cond>);
IF1<>0THEN
INSERT INTO <N;> VALUES (<Attr_Value_From_N;j>);
ELSE
<Const_Name>_PCK.Trigger_Ex := FALSE;
INSERT INTO <N;> VALUES (<Attr_Value_From_Nj>);
INSERT INTO <N;> VALUES (<Attr_Value_From_Ni>);
<Const_Name>_PCK.Trigger_Ex := TRUE;
SELECT * INTO t
FROM <N;> WHERE (<Selection_Cond>);
IF NOT Global_PCK.ContainmentIRI_<N>(t) THEN
RAISE Exc;
END IF;
END IF:
EXCEPTION WHEN Exc THEN
RAISE_APPLICATION_ERROR (-20001,'IRIC violation!");
END;

Fig. 17. A pattern of the trigger over view for Oracle

The replacement of parameters, specific for Oracle patterns, during the
trigger generation is done as follows:
- <Selection_Cond> is replaced by the conjunction of relational
expressions (one expression per each attribute from Y) of the form:

<Name_of Attribute_From _Y> = :NEW.<Name_of Attribute_From _Y>;

- <Attr_Value_From_Ni> (<Attr_Value_From_Nj>) is replaced by the list of
elements (one element per each attribute from R; or R;) of the form:

:NEW.<Name_of Attribute_From _Ni>
(:NEW.<Name_of_Attribute_From _Nj>).

Trigger_Ex is a global variable defined in a package created for the
appropriate constraint. The variable gets value TRUE if the trigger ought to
be executed and gets value FALSE otherwise. The parameterized content of

304 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

that package is presented in Fig. 18. The package parameter
<Attr_Decl_Rec_X> is replaced with the list of elements of the form:
<N;>.<Name_of_Attribute_ From_X>%TYPE.

For_<N;> and Count_IRI are variables declared in the package presented
in Fig. 18. They are used in modification and deletion triggers, and will be
explained in Section 5.2.2.

CREATE OR REPLACE PACKAGE <Const_Name>_PCK
IS
TYPE TRec<N;> IS RECORD (<Attr_Decl_Rec_X>);
TYPE TTabForDelUpd IS TABLE OF TRec<N;> INDEX BY BINARY_INTEGER;
For_<N;> TTabForDelUpd;
Count_IRI NUMBER(8,0);
Trigger_Ex BOOLEAN;
END;

Fig. 18. A pattern of IRIC's package

FUNCTION ContainmentIRI_<N> (v IN <N>%ROWTYPE)
RETURN BOOLEAN
IS
| NUMBER;
BEGIN
SELECT COUNT(*) INTO | FROM <N;i> u
WHERE (<Selection_Cond>);
IF | <>0 THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF;

END;

Fig. 19. A pattern of the ContainmentIRI_<N;> function

The pattern of the DB function ContainmentlRI_<N;>, called from
TRG_<Const_Name>_View trigger (Fig. 17) is shown in Fig. 19. The function
is to be defined in global package Global PCK. During the function
generation process the parameter <Selection_Cond> is replaced by the
conjunction of relational expressions (one expression per each attribute from
Y) of the form:

u.<Name_of Attribute From_X> = v.<Name_of Attribute_From_Y>.

In order to prevent the IRIC violation due to the separate insertion of
mutually blocked tuples, a trigger adhering to the pattern in Fig. 20 is to be
created.

ComSIS Vol. 10, No. 1, January 2013 305

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

CREATE OR REPLACE TRIGGER TRG_<N;>_<Const_Name>_INS
BEFORE INSERT ON <N;> FOR EACH ROW
BEGIN
IF <Const_Name>_PCK.Trigger_Ex = TRUE THEN
RAISE_APPLICATION_ERROR(-20004, 'Data have to
be inserted via view:View_<N;>_<N;> or procedure Insert_<Const_Name>');
END IF;
END;

Fig. 20. A tuple insertion control pattern

CREATE OR REPLACE PROCEDURE Insert_<Const_Name>
(v IN <N>%ROWTYPE, u IN <N>%ROWTYPE)
IS
t <N>%ROWTYPE;
Exc EXCEPTION;
BEGIN
<Const_Name>_PCK.Trigger_Ex := FALSE;
INSERT INTO <N;> VALUES (<Attr_Value_From_Nj>);
INSERT INTO <N;> VALUES (<Attr_Value_From_Ni>);
<Const_Name>_PCK.Trigger_Ex := TRUE;
SELECT * INTO t
FROM <N;> WHERE (<Selection_Cond>);
IF NOT Global_PCK.ContainmentIRI_<N>(t) THEN
RAISE Exc;
END IF;
EXCEPTION WHEN Exc THEN
RAISE_APPLICATION_ERROR (-20001,'IRIC violation!");
END;

Fig. 21. A pattern of the procedure for mutually blocked tuples insertion

Another way for providing insertion of mutually blocked tuples in one
transaction is by creating a custom DB procedure for double insertion.
Parameterized pattern for such a procedure is given in Fig. 21. The
differences between a procedure for mutually blocked tuples insertion for MS
SQL Server (see Fig. 12) and appropriate procedure for Oracle (see Fig. 21),
are the same as the differences described at the beginning of this section
(see Fig. 7 and Fig. 17). The meaning of parameters is similar to that in the
pattern of the trigger for double insertion using views, and therefore is
omitted here.

5.2.2. Patterns for tuple deletion in the presence of an IRIC for Oracle
Here we notify basic differences between the patterns for tuple deletion in the
presence of an IRIC for MS SQL Server and Oracle. MS SQL Server

provides the Deleted table that stores copies of the affected tuples during the
execution of DELETE and UPDATE statements. In Oracle notation key-words

306 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

NEW and OLD are used for that purpose. Hereof, for Oracle 10g three
triggers are to be created for the implementation of tuple deletion under the
presence of IRICs. The first one is run at the statement level, before the tuple
deletion. It has an assignment to set the auxiliary data structures, used by
other triggers. The pattern for the first trigger is shown in Fig. 22.

CREATE OR REPLACE TRIGGER TRG_<N;>_<Const_Name>_DEL1
BEFORE DELETE <N;>
BEGIN
<Const_Name>_PCK.Count_IRI := 0;
<Const_Name>_PCK.For_<N;>.DELETE;
END;

Fig. 22. A pattern of the first delete trigger

The variable For_<N;> enables transfer of old values of attributes
belonging to the attribute set X for all tuples that would be deleted. The
variable Count_IRI is aimed to keep the number of tuples that would be
deleted. Both of them are declared in the package presented in Fig. 18 and
represent auxiliary data structures.

The second trigger is run just before the tuple deletion. It puts the attribute
values from the tuple that would be deleted into the previously declared
auxiliary data structures. The pattern for the second trigger is presented in
Fig. 23.

CREATE OR REPLACE TRIGGER TRG_<N;>_<Const_Name>_DEL2
BEFORE DELETE ON <N;>
FOR EACH ROW
DECLARE
u <N>%ROWTYPE;
BEGIN
<Initialization _u>
<Name_P>.Count_IRI := <Name_P>.Count_IRI + 1;
<Name_P>.For_<N;> (<Name_P>.Count_IRlI).
<Attr_From_X> := u.<Attr_From_X>;

END;

Fig. 23. A pattern of the second delete trigger

Parameter <Name_P> is replaced by <Const Name>_ PCK. Parameter
<Initialization _u> is replaced by list of value assignment statements (one for
each attribute from X), separated with the semicolons, of form:

u.<Name_of Attribute from_X> := OLD.<Name_of Attribute_from_X>.
Bolded statements are repeating for each attribute from X.

ComSIS Vol. 10, No. 1, January 2013 307

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

CREATE OR REPLACE TRIGGER TRG_<N;>_<Const_Name>_DEL3
AFTER DELETE ON <N;>
DECLARE
u <N>%ROWTYPE;
| NUMBER,;
BEGIN
FORj IN 1.. <Const_Name>_PCK.Count_IRI LOOP
<Initialization_u>
SELECT COUNT(*) INTO | FROM <N;>
WHERE (<Selection_Cond>);
IF I <>0THEN
<Execute_Activity>
END IF;
END LOOP;
END;

Fig. 24. A pattern of the third delete trigger

The third trigger (Fig. 24) is run on the statement level after the tuple
deletion. It uses the auxiliary data structures generated by the second trigger.
The replacement of parameters, specific for Oracle patterns, during the
trigger generation is done as follows:
- <Initialization_u> is replaced by the list of value assignment statements
(one for each attribute from X), separated with the semicolons, of form:

u.<Name_of Attribute_from_X> :=
<Const_Name>_PCK.For_<N;> (j).<Name_of Attribute_from_X>;
- <Selection_Cond> is replaced by the conjunction of relational
expressions of the form:
<Name_of Attribute_From_Y> = u.<Name_of Attribute_From_X>.
Depending on the selected activity, <Execute_ Activity> is replaced with
Cascade_IRI_Del <N;>(u) procedure call (Cascade delete), that belongs to
the global package Global_PCK, or with SQL code for activity. SQL code
raises the error:
RAISE_APPLICATION_ERROR (-20003, Tuple deletion is forbidden <N>").

Parameterized pattern of the procedure for cascade deletion for Oracle
Server is presented in Fig. 25.

PROCEDURE CascadelRI_Del_<N;> (u IN <N>%ROWTYPE)
IS
BEGIN
DELETE FROM <N;> v WHERE (<Selection_Cond>);
END;

Fig. 25. A parameterized pattern of the procedure for cascade deletion

308 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

Parameter <Selection_Cond> is replaced by the conjunction of relational
expressions of the form:

v.<Name_of_Attribute_From_Y> = u.<Name_of_Attribute_From_X>.

5.2.3. Patterns for tuple modification in the presence of an IRIC

Basic differences between the patterns for tuple modification in the presence
of an IRIC for MS SQL Server and Oracle, are the same as the differences
discussed in Section 5.2.2. Therefore, the discussion is omitted here.

Same as for tuple deletion, for Oracle 10g three triggers are to be created
for the implementation of tuple modification under the presence of IRICs. The
first one is run at the statement level, before the tuple modification. It has an
assignment to set the auxiliary data structures, used by two other triggers.
The pattern for first trigger is shown in Fig. 26.

The second trigger (Fig. 27) is run just before tuple modification. It is
aimed at putting the values of attributes from X, for the tuple that would be
modified, into the previously declared auxiliary data structures.

CREATE OR REPLACE TRIGGER TRG_<N;>_<Const_Name>_UPD1
BEFORE UPDATE ON <N;>
BEGIN
<Const_Name>_PCK.Count_IRI := 0;
<Const_Name>_PCK.For_<N;>.DELETE;
END;

Fig. 26. A pattern for the first modification trigger

CREATE OR REPLACE TRIGGER TRG_<N;>_<Const_Name>_UPD2
BEFORE UPDATE ON <N;>
FOR EACH ROW
WHEN (<Cond>)
DECLARE
u <N>%ROWTYPE;
BEGIN
<Initialization_u>
<Name_P>.Count_IRI := <Name_P>.Count_IRI + 1;
<Name_P>.For_<N;> (<Name_P>.Count_IRI). <Attribute_From_X> :=
u.< Attribute_From _X>;

END:

Fig. 27. A pattern for the second maodification trigger

ComSIS Vol. 10, No. 1, January 2013 309

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

CREATE OR REPLACE TRIGGER TRG_<N;>_<Const_Name>_UPD3
AFTER UPDATE ON <N;>
DECLARE
u <N>%ROWTYPE;
| NUMBER,;
BEGIN
FORj IN 1..<Const_Name>_PCK.Count_IRI LOOP
<Initialization_u>;
SELECT COUNT(*) INTO | FROM <N;> WHERE (<Selection_Cond>);
IF1<>0THEN
RAISE_APPLICATION_ERROR
(-20002,'Tuple modification is forbidden <N;>");
END IF;
END LOOP;
END;

Fig. 28. A pattern for the third modification trigger

Unlike the second deletion trigger, the second modification trigger has one
more parameter. That is parameter <Cond>. During the trigger generation
process it would be replaced by the disjunction of relational expressions (one
for each attribute from X) of the form:

NEW.<Name_of Attribute_from_X> <> OLD.<Name_of_Attribute_from_X>.

The third trigger (Fig. 28) is run on the statement level after the tuple
modification. It uses the auxiliary data structures generated by the second
trigger. The replacement of the parameters is analogous to the replacement
of the corresponding parameters in the third deletion trigger (Fig. 24).

6. An Example of IRIC Specification and Implementation
in lIS*Studio DE

In this section, we present an example of an IRIC design specifications and
transformation of design specifications into error free SQL specifications of
relational DB schemas. We implement Examples 1 and 2 by means of
[1IS*Studio development environment.

In this section we present the processes of:

e A conceptual modelling of a DB schema;

e An automated design of relational DB schema in the 3rd normal form
(3NF); and

e an automated generation of SQL/DDL code for chosen DBMSs.

A form type is the main modelling concept in 11S*Studio. Each form type is
an abstraction of business documents, and therefore screens or report forms
utilized by the end-users of the IS. [IS*Studio uses the set of form types to
specify conceptual data model. From the set of form types, it generates the
relational database schema ([19], [25]). In this way, by creating form types, a
designer specifies: (i) a future database schema, (ii) functional properties of
future transaction programs, (iii) and a look of the end-user interface, all at

310 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

the same time. The detailed description of the structure and specification of a
form type may be found in [19] and [25]. In Fig. 29 one of [IS*Studio forms
for creating form type specifications is presented.

A form type is a hierarchical structure of form type components (Fig. 29).
Each component type is identified by its name within the scope of a form
type, and has non-empty sets of attributes and keys, a possibly empty set of
unique constraints, and a specification of the check constraint. In Example 1
a faculty is composed of at least one department. Therefore, form type
Faculty has at least one component type Department. This means that each
Faculty instance is connected with at least one Department instance. In Fig.
30 the 11S*Studio form for specifying component type Department is given.
The number of occurrences of component type Department on the form type
Faculty may be specified. A designer has to choose between the options: 0-N
and 1-N. If the option O-N is chosen, the model describes a faculty
organization that allows the existence of a faculty with no departments. The
selection of the option 1-N, models a faculty organization that does not allow
the existence of a faculty with no departments. Starting from the set of form
types of an IS, 1IS*Studio automatically generates a relational DB schema in
3NF with all relevant data constraints.

Fig. 29. The IIS*Studio form for specification of form type Faculty

Through the process of DB schema generation, the fact that component
type Department is subordinated to the form type Faculty is recognized as the
RIC Department[Facld] < Faculty[Facld]. Furthermore, the selection of option
1-N for the number of occurrences of component type Department within the
form type Faculty (Fig. 30) is recognized as the IRIC Faculty[Facld] <
Department[Facld] in the relational DB schema.

ComSIS Vol. 10, No. 1, January 2013 311

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

Fig. 30. The form with a specification of the component type Department

[1IS*Studio generates a directed graph called Closure Graph. A graph node
represents a relation scheme and a graph directed edge (arc) between two
relation schemes represents an IND between them. A closure graph diagram
of University database schema (UDBS) is presented in Fig. 31. The relation
schemes of UDBS are represented as rectangles and INDs between them as
arrows. The arrow from the Department to the Faculty rectangle represents
referential integrity constraint IND1, while the arrow from the Faculty to the
Department rectangle represents inverse referential integrity constraint IND2.

Fig. 31. A closure graph diagram of the University database schema

A designer may select an arrow representing an IND (RIC or IRIC) and
invoke the appropriate form for further specifying of INDs (Fig. 32). Through

312 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

this form possible actions for keeping the DB consistency on insert, update or
delete operations are to be specified. A designer may select between No
Action or Cascade actions in case of an IRIC specification. This selection will
affect on the corresponding deletion or modification trigger, through the way
of the replacement of <Execute_Activity> parameter.

An automated generation of SQL/DDL code for the chosen DBMS is the
next step of DB generation by using 11S*Studio. An implementation (SQL)
specification of relational DB schema is generated.

Constraint: IRl_Faculty_Department Constraint: RI_Department_Faculty
Inverse referential integrity Referential integrity (native)

Type: Type:

Description:

Description:

Reterertial irtegrity type: default w Reterertial irtegrity type default w

Referenced relation schemes

Referencing relation schemes
Department

Referencing relation schemes Referenced relation schemes

Department

< EAES > < > £ >

Attribute ML Modiff | Attribute MULL Modif Attribute ML Modiff | Attribute NULL IModif
Facd I T Facld | | Facd I I Facld | |

< tAlE > < EA A >
Oninsert, | MO ACTION ¥ | Onupdate: | NO ACTION A Oninzert, |NO ACTION | On update; | NO ACTION w
Oh update: | NO ACTION ¥ | Ondeleter |HMC ACTION b Oh update: | NO ACTION ¥ | Ondeleter |HC ACTION N

Constraint Deferrability
() DEFERRABLE

(® NOT DEFERRABLE

@ IMTIALL Y IMMEDIATE

Constraint Deferrability
() DEFERRABLE

@ NOT DEFERRABLE

@ IMTIALLY IMMEDIATE

[=nlo =no

Fig. 32. Forms for specifying IRIC and RIC, respectively

R R

Two forms that are used to define values of SQL Generator input
parameters are presented in Fig. 33. Firstly, we describe the form on the left-
hand side of Fig. 33. The field DBMS enables the selection of the type and
version of a target DB server. Oracle DBMS is chosen for the example. The
radio button DDL Files only provides the creation of SQL scripts in files only.
The radio button Database Source enables the selection of either Oracle or
MS SQL DB server, establishing a connection, and immediate execution of
generated SQL scripts. In this case, SQL Generator creates a script file,
invokes the appropriate SQL tool, and passes necessary parameter values
for the script execution. The radio button ODBC Source enables the creation
and the immediate execution of SQL scripts in a selected ODBC data source.
An appropriate ODBC driver for the target DB server must be installed and

ComSIS Vol. 10, No. 1, January 2013 313

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

configured. SQL Generator supports the user authentication when it works via
an established connection. The field DB Schema Name enables defining a
DB name that is then included in an appropriate CREATE DATABASE
command.

By means of Selection panel, a user picks relation schemes. SQL
Generator will produce the appropriate SQL commands for the selected
relation schemes only, and place them in script files.

By means of Options panel (right-hand side of Fig. 33) a user defines
which types of DB objects are to be generated. By checking the appropriate
check-box items, he or she may decide to generate: (i) indexes for primary,
alternate and foreign keys, (ii) SQL CONSTRAINT clauses, (iii) triggers, and
(iv) comments.

For inverse referential integrity constrains SQL Generator offers two ways
of implementation: (i) by means of SQL views and the appropriate stored
procedures, or (ii) by means of stored procedures only.

Not all possible combinations of the selected generator options are always
valid. By pressing the Check button, a user initiates a check of the selected
options. If some inconsistencies arise, a user gets the appropriate warnings.
Pressing the button Generate initiates the generation of SQL scripts.
Respecting the selected options, that can be seen on Fig. 33, the appropriate
triggers are generated. The generated insertion trigger in the presence of
IRIC Faculty[Facld] < Department[Facld] for Oracle 10g is presented in Fig.
34. The examples of other generated procedures/triggers may be found in [1].

7= Generate Server Model Definition 3
DELS 14 4 |Orack Server8ifog ~* r M
tethod: (2 Generate New Database () Regenerate Database

Target | Selection | Optians

Primary eys [l aternate keys [] Foreign Keys

Generate Triggers
Implemenitation Method for Inverse Referertial Integrties:

(@) Using Views
) Using Stored Procedures

[Jinchude Comments

I Check] [Generate l [Cancel l

Fig. 33. A form for SQL Generator parameters specification

314 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

CREATE OR REPLACE TRIGGER TRGfIRIiFacultyiDepartment7View
INSTEAD OF INSERT ON View Faculty Department
FOR EACH ROW
DECLARE
I NUMBER;
Exc EXCEPTION;
t Faculty%ROWTYPE;

BEGIN
SELECT COUNT (*) INTO I
FROM Faculty WHERE (FacId = :NEW.FacId);

IF I <> 0 THEN
INSERT INTO Department (FacId, DepId, DepName)
VALUES (:NEW.FacId, :NEW.DepId, :NEW.DepName) ;
ELSE
IRI Faculty Department PCK.Trigger Ex := FALSE;
INSERT INTO Faculty (FacId, FacName, Dean, FacShortName)
VALUES (:NEW.FacId, :NEW.FacName, :NEW.Dean, :NEW.FacShortName);
INSERT INTO Department (FacId, DepId, DepName)
VALUES (:NEW.FacId, :NEW.DepId, :NEW.DepName) ;
IRI Faculty Department PCK.Trigger Ex := TRUE;
SELECT * INTO t
FROM Faculty WHERE (FacId = :NEW.FacId);
IF NOT Global PCK.ContainmentIRI Faculty(t) THEN
RAISE Exc;
END IF;
END IF;
EXCEPTION
WHEN Exc THEN
RAISE _APPLICATION_ERROR(-20005, 'IRIC violation!'");
END;

Fig. 34. The insertion trigger over the view for Oracle DBMS

7. Conclusion

In the paper we present an approach to the specification and implementation
of IRICs. The algorithms that control the insertion, modification and deletion
database operations under the presence of IRICs are shown. The patterns for
triggers, as well as stored SQL functions and procedures, based on the
aforementioned algorithms, are also presented. Proposed patterns provide
generating SQL program code for DBMSs MS SQL Server 2008 and Oracle
10g. Our SQL Generator replaces the pattern parameters with real values
obtained from a database specification stored in 11S*Case repository; then, it
generates executable SQL scripts comprising necessary triggers, procedures
and functions for a target DBMS platform.

While RICs are fully enforced by most current database systems, IRICs
are completely disregarded by actual DBMSs, obliging users to manage them
via procedural mechanisms (procedures and ftriggers). This implies an
excessive effort to maintain integrity and develop applications. That is the
reason why the IRICs are mostly implemented at the application logic
(middle) layer instead at the DB server layer. Our approach enables the
automated SQL scripts generation and moving of the IRICs validation at the

ComSIS Vol. 10, No. 1, January 2013 315

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

DB server. Thanks to that: (i) the costs of the application maintaining is cut;
(ii) better performances due to the less traffic in the typical client-server
architecture are provided; (iii) the same way of preventing the violation of a
database consistency is enabled.

We propose two ways to insert mutually blocked tuples in one transaction:
(i) a view created over the relations r(N;) and r(N;) may be used for the double
insertion; or (ii) a custom DB procedure for double insertion may be
developed. The first approach is more appropriate for causal end users that
typically use high-level interactive query and data manipulation language.
The second approach is aimed at embedding DML statements in general-
purpose languages and making compiled transactions.

It is very hard to compare the features of MS T-SQL and Oracle PL/SQL in
the course of implementation of IRICs. The evaluation of programmer’s
efforts during the program code preparing for SQL Generator strongly
depends on programmer’s previous knowledge, level of training and
commitment to certain DBMS. We could say that according to our
experience, Oracle enables easier parameters’ transmission, partially due to
the ROWTYPE data type, that does not exist in MS SQL Server. The ability
of global variables declaration and grouping functions and procedures in
packages enabled in Oracle is for sure advantage over MS SQL Server. We
estimate that the existence of Deleted table in MS SQL Server facilitates the
easier implementation of tuple deletion in the presence of IRIC, comparing
with the Oracle.

Due to the fact that both Oracle and MS SQL Server, are widely used
DBMSs, we decide to provide generating SQL program code for them in the
first place.

Further development is directed towards extensions of SQL Generator's
functionality to provide: (i) generating SQL scripts for a wider set of
contemporary DBMSs and (ii) implementation of other, more complex
constraints types, but often recognized in real database projects. One of
typical examples is the extended referential integrity constraint (referential
integrity constraint spanned over more then two relation schemes.

It is worth of emphasizing that 11S*Studio relies on the approach that
conforms to the principles of model-driven (MD) approach. By means of
[IS*Studio, a designer specifies only PIM models, because they are free of
any implementation details. By the chain of consecutive transformations a set
of different semi or fully platform specific models (PSMs) is generated.
Consequently, a relational database schema that is generated by means of
[IS*Studio is just one of the PSMs that we can get from PIM of the real
system. Concerning the chain of model transformations, we recognize two
main directions of our further research. The first one is to develop new
transformations that will generate different PSMs like object-oriented model
or XML model of database schemas. The second one is to develop reverse
transformations from fully specific PSMs, through a series of semi PSMs
towards a PIM model. One of them may be a transformation of legacy
relational databases (fully PSMs) into logical database schemas expressed
by the concepts of the relational data model (semi PSMs), or another, a

316 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

transformation of relational database schemas into conceptual database
schemas based on the form types (PIMs). Besides, we plan to investigate a
possible usage of category theory in order to improve the performance of
generated code [29].

Acknowledgements. Research presented in this paper was supported by Ministry of
Science and Technological Development of Republic of Serbia, Grant 111-44010, Title:
Intelligent Systems for Software Product Development and Business Support based

on

Models.

References

10.

1.

12.

. Aleksi¢ S.: An SQL Generator of Database Schema Implementation Specification

in a CASE Toll 11IS*Case. M. Eng. (Mr.) thesis, University of Novi Sad, Faculty of
Technical Sciences, Novi Sad, Serbia. (2006)

. Aleksi¢ S., Lukovi¢ I., Mogin P., and Govedarica M.: A Generator of SQL Schema

Specifications. Computer Science and Information Systems (ComSIS),
Consortium of Faculties of Serbia and Montenegro, Belgrade, Serbia, ISSN: 1820-
0214, Vol. 4, No. 2, 77-96. (2007)

Aleksi¢ S. and Lukovi¢ |.: Generating SQL Specifications of a Database Schema
for Different DBMSs. Info M - Journal of Information Technology and Multimedia
Systems, Faculty of Organizational Sciences, Belgrade, Serbia, ISSN: 1451-4397,
No. 23, 36-43. (2007)

Aleksi¢ S., Ristic S., Lukovi¢ I|.: An Approach to Generating Server
Implementation of the Inverse Referential Integrity Constraints. The 5"
International Conference on Information Technologies ICIT 2011, May 11" — 13"
Amman, Jordan, Proceedings on CD. (2011)

. Al-dJumaily, H.T., Cuadra, D., Martinez, P.: Plugging Active Mechanisms to

Control Dynamic Aspects Derived from the Multiplicity Constraint in UML. In: The
workshop of 7th International Conference on the Unified Modelling Language,
Portugal. (2004)

Al-Jumaily H. T., Cuadra D., Martinez P.. OCL2Trigger: Deriving active
mechanisms for relational databases using Model-Driven Architecture. Journal of
Systems and Software, Vol. 81, No. 12, 2299-2314, ISSN 0164-1212, (2008)
ARTech. DeKlarit™ (The Model-Driven Tool for Microsoft Visual Studio 2005),
Chicago, U.S.A. [Online]. Available: http://www.deklarit.com/. (2007)

. ANSI SQL:2003, American National Standards Institute, USA, ISO/IEC Std. 9075-

{1, 2, 11}. (2003)

Ataullah A. A., Tompa F.: Business Policy Modelling and Enforcement in
Databases. PVLDB Vol. 4, No. 11, 921-931. (2011)

Badaway, M., Richta, K.: Deriving triggers from UML/OCL specification,
Information Systems Development: Advances in Methodologies, Components and
Management, 305-315. (2003)

Berrabah D., Boufarés F.: Constraints Checking in UML Class Diagrams: SQL vs
OCL. Database and Expert Systems Applications Lecture Notes in Computer
Science, Vol. 4653/2007, 593-602, DOI: 10.1007/978-3-540-74469-6_58. (2007)
Bravo, L.: Handling Inconsistency in Databases and Data Integration Systems.
Ph.D. Thesis, Carleton University. (2007)

ComSIS Vol. 10, No. 1, January 2013 317

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.
25.

26.

27.

28.

29.

30.

Cabot J., Teniente E.: Constraint Support in MDA tools: A Survey. Proceedings of
2nd European Conference on Model Driven Architecture, LNCS, ECMDA-FA, 256-
267. (2006)

CA ERwin Data Modeler r7.3. [Online]. Available: https://support.ca. com/irj/.
(2008)

Ceri, S., Cochrane, R., and Widom, J.: Practical applications of triggers and
constraints: success and lingering Issues. In VLDB 2000, 254-262, (2000)

Decker H., Martinenghi D.: Database Integrity Checking. In Database
Technologies: Concepts, Methodologies, Tools, and Applications, ed. John
Erickson, 212-220, doi:10.4018/978-1-60566-058-5.ch016. (2009)

Elmasri R., Navathe B. S.: Database Systems: Models, Languages, Design and
Application Programming, Sixth Edition, Pearson Global Edition, ISBN 978-0-13-
214498-8. (2011)

Govedarica M.: Design the Set of Implementation Database Schema Constraints.
M. Eng. (Mr.) thesis, University of Novi Sad, Faculty of Technical Sciences, Novi
Sad, Serbia. (1998)

Lukovi¢ I., Mogin P., Pavicevi¢ J., and Risti¢ S.: An Approach to Developing
Complex Database Schemas Using Form Types. Software: Practice and
Experience, John Wiley & Sons Inc, Hoboken, USA, ISSN: 0038-0644, DOI:
10.1002/spe.820 Vol. 37, No. 15, 1621-1656. (2007)

Lukovi¢ I., Risti¢ S., Mogin P., and Pavicevi¢ J.: Database Schema Integration
Process — A Methodology and Aspects of Its Applying, Novi Sad Journal of
Mathematics, Faculty of Science, Novi Sad, Serbia, ISSN: 1450-5444, Vol. 36,
No. 1, 115-140. (2006)

Microsoft SQL Server 2008. (2008)

Mogin P., Lukovi¢ I., and Govedarica M.: Database Design Principles, ond Edition,
University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia, ISBN:
86-80249-81-5. (2004)

Mogin P., Lukovi¢ I., and Govedarica M.: Extended Referential Integrity, Novi Sad
Journal of Mathematics, Novi Sad, Serbia, ISSN: 1450-5444, Vol. 30, No. 3, 111-
122. (2000)

Oracle DBMS 10g. (2004)

Pavicevi¢ J., Lukovic¢ |., Mogin P., and Govedarica M.: Information System Design
and Prototyping Using Form Types. International Conference on Software and
Data Technologies, Setubal, Portugal, September 11-14, Vol. 2, 157-160. (2006)
Ristic S., Aleksic S., Lukovic I., Banovic J.: Form-Driven Application Generation:
A Case Study, In Proceedings of the XI International Conference on Informatics,
Roznava, Slovakia, 115 — 120. (2011)

Rybola Y., Richta K.: Transformation of binary relationship with particular
multiplicity. In DATESO 2011, Vol. 11, 25-38. Czech Republic: Department of
Computer Science, FEECS VSB — Technical University of Ostrava. [Online].
Available: http://www.informatik.uni-trier.de/ “ley/db/conf/dateso/dateso 2011.html.
(2011)

Sybase PowerDesigner 15. (2009)

Slodi¢ak V.. Some useful structures for categorical approach for program
behaviour. Journal of Information and Organizational Sciences, Vol. 35, No. 1,
99-109, (2011)

Turker, C., Gertz, M.: Semantic Integrity Support in SQL-99 and Commercial
(Object) Relational Database Management Systems. UC Davis Computer Science
Technical Report CSE-2000-11, University of California. (2000)

318 ComSIS Vol. 10, No. 1, January 2013

A Design Specification and a Server Implementation of the Inverse Referential
Integrity Constraints

31.Zimbrao, G., Miranda, R., de Souza, J., Estolano, M.H, Neto, F. P.: Enforcement
of business rules in relational databases using constraints. In Proceedings of
XVIII Simposio Brasileiro de Bancos de Dados/SBBD, 129-141, UFAM. (2003)

Slavica Aleksié¢ received her M.Sc. degree from the Faculty of Technical
Sciences at University of Novi Sad. She completed her Mr (2 year) degree at
the University of Novi Sad, Faculty of Technical Sciences. Currently, she
works as a teaching assistant at the Faculty of Technical Sciences, at
University of Novi Sad, where she assists in teaching several Computer
Science and Informatics courses. Her research interests are related to
Database Systems, Theory of Data Models, System Design, Logical and
Physical Database Design, Development and Usage of MDSE / CASE tools
in Software Engineering and System Design, Reengineering of Information
Systems and Model Transformations in MDA.

Sonja Risti¢ works as an associate professor at the University of Novi Sad,
Faculty of Technical Sciences, Serbia. She received two bachelor degrees
with honors from University of Novi Sad, one in Mathematics, Faculty of
Science in 1983, and the other in Economics from Faculty of Economics, in
1989. She received her Mr (2 year) and Ph.D. degrees in Informatics, both
from Faculty of Economics, University of Novi Sad, in 1994 and 2003. From
1984 till 1990 she worked with the Novi Sad Cable Company NOVKABEL-
Factory of Electronic Computers. From 1990 till 2006 she was with High
School of Business Studies -Novi Sad, and since 2006 she has been with the
Faculty of Technical Sciences at University of Novi Sad. Her research
interests are related to Database Systems and Software Engineering.

Ivan Lukovié¢ received his M.Sc. degree in Informatics from the Faculty of
Military and Technical Sciences in Zagreb in 1990. He completed his Mr (2
year) degree at the University of Belgrade, Faculty of Electrical Engineering
in 1993, and his Ph.D. at the University of Novi Sad, Faculty of Technical
Sciences in 1996. Currently, he works as a Full Professor at the Faculty of
Technical Sciences at the University of Novi Sad, where he lectures in
several Computer Science and Informatics courses. His research interests
are related to Database Systems and Software Engineering. He is the author
or co-author of over 90 papers, 4 books, and 30 industry projects and
software solutions in the area.

ComSIS Vol. 10, No. 1, January 2013 319

Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovié, and Milan Celikovi¢

Milan Celikovié graduated in 2009 at the Faculty of Technical Sciences,
Novi Sad, at the Department of Computing and Control. Since 2009 he has
worked as a teaching assistant at the Faculty of Technical Sciences, Novi
Sad, at the Chair for Applied Computer Science. In 2010, he started his Ph.D.
studies at the Faculty of Technical Sciences, Novi Sad. His main research
interests are focused on: Domain specific modeling, Domain specific
languages, Databases and Database management systems. At the moment,
he is involved in the projects concerning application of DSLs in the field of
software engineering.

Received: November 02, 2011; Accepted: December 08, 2012.

320 ComSIS Vol. 10, No. 1, January 2013

