DOI:10.2298/CSIS121228059D

Model Execution: An Approach based on
extending Domain-Specific Modeling with Action
Reports

Verislav Djuki¢?, Ivan Lukovié®, Aleksandar Popovi¢3, and
Vladimir lvancéevic¢?

1 Djuki¢ — Software Solutions,
Gartnerstrasse 17, 90408 Nirnberg, Germany
info@djukic-soft.com

2 University of Novi Sad, Faculty of Technical Sciences,

Trg Dositeja Obradovi¢a 6, 21000 Novi Sad, Serbia
{ivan,dragoman}@uns.ac.rs

3 University of Montenegro, Faculty of Natural Sciences and Mathematics,
Dzordza Vasingtona bb, 81000 Podgorica, Montenegro

aleksandarp@rc.pmf.ac.me

Abstract. In this paper, we present an approach to development and
application of domain-specific modeling (DSM) tools in the model-
based management of business processes. The level of Model-to-Text
(M2T) transformations in the standard architecture for domain-specific
modeling solutions is extended with action reports, which allow
synchronization between models, generated code, and target
interpreters. The basic idea behind the approach is to use M2T
transformation languages to construct submodels, client application
components, and operations on target interpreters. In this manner, M2T
transformations may be employed to support not only generation of
target platform code from domain-specific graphical language (DSGL)
models but also straightforward use of models and appropriate DSM
tools as client applications. The applicability of action reports is
demonstrated by examples from document engineering, and
measurement and control systems.

Keywords: domain-specific modeling, model-driven development,
model transformations, modeling tools, document engineering

1. Introduction

Over the last few years, there have been increased efforts within the
academic community to improve software engineering through application of
software models [33]. In numerous works, there are remarks that the adoption
of Model Driven Software Development (MDSD) and the Unified Modeling
Language (UML) as its main language has only partially achieved the

Verislav Djukic et al.

proclaimed goals related to development productivity and software quality
[19], [21]. Some authors consider the unfitness of UML for domain specific
problems to be the main reason for this failure. Expecting that an average
software engineer uses or thinks in domain independent abstractions might
have been unrealistic. Several approaches, including Domain Specific
Modeling (DSM) and MDSD, still focus on software models, which are
sufficiently formal but also understandable to both machines and humans.
One of the important goals in the aforementioned approaches is that models
should not only be part of the specification but also of the implementation of
the corresponding systems.

Software industry experts are more pragmatic in regard to these issues
and not determined to use general purpose modeling languages, such as
UML, at all costs. They are more focused on developing modeling tools that
satisfy requirements for highly specialized production and control systems.
Although the quality and usability of these tools are not being questioned, the
manufacturers are constantly faced with high costs of development and
customization, even for very similar domains. Taking all into consideration,
we expect that the software industry will base its highly specialized tools on
the DSM architecture to a much greater extent. The following two
improvements could be particularly important: (i) better support for the
construction of modeling languages and their syntax, including abstract,
concrete graphical, and concrete textual syntax; and (i) better
synchronization between meta-models, models, generated code, and target
interpreters or “execution machines”. Our research is oriented toward the
latter improvement, i.e., better synchronization between meta-models,
models, generated code, and target interpreters. The aforementioned
synchronization is closely linked to model debugging and execution.

The topic of our research presented herein is also present in other domains
of application within the field of software engineering. One such domain is
software development based on MDSD and Computer Aided Software
Engineering (CASE) tools. The traditional CASE tools support the creation of
platform independent model (PIM) software specifications, their automatic
transformation into platform specific model (PSM) specifications, and
ultimately the generation of program code. However, it cannot be actually
expected that these tools support incremental interpretation of specifications
and dynamic changes of the applied meta-models. These requirements may
be gradually fulfilled in the evolution of CASE tools into MDSD tools by
insisting on retaining the complete synchronization between the created PIM
models and the generated program code. An example of one such MDSD
tool, which is developed by the authors of this paper, is the Integrated
Information Systems CASE Tool (IIS*Case) [26]. At present, this tool relies
on the PIM model of an information system to generate: (i) implementation
description of a database schema and (ii) prototypes of the applications
supporting operations on that database. In the current version, any
modification within the model requires a new generation of the
implementation description of the database schema, as well as a new
generation of the prototype applications. In this manner, in forward

1586 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

engineering, there is support for a one-way synchronization. One of the future
research tasks includes implementing in 11S*Case the automatic two-way
synchronization between the model and the system executing the
applications. As opposed to the existing abovementioned approaches to the
execution of models created using a DSM tool, our approach supports
incremental interpretation of specifications. Each user operation on a model
in the DSM tool is directly interpreted in real time, which may be utilized to
verify the correctness of the specification. Simulation tools have supported
this approach for quite some time, but they set restrictions on the semantics
of simulation languages, i.e., meta-modeling is considerably limited. The
execution of models whose semantics is not known in advance represents a
significantly more complex problem with respect to both the theoretical and
practical issues. The most difficult problems are the definition and automatic
generation of a target interpreter that supports incremental verification of
specifications. Moreover, the goal of our approach, to which we actively
direct our efforts, is to support the two-way synchronization by allowing the
direct execution of changes on a model. This may be achieved by using
operations on the application that represents the result of the incremental
specification. There should be support also for the direct extension of a meta-
model in real time according to the operations executed on the previously
created models.

Our initial application of MDSD, DSM, and model transformation principles
is related to complex problems in document engineering, previously
presented in [7], [11], [14], [22], [24], [26]. Positive experience with the
construction and application of domain specific languages (DSLs), together
with problems related to the development of client applications for
measurement and control systems, indicated that the Model-to-Text (M2T)
transformations in DSM may be significantly improved and utilized in model
debugging and execution. By employing extended M2T transformations,
namely "action reports”, we intend to make possible the use of modeling tools
as client applications. Notwithstanding the fact that current techniques for
code generation from models have great capabilities, we demonstrate herein
the practical value brought by: the introduction of the submodel concept and
appropriate operations; the introduction of the transaction concept in the
context of (sub)models; and the use of action reports (generators) as
synchronization units during the testing of meta-models, models, client
applications, and target interpreters. The practical value of introducing
submodels, transactions, and action reports, is that M2T transformations, in
addition to being employed for the generation of code in a target language,
may also be used for expressing semantics of user actions on a PIM, i.e., on
the graphical interface of a DSM tool.

In order to refer to the activities related to meta-modeling (Me), modeling
(M), interpretation (1), and documenting (D) of model changes and execution
flow, we introduce the term/acronym MeMID activities. Consequently, the
approach to the modeling and development of software systems that includes
all of the aforementioned activities is named the MeMID approach. When
compared to the traditional approach to modeling, the MeMID approach

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1587

Verislav Djukic et al.

includes interaction between all of the components in the DSM architecture,
incremental specification, and visual representation of all changes within a
real system being modeled. We took a pragmatic approach to the issue of
model execution, with the goal of having solutions that may be sufficiently
understood by a wide range of users and quickly applied in various business
domains. The emphasis is placed neither on the definition of syntax of user
semantic actions, nor on meta-modeling, but on the definition of action
semantics, i.e., on the interpretation of user actions in a DSM tool during their
execution and not solely afterwards, during code generation.

Besides the Introduction and Conclusion, the paper contains eight sections.
In Section 2, we describe the state of the art and what is expected from DSM
for model execution. The description of the concept of action reports and how
they differ from code generators may be found in Section 3. In Section 4, we
describe Model-to-Application (M2A), Application-to-Model (A2M), and
Model-to-Document (M2D) transformations with respect to application
generation. In Section 5, we describe usage of submodels and transactions in
the testing of a DSL, model, and target framework or interpreter. This is
illustrated with examples of using DSM tools for modeling documents,
document templates, and modeling systems by documents. In Section 6, we
describe how arbitrary user components may be integrated into DSM tools
with the goal of visually representing abstract language concepts. In Section
7, we give examples of the synchronization between a client application and
modeling tool. Section 8 describes usage of action reports for the purpose of
implementing operations on DSM models, the target interpreter, and user
applications. Chapter 9 contains a survey of related work, and overview of
the current state of technology in the area of model execution.

2. State of the Art and MeMID Activities

There are certain differences between the roles of some elements in the
architecture of DSM and UML tools. These roles originate from different
perspectives on modeling in domain specific (DSM) and general purpose
(UML) tools. On one hand, DSM tools promote unrestricted construction of
domain-specific languages tailored to the needs of users in narrow business
domains. On the other hand, UML tools promote construction and use of
profiles that are tailored to a particular domain but retain basic elements of
the UML syntax, as in the case of SysML [34]. Moreover, DSM tools allow
rapid construction of any language belonging to the UML group, while UML
tools feature a more suitable graphical interface. In DSM tools, a model is
completely separated from the target language, i.e., models are fully platform
independent. In UML tools, there is an early coupling between a model and
the target language. In DSM tools, reverse engineering is regarded as a
methodologically inappropriate procedure, while it is indispensable in UML
tools for the purpose of synchronizing code and model. Nonetheless, these

1588 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

observations are fairly general since there are significant differences even
between the tools of the same group.

Further evaluation of the state of the art in the area of model execution is
done with respect to the aspects of traditional and advanced code generation
and execution (Fig. 1). A modeling language is constructed using a dedicated
editor, while models are created using the newly constructed language. In the
DSM architecture, these steps correspond to meta-modeling and modeling
activities. PIMs are transformed into source code in a general purpose
programming language. Transformations are done using patterns or
navigation languages [15], [30]. The generated source code in some
language (e.g., IEC 611.31, C++, Java, and C#) is translated into binary code
using a compiler so that it could be executed on the target platform. This
DSM use case is marked as Traditional Flow in Fig. 1. In some cases, target
platforms are operating systems themselves, but they may often be Run-
Time Systems (RTSs) or Execution Machines, which feature a set of
functions more suited for the concrete purpose when compared to operating
systems. In our opinion, traditional use of DSM tools significantly improves
productivity in the system development, but also has serious drawbacks.

The basic drawbacks of the traditional approach include: (i) weak
synchronization between the generated code, model, and meta-model, which
hinders incremental execution of models; and (ii) growth of specifications. As
the specification is growing, the model should be executed accordingly, first,
as empty, and later as more complex, while for each action on the model
there should be a corresponding interpretation in the target RTS.

Fig. 1. Traditional and advanced usage of DSM tools

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1589

Verislav Djukic et al.

In the traditional approach, which is based on transformations into a
general purpose language, the semantics expressed by a PIM may be
significantly limited by a transformation to a target general purpose language
(GPL). The approach that we propose, which is illustrated herein in Fig. 1 and
with several examples tested in practice, includes:

— direct translation of PIM models to binary code tailored to the
characteristics of the target RTS and hardware;

— dynamic linking of specifications being executed using increments, which
are the result of changes in the model;

— use of action report interpreter within DSM tools, Human-machine interface

(HMI) components, and the RTS for the purpose of their synchronization;

— application of arbitrary user components for the visualization of abstract

DSL concepts; and
— run-time visualization of the interpretation of specifications within the DSM

tool.

As indicated in Fig. 1, at the level of M2T transformations, an extended
abstract syntax tree (AST) is generated. It is an Extensible Markup Language
(XML) structure, from which it is possible to generate code in binary,
assembly, or a general purpose programming language. Depending on the
characteristics of the RTS and target hardware, various protocols for dynamic
linking of binary code to the RTS are employed. These protocols specify how
to exchange data on variables, arrays, user structures, external functions,
and values of object instances. If the modeling language is sufficiently rich,
there is no need for a host language, and, consequently, for a GPL compiler.
We consider this approach especially suitable for target RTSs that support:
incremental updating, dynamic linking of binary code, and execution of
instructions used to communicate with wired logic controllers. The target
system may also be a virtual machine, which executes byte code. We use
the term byte code to denote a set of platform independent assembly
instructions that are primarily intended to be interpreted by virtual machines.
Due to their slow interpretation times, virtual machines are generally not
suitable for systems that should have a prompt and time-determined
response.

The tracking of model changes presents an important research topic of
practical relevance to the Model-Driven Development (MDD) community. In
[29], the authors introduce new features of the MetaEdit+ Workbench [30]
and present various capabilities for visualizing language concepts of a DSL,
including dynamic modification of appearance properties. The MetaEdit+
Workbench is a tool that provides support for various development phases
including meta-modeling, modeling, code generation, and simulation of the
modeled system. In our approach, we borrow two well-established ideas that
are implemented in modern database management systems: transactions
and views.

In [27], the authors report the lack of support for model debugging in DSL
tools. While most GPL Integrated Development Environments (IDEs) support
model debugging because language syntax and semantics are known in
advance (and because there is a compiler), the situation concerning DSLs is

1590 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

substantially more complex. The standard debugging scenario is conceptually
restricted by operating systems, target frameworks, and libraries. Therefore,
any pragmatic approach featuring even minor improvements related to
MeMID activities is going to represent a significant contribution to the testing
of domain-specific models.

3. Action Report as an Extended M2T Transformation

An action report is a special M2T transformation formally defined using a
language for specifying code generators that, in addition to the description of
the model-to-text transformation, contains commands and rules for command
invocations during model execution. DSM involves use of reports, also known
as generators, to specify how to utilize information from abstract models and
to generate code in accordance with a particular concrete syntax [3], [14],
[20], [30]. A report is a program whose interpretation yields a textual
representation of the semantics expressed in a model. Since transformation
languages support model filtering by selection of objects and relations
according to a criterion, they should be used to explicitly define a submodel
or model view. The need to introduce submodels arises from the fact that, in
practice, testing is most of the time focused on a single part of the system
and not on the system as a whole.

The purpose of extending report languages and their interpreters is to
improve synchronization between a modeling tool, target interpreter and
client applications that are not generated by the modeling tool. Therefore, an
action report is a report containing synchronization commands. Accordingly,
an action report interpreter is an extended code generator that, in addition to
reading, may change the state of a model, meta-model, client application and
target interpreter. Put in simple terms, an action report features set and get
operations for property values. In such role of action reports, it is assumed
that every participant in the synchronization has an instance of the action
report interpreter.

Relevant characteristics of action reports are divided into three groups: (i)
those that are related to modeling tools; (ii) those that are related to target
interpreters; and (iii) those that are related to user components for visualizing
and documenting actions.

The first group includes the following characteristics: (i) action reports are
defined in the context of a submodel; (ii) action reports allow frequent model
view changes, i.e., frequent submodel redefinitions; (iii) action reports are
executed inside an optimized transaction whose beginning and end are tied
to valid model states; and (iv) action reports may execute operations (and be
referenced) in the context of both concepts forming a meta-model (modeling
language) and objects not part of the meta-model, i.e., any user control.

The second group includes the following characteristics: (i) there are target
environments that support model interpretation during specification time,
which introduces the need for an operation that would calculate specification

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1591

Verislav Djukic et al.

increment between two model states; and (ii) when employing models to
manage business processes, action reports may be used to synchronize
business activities prior to a switch to a new management model, as well as
to incrementally generate documentation and applications that precede the
change of the business model.

The third group includes the following characteristics: (i) all the
communication between modeling tools and external applications is in the
form of textual commands specified in the syntax of a generator language;
(i) action reports are closely related to target interpreter environments, which
may vary greatly; (iii) action reports may be called both synchronously and
asynchronously, while calling rules define order, frequency, and/or logical
conditions related to the call; and (iv) if the target interpreter does not support
incremental update during interpretation time, the problem is reduced to the
recompilation of the generated code and the use of appropriate debugging
tools, which are often part of IDEs.

The role of action reports is illustrated in Fig. 2. They are primarily an
interface between the modeling tool, user applications, and target interpreter
or debugging environment for the generated code. The interpretation of
action reports is performed by special components that are instances of
action report interpreters, which are labeled AR Int within the little yellow
rectangles featured in Fig. 2. The objective is to allow various user groups
like meta-modelers, modelers, testers, etc., to use an existing DSM tool as a
means of testing the generated code, target interpreter, model and DSL.
Action reports are not intended to be used for the description of dynamic
characteristics of a system. These characteristics may be completely formally
specified through UML state diagrams or equivalent DSLs. Action reports are
employed to allow direct use of the existing DSM graphical interface in
debugging or testing of the generated code.

Fig. 2. Action reports and their interpreters

1592 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

When the modeling language is not sufficiently semantically rich,
generators may be temporarily used to describe semantics, i.e., surpass
problems caused by the lack of DSL concepts. This scenario is typical
particularly for the DSL construction phase.

We close the action reports introductory section with a remark that the
importance of action reports as defined herein may significantly differ
depending on the actual context. In some business domains, the feedback
that action reports may provide to modeling tools has no relevance. However,
when DSLs are used in specification of measurement and control processes,
action reports are essential and their use brings numerous advantages [29]. A
modeling tool may be used as an HMI by exploiting the feedback from the
target interpreter. There may also be different visual representations of a
single language concept.

4. M2A , A2M, and M2D Transformations

For the purpose of investigating and verifying practical usability of Model-to-
Application, Application-to-Model, and Model-to-Document transformations,
we implemented the DVRepLang language for specifying these
transformations and a corresponding interpreter [8], [14]. They are part of
DVDocIDE [10], a DSM tool for document modeling. M2A/A2M
transformations are basically M2T/Text-to-Model (T2M) transformations
whose purpose has been described in various papers [30], [34]. M2T
transformations have been applied in numerous tools for code generation
from models [2], [14], [15], [20]. The motivation for introducing M2A/A2M
transformations in our research is differentiating in code generation between:
(i) procedures that generate the code for the communication between
modeling tools and a target interpreter and (ii) procedures that generate the
code to be interpreted or executed on the target interpreter. The procedures
that generate the code responsible for the communication are tailored to the
characteristics of communication components, i.e., communication
frameworks. On the other hand, the procedures that generate the code being
interpreted are tailored to the characteristics of the framework and target
system. The semantics expressed by the model is interpreted by this target
system independently from the manner in which the communication is
performed. For example, if both frameworks are inadequate, the
communication procedures may generate TCP/IP commands, while the
procedures responsible for expressing the semantics of the model may
generate code in C++. In this context, the target interpreter is important as a
component that verifies model and gives feedback for the potential
refinement of both the model and DSL. The reason for introducing the notion
of a M2D transformation is a need to extend M2T transformations with
procedures for the generation of documentation about the MeMID activities.
The most important characteristics of M2A/A2M transformations include:

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1593

Verislav Djukic et al.

— target text is a code in a GPL, DSL, or any textual format interpretable by
a modeling tool or a target interpreter;

— target text contains embedded semantic actions like property get and set
operations;

— operations may be performed on models inside a repository or locally on
visual representations of DSL concepts in the graphical interface of a
modeling tool;

— these transformations may include operations on external elements of the
presentation that are not part of the modeling tool (see Fig. 3);

— these transformations do not directly modify the meta-model, but are used
for the semi-automatic inclusion of user controls that graphically represent
language concepts; and

— when there is a discrepancy between the concepts directly supported by
the interpreter and those of the DSL, these transformations provide an
interface for the communication between the relatively incompatible units.

The most important characteristics of M2D transformations include:
target text is a specification of document instances in a DSL;

- such specification contains identifiers of layout styles that are used for the
document rendering;

— target interpreter, which features an instance of the action report
interpreter, utilizes action report definitions as a basis for the identification
of rules and conditions for initiating document rendering; and

— M2D transformations include rendering of well-designed documents in the
PDF or HTML format in the form of external services.

By introducing these transformations, we satisfy some of the user
requirements related to the more agile testing and documenting of DSLs,
models, and target interpreters. The ideal environment for the application of
these transformations within the MeMID activities is the one that supposes
the existence of the “universal interpreter” and does not require interrupting
the interpretation during the synchronization of model changes. These “hot”
switches to a new version of the model are known as incremental updates.
Universal interpreters that are independent of the application domain do not
exist. Any generalization of the target interpreter necessarily leads to a
greater separation of the language used to describe the problem from the
language interpretable by the interpreter. In practice, there is a compromise
to solve the widest possible class of problems by upgrading the interpreter so
that it could internally translate DSL constructs that are at a high level of
abstraction to an optimized set of elementary operations.

With respect to the connectedness of meta-models and models, modern
tools vary greatly. Some tools support meta-modeling only through textual
syntax and feature weak synchronization between meta-models and models
[15]. Other tools consistently support abstract graphical models, graphical
DSL constructions, and different visual representations for the same
language concept, as well as full synchronization between the meta-models
and models [30]. Different visual representations of a single language
concept allow animations, i.e., visual presentations of model states during

1594 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

interpretation [29]. The debugging of DSM models cannot be equated with
the debugging inside GPL IDEs. With the GPL-to-assembly transformations,
there is a finite, predetermined set of source and target language concepts.
On the other hand, in DSM neither the source nor the target language needs
to be known in advance. The source language is constructed to meet the
domain-specific needs and the target code may substantially depend on the
existing libraries and frameworks. One of the approaches to the formation of
a stronger logical relationship between debugging environments and
modeling tools includes the use of patterns. In this manner, it is generally
possible to relate the model to the target code. One disadvantage of the use
of patterns is that they need to be created for each combination of a DSL and
target platform. The critical issue is how efficient the debugging of the
resulting code is when done through a GPL IDE that is logically separated
from the meta-modeling tool. This problem is extensively debated and the
proving of the language validity is a topic of numerous papers and books
[21], [27].

Further discussion of MeMID activities is based upon an assumption that
the debugging rules or steps should be defined inside the M2A, A2M and
M2D transformations in order to provide the feedback from the target
interpreter toward the model.

5. Using Submodels, Transactions, and Action Reports in
MeMID activities

Modeling tools usually support the concept of model decomposition, which
implies that an object, relation, or role may be linked to a submodel. This
allows for a model to be described and expressed at different levels of
granularity and sometimes even at different levels of abstraction. During
testing, it is necessary to focus on just a subset of elements within the model.
In DSM tools, this subset should be defined using a submodel, as a complex
object with its own structure, operations, and constraints. Although default
operations (insert, delete, connect, and disconnect) and constraints express
fundamental dynamics of the system described by that model, they are not
sufficient to express the rules for the translation of the model from one
consistent state to another. For this reason, modeling tools should include
support for the transaction concept. Transaction is defined as an operation
that validates a sequence of actions on a model and updates the repository.
Similar to the database transaction, it includes a validation of actions in the
context of MeMID activities. Therefore, we expect that modeling tools
explicitly support defining submodels, similarly to how it is supported in
DVDoclIDE [10].

The purpose of submodels and transactions is illustrated by an example
presented in Fig. 3 The diagram in the left section of the figure features
activities A71-A4 that are part of the production of advertisements and related
documents. The activity A2 (Standard ad production) is composite and

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1595

Verislav Djukic et al.

consists of several activities in the modeling of small advertisements. To
model advertisements, we use a DSL named DVAdLang, [5], [11]. The
subgraph of the object A2, marked with M4, is an advertisement model that
features a logo, several phone numbers, and an email address. In the upper
right section of the figure, there are three models (M1-M3) in three consistent
states (S1-S3), all of them representing the same advertisement. These
advertisements states, which are explicitly expressed by their models M1-M3,
are evaluated in the context of the submodel SM1, which does not contain
the advertisement title (the yellow rounded rectangle).

With respect to model execution, there are two levels of verification: (i)
model verification during design time, done by the modeling tool and in
accordance with the meta-model; and (ii) on-demand verification of the code
generated from the model, whose form of invocation is explicitly expressed
by transactions, i.e., action reports in a M2A transformation (in Fig. 3 marked
by T1 and T2). Successfully completed transactions change the
advertisement states while giving a visual representation for each of these
states, i.e., they document the changes in the advertisement states using
well-designed PDF documents (see the lower section of Fig. 3). Partial
verification of a model, herein illustrated by the example of the submodel
SM1, which is represented by a shaded rectangle with rounded edges, is not
directly supported in standard DSM tools. This fact hinders a wider use of
DSM tools in certain domains, such as document engineering and
incremental specification of measurement and control processes. In the
presented example, we implemented this functionality using the incremental
document generator DVDocGen [6] as the target interpreter. In this manner,
we obtained advertisement images, which are shown in the lower section of
Fig. 3. DVDocGen can detect, interpret, and update action reports. The DSM
modeling tool needs to interpret only a property value set operation in order
to visualize the model execution flow. As opposed to DVDocIDE [10], which
is focused on the formal specification of documents, general purpose DSM
tools mostly do not support such operations.

Examples 1 and 2 further refer to the contents of Fig. 3 and include: (i)
specification of the action report AR1, which sets the text property
Font.Underline in the objects in the modeling tool; and (ii) a generic form of a
DSL script, which is an interpretable textual representation of a portion or
whole semantics expressed by a model.

Example 1. The action report AR1 is defined using DVRepLang [8], [38], a
language similar to the MetaEdit+ Reporting Language (MERL) [30]. Both
languages are navigation languages for M2T transformations of models into
an arbitrary target text. AR1, which is presented in Listing 1, is applicable to
all models that are of the same type as M71-M4 from Fig. 3. It is used to
generate, in accordance with the syntax of DVAdLang language, a DSL script
from the advertisements models. Besides the code segments that are
responsible for a standard M2T transformation, AR1 also contains sections
for embedded semantic actions.

1596 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

Fig. 3. Submodels, transactions, and testing of models and the target interpreter

Listing 1. Action report example

Report "AR1"
CALL_TYPE = event; /*interval,cyclic,event*/
foreach >ContentUnit {
do .O
{*<"type >
if type = "LOGO" then
ID *," :Alignment; "," :Height;
else :Value; endif
newline
dowhile ~Phones in> Phone connections~Phone rings in.()

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1597

Verislav Djukic et al.

{
"<* type ">" :Value; newline
ACTION_BEGIN
"<STATE>"0bj ID
:Font._Underline=true;
ACTION_END

}
}

The existing syntax of DVRepLang, which is used for M2T transformations,
is extended with: (i) CALL_TYPE command for the declaration of conditions or
intervals for the exchange of action reports with the target interpreter, and (ii)
ACTION BEGIN and ACTION END primitives, which mark a report code
section related to synchronization. In Listing 1, the new language commands
are marked in bold.

Example 2. During the interpretation of the AR1 report from Example 1, a
DSM tool generates target text. In this particular case, it is a DSL script in the
DVAdLang syntax, which is featured in Listing 2. The definition of action
reports is inserted into the <AR_META> tag. This definition is required by the
target interpreter during the whole synchronization process done with the
modeling tool and client applications.

Listing 2. Embedded definition of an action report in the DSL script

<AR_META>="REPORT AR1..."

<CU>Initial DSL script

<STATE>S1

<CU>Increment for S2 (Transaction T1)
<STATE>S2

<CU>Increment for S3 (Transaction T2)
<STATE>S3

The <STATE>objID commands in a DSL script in the target language
explicitly denote states, and define transitions and semantic action during
model execution. During the interpretation of each <STATE> command, a
client application or document generator finds an action definition within the
<AR META> tag and executes that action while informing the modeling tool
about the interpretation state. In this example, the property-setting operation
Font.Underline=true (marked by ACTION BEGIN and ACTION END) is
called.

Semantic action of synchronization through an action report may be
arbitrarily complex. It may include incremental specification and rendering of
documents inside MeMID activities. In this particular example, since the
target interpreter is a document renderer, the semantic action represents both
a proof of model execution and a rendered documentation about model
testing. For the visualization of the execution of document models and
business process models, very fast document generators are required [4]. An
example of one such simulation that follows the life cycle of documents is
presented in a video clip [5].

1598 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

6. User Application and Modeling Tool

In a typical DSM scenario, HMI components of a user application are
generated or parameterized from models. User applications are not utilized in
modeling but are products of modeling that are obtained in the automatic
generation of source code. In environments where DSM is being applied,
users often have their own framework and HMI components whose layout
and functionality are too complex to be specified using editors for meta-
modeling. Therefore, it is useful to allow simple integration and use of
external HMI components in DSM tools. This integration does not only
include exchange of values according to the scenario described in the
previous section, but also implies use of external HMI components for visual
representation of abstract DSL concepts. In the following discussion, we
restrict ourselves to the pragmatic approach that utilizes action reports and
common properties of visualization elements in the DSM tool and HMI
components.

_ B Example FE Example
!I'I1 [545 |outl
._!I'IZ 1 false _‘IJIJT.Z I
PRLLEN E Y o)
ind |

Modeling HMI

tool J Lclient
—{P(dsm) P(hmi) =
E Property Iinkir‘ngj

Eﬂuztion speciﬂcatimﬂ

Action Reports

| Target interpreter 9@ I

Fig. 4. Editor of common properties, action specifications, and synchronization

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1599

Verislav Djukic et al.

In Fig. 4, we illustrate an approach to the integration of user HMI
components into DSM tools. In the upper left corner of Fig. 4, there is a
function block object in a default visual representation created using a DSM
tool. In the upper right corner of the same figure, there is a user HMI
component that in the form similar to a bar chart shows input and output
values of variables associated with the function block. The output variable
out2 is of the bool type, so it is represented in the HMI component as an
empty circle when its value is false, or as a filled circle when its value is true.
Both the DSM tool and the HMI component support reading and changing the
property values in several ways, e.g., mouse operations and using a text
editor. The P(dsm) label denotes properties defined using the DSM tool, while
the P(hmi) label denotes properties belonging to the HMI component. The
integration procedure consists of three steps: (i) property linking (also shown
in Fig. 4), in which the semantically equivalent properties are found between
the two visual representations, irrespectively of the actual form of
visualization; (ii) defining user actions on the elements of the graphical
representation when certain semantic actions should be executed (labeled
Action specification in Fig. 4); and (iii) defining the semantics of actions using
a language for action reports.

The target interpreter, which is shown in the lower section of Fig. 4,
executes the current specification, i.e., interprets the model and action
reports. In the context of the target interpreter, it is not important whether the
action reports were created by a DSM tool or user application. The role of the
target interpreter is to fetch the values of some properties from the current
state of the interpretation, update the action report, and send it back. The
communication may also go in the opposite direction. Based on the state of
the real system, the target interpreter detects the conditions when the
semantic actions, whose structure and content are represented by the
previously defined action reports, should be called. In this manner, the state
of the model within the DSM tool or the state of the user application may be
updated. Modifications in the model are not restricted only to setting new
values of some properties, but they may be arbitrarily complex and include
any operation that is supported within the graphical interface of the DSM tool,
HMI components, and user application containing those HMI components.

In the context of the example from Fig. 4, Listing 3 illustrates what is
executed by the action report interpreter featured in the target interpreter.

Listing 3. Structure of the semantic action for synchronization

ACTION_BEGIN
1in3='2.54"
ACTION_END

The value of the in3 property is set to 2.54 and the updated action report is
sent back to: (i) the modeling tool for the purpose of modifying interface
properties and (ii) the HMI client application for the purpose of setting the
values for visualization controls. Report exchange is performed periodically

1600 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

or on a certain event that is not time dependent, according to the role of an
external HMI component. This approach to the synchronization between the
HMI components and target interpreters is not supported within the general
purpose DSM tools, so the testing is performed using DVReplLang and
DVDocIDE, which are DSM tools for document engineering.

7. DSM and Action Reports vs. UML in the Domain of
Measurement and Control Systems

Software models are widely used in the manufacturing of measurement and
control systems (MCSs), as well as in processes that are automated by these
systems. In the field of MCS, there are numerous specifications and solutions
that were created in previous decades without significant use of standardized
modeling languages. There are several important reasons why UML has not
become widely adopted in the MSC industry:

— UML is a graphical language that is not intuitive for domain-specific

problems;

— there is a discrepancy between abstract models and a target language that
is used in model implementation;

— UML cannot be used to easily transform submodels of abstract
specifications into various target languages; and

— UML tools offer limited possibilities when it comes to model execution.
Some of the aforementioned restrictions, which used to impede the full-
fledged application of UML in the MCS industry, have been overcome,
however many practical issues still remain. MSC solutions have to satisfy
rigorous requirements related to low system resources consumption,
precision, execution speed, and reliability of control programs. Application of
abstract UML models was not attractive to domain experts in spite of
potential benefits that could be expected in software development from such
an approach. Practical experience of domain experts shows that the gap
between an ontology and the linguistic concepts of UML that describe the
meaning increases with the specialization of a production environment.

DSM languages and tools have become more prominent as a result of
trying to avoid numerous issues that arise from using GPLs to model domain-
specific problems. The goals of DSM are to completely formally describe a
data structure and process using domain-specific concepts and to generate
code from abstract models while using all the capabilities of a target
environment. One particularly beneficial effect of using DSM tools, especially
those that support access to their repositories through a web service, could
be a move from domain-specific to domain modeling. This means that, in
some business domains, a problem solution based on DSM may be made
available to users from similar domains by offering: (i) a set of domain
specific languages for modeling different aspects of a system; (ii) libraries
containing abstract model transformations for various target environments
(concrete programming languages, interpreters, and hardware languages);

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1601

Verislav Djukic et al.

(iii) a predefined set of constraints for different contexts of use; and (iv)
concepts for describing model variations and the customization of services to
a concrete environment that are both formal and simple for users.

7.1. Applying Action Reports to Models of Car Control Systems

The example given below illustrates the application of action reports in the
synchronization of complex services and actions in a simplified version of a
car control system. The DSL that is featured in Fig. 5 was constructed
starting from the Real-time Object-oriented Modeling Language (ROOM) [35],
whose numerous variations are used in the automotive industry. The basic
concepts of this language include objects (Actor, External client port, External
server port, and Switch) and relations (Binding and Visualization). These
language concepts are sufficient for describing driver’s interaction with car
devices, command processing, state indications on a display, and the
feedback between the current car speed and the way the system reacts on
driver's commands and states of different sensors.

The model shows a collection of external client ports, such as gas pedal,
brake pedal, rotation counter, engine thermometer, and fuel state indicator.
These mostly analogue devices are connected through sensors to controllers
or external server ports, from which measured values are forwarded to
display components (for speed, rotation, temperature, and fuel level).
Switches that turn engine and cruise control (tempo limiter) on and off are
connected to gas and speed controllers. This abstract model of a car control
system has two units. The first unit includes objects that read values and
forward them to controllers. The other unit contains objects that are used to
display values. In the development of car control systems, a practitioner
would have the following expectations from DSM:

— to be able to extend the language and graphical representations of
concepts (meta-modeling);

— to be able to describe any complex control system using diagrams and to
test such models (modeling);

— to connect a model to analogue devices, external applications, or HMI
components that support advanced graphics;

— to generate code for different target systems and controllers; and

— to automatically document each test case in a readable format (PDF).

Such expectations are well founded because across different industries there

are many software solutions that satisfy the majority of these requirements to

some extent. At the moment, connecting to external applications, and

documenting of test cases are areas that still need significant improvement.

This example is generally focused on illustrating the use of HMI components

with the advanced Windows Presentation Form (WPF) graphics [39]. The

advertisement example featured in Section 5 illustrates how documents are

generated during the testing of models.

1602 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

Fig. 5. Car control system as specified in a DSL

HMI components or user applications are connected to a model in two
ways (see Fig. 6). In the first scenario, HMI instances are generated from
models, while some of the properties are set according to the model state. In
this case, graphical components are implemented using WPF. In the second
scenario, HMI components are default visual representations of linguistic
concepts that are used for modeling. In both cases, linking of model elements
and visual representations is based on property linking (see Fig. 4) and using
action reports. All external server ports that correspond to different types of
scales, such as speed, rotations, temperature, and fuel state featured in Fig.
5, are implemented as web services. These services are used to retrieve the
latest state and forward a new value. All scales that are located to the right
side of the SM1 submodel are implemented using the WPF components. In
the existing DSM tools, the aforementioned functionality dedicated to
connecting DSM and HMI components may be achieved only indirectly,

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1603

Verislav Djukic et al.

because these tools do not include an implementation of action report
interpreters. The indirect method involves using APIs to access the repository
of DSM tools with the goal of creating objects and setting property values.

Fig. 6. HMI components as created in WPF

In Listing 4, we present a code generator for the model featured in Fig. 5.
It is a MERL report that generates code for web service calls.

Listing 4. MERL report that generates web service calls

Report "External Server Ports”
$mUrl = :VusualURL;
foreach .External Server Port;
{
filename :CodeTargetFolder;1l :Name; ".h" write
"#ifndef C_" :Name;" HEADER H " newline
"#define C_" :Name;" HEADER H " newline
newline
“#include "GenericServerPort.h"
class C*" :Name; " : CGenericServerPort® newline
public:*
newline
" C" :Name; "(int mCurrVal) : CGenericServerPort(currVval)

//T0D0: 2?7?27
3" newline

1604 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

* virtual~C" :Name; "(void) {

3
newline
do ~ValueOnPort;~UsedFor;.(Q)
{
" int Get" type QO
t
. String mUrl = " $mUrl "Get" type "";
3}
newline
}
" void On" :Name; "Update(int currVal)
I
newline
do ~ValueOnPort;~UsedFor;.Q
{
- String mUrl = " $mUrl "Set" type
do :QO
{
"?% type"=m_"type;
}
ne@line
b

do ~’Server~Server.()

if -IsSensor;="T" then

newline " C* :Name; "& m_" :Name; ;"
endif

b

newline

“#endif"
newline
close

}

endreport

From the model, we generate web service addresses and HTTP GET
requests that read and set the current speed. An excerpt from the code that
was generated using the aforementioned report is presented in Listing 5.

Listing 5. An excerpt from the generated code for calling web services
#ifndef C_Speed_HEADER_H_

#define C_Speed_HEADER_H_

#include "GenericServerPort_h"

class CSpeed : CGenericServerPort

{
public:

ComsSIS Vol. 10, No. 4, Special Issue, October 2013

1605

Verislav Djukic et al.

CSpeed(int mCurrVal) :
CGenericServerPort(currval)

//T0D0O: ??7?

3
virtual~CSpeed(void) {

3
int GetSpeedScale()

{
String mUrl = "http://localhost:13216/

CarDashWebService.asmx/GetSpeedScale';

void OnSpeedUpdate(int currVval)

{
String mUrl ="http://localhost:13216/

CarDashWebService.asmx/SetSpeedScale?
ScaleName=m_ScaleName?MinValue=m_MinValue?
MaxValue=m_MaxValue?Precision=m_Precision?
CurrValue=m_CurrValue";

' CSpeedMeasure& m_SpeedMeasure;
#endi T

7.2. Applying Action Reports to Function Block Diagrams

In this subsection, we present another practical example that highlights our
experience in the application of GPLs and DSLs in measurement and control
systems. The example involves using DSM tools to construct and apply a
graphical language for the description of function block diagrams according to
the IEC 611.31 specification [18].

The IEC 611.31 specification features five parts, two of which, structured
text and function block diagrams, are especially important in the subsequent
discussion. Structured text (ST) is a textual GPL with a syntax similar to that
of Pascal and with features similar to those of C++, but containing certain
language concepts that provide some benefits when applied to MCSs. A
function block diagram (FBD) is a graphical GPL that may be used to specify
flows in measurement and control processes by diagrams. In practice,
numerous tools for specifying FBDs (modeling MCSs using FBDs) are used.
A common characteristic of ST and FBD languages is the fact that the syntax
is fixed in advance. For that reason, in most tools, algorithms for generating
code from the model are hard-coded. The main shortcoming of tools for
modeling using FBD is the fact that domain-specific problems are modeled
using general purpose language concepts that are often not compatible with
the models in real systems. For modeling activities, experienced IEC 611.31
programmers and companies are often hired, however, their productivity in
actual projects cannot be readily predicted. In order to point out possible
solutions to the aforementioned problems, in the provided example we
applied the DSM approach which includes the following activities:

1606 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

— applying DSM tools in the construction of a IEC 611.31 language,
— specifying code generators and action reports using a M2T transformation

language,
— generating ST and native code from models; and

— interpreting models where incremental updating is supported.
For the construction of the IEC 611.31 graphical GPL, we used the MetaEdit+
modeler. In Fig. 7, there is an example of FBD, which is further used to
explain main concepts of the language. The language features objects of the
following types: function block (1), type convertor (2), distributor (3), input and
output connectors (4), and connectors of logical pages (5). Function block
(FB) has three subtypes: built-in FB (1.1), intrinsic FB (1.2), and external FB
(1.3). Each function block has ports through which it exchanges input and
output values with other objects. In the process of language construction, we
defined several variants of concrete graphical syntax, model constraints, and
diagnostics for incorrect operations and inconsistent model states. We
selected the textual IEC 611.31 (ST) and Abstract Syntax Tree (AST) to be
our target languages. In line with the example from the introduction (Fig. 1),
our intention was to generate GPL specifications in the IEC 611.31 ST syntax
from model, together with native code for Intel and ARM processors that is
optimized for the target domain, by using AST as input structure for native
code generation. Since in both cases a target interpreter is required to
execute a model, for that purpose we used a special RTS that executes
segments of native code. As native code generation is closely related to
compiler construction, to this end, we relied on various industry and
academic solutions and experiences.

Fig. 7. AFBD example in IEC 611.31

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1607

Verislav Djukic et al.

In Listings 6 and 7, we give short excerpts from the generator of ST code,
as well as the end result related to the model in Fig. 7. Generators were
written in MERL. The ST code generator iterates through all Custom FBs and
checks whether they are macros. In the case they are macros, it calls a
generator that retrieves the code defined by the macro. In the case they are
not macros, by relying on properties, it retrieves definitions of input
(VAR _INPUT ... END VAR) and output (VAR OUTPUT ... END VAR) signals,
as well as internal variables (VAR ... END_VAR). Whenever a function block is
declared as a macro, its graphical representation is changed so that a circled
letter M appears in the center of the symbol (see Fig. 7). The body of the
Custom FB is retrieved from the : IEC_StructText; property.

Listing 6. Excerpt from the generator of ST code

report "_I1EC_CodeForCustomFB*
foreach .IEC_CustomFB;
{
if -IEC_IsMacro; = "T" then
do decompositions
{

subreport "!IEC_STCode"™ run
newline
b
else
"FUNCTION_BLOCK ":1EC_CustomFBName; newline
$p = -w
do :I1EC Inputs; {$p ="T"}
if $p = "T" then
"VAR_INPUT" newline
do :IEC_Inputs;

" ":1EC_PortName; ":" :1EC_DataType;
if - IEC Default; <> "" then
" = " :IEC_Default;
endif ";*
newline

"END_VAR" newline
endif
$p = °°
do :IEC_Outputs; {$p ="T"}
if $p = "T" then
"VAR_OQUTPUT® newline
do :IEC Outputs;

" ":IEC_PortName; ":" :IEC_DataType;
if - IEC Default; <> "" then
" = " :IEC Default;
endif ";*
newline

1608 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

"END_VAR" newline
endif

$p = "
do :IEC LocalVvars; {$p ="T"}
if $p = "T" then

"VAR" newline

do :1EC_LocalVars;

" ":I1EC_PortName; ":" :1EC_DataType;
if Z1EC_Default; <> "% then
" = " :IEC_Default;
endif *;*
newline

}
"END_VAR"™ newline
endif
1EC_StructText; newline
endif
if Z1EC_IsMacro; = "F" then
"END_FUNCTION_BLOCK®" newline newline
endif

}

endreport

The resulting ST code is produced by calling the generator, which
translates the whole model and associated submodels. Generation of Custom
FBs is only one segment of the translation process. In the generated code,
after the PROGRAM keyword, there is the name of the model featured in Fig.
7, followed by the definitions of all the input and output ports or signals. Input
and output signals are translated into input and output variables of the
corresponding types, while external signals are translated into external
variables. At the end of the code excerpt, there is the body of the ST
program, which contains a description of the relations defined by the model.
The code in the line Add 1 out := ADD(INT TO UDINT (SIG45),
SIG1, SIG18); indicates that the out port of the FB instance Add_1 is
modified by adding SIG45, SIG1, and SIG18, where SIG45 was previously
converted from INT to DINT.

Listing 7. Generated ST code

PROGRAM Example_with_all_language_concepts
VAR_INPUT

DstrSrc:INT;

SIGL:UDINT := 7;

SIG18:UDINT := 21;
SIG45: INT := 10;
END VAR
VAR_OUTPUT

AbsSig:USINT;

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1609

Verislav Djukic et al.

S1G3:BOOL;

END_VAR

VAR_EXTERNAL
S1G444:REAL ;
Sensorl:INT;
Sensor2:INT;

END_VAR

VAR
Abs_1 out :INT;
Add_1_out :UDINT;
Add_2_out :REAL;
Add_Dstr_out :INT;
Eq_1_out :BOOL;
Mul_1_out :INT;
SinusGen:GENERATOR;
Custom_FB2:CFB_Commands;
FanCtrl :CFB_HomeHeating;

END_VAR

Add_1_out := ADD(INT_TO_UDINT(SIG45), SIG1, SIG18);

Egq_1 out := EQCAdd_1_out, INT_TO_UDINT(FanCtrl.Speed));

SinusGen(1, 1.0, 5.0, 10.0, 2.0);

Add_2 out := ADD(INT_TO_REAL(FanCtrl.out2), 55.9,
SinusGen.OUT);

Custom_FB2(Add_2_out, 46.0);

FanCtrl(Sensorl, 9, 10, Sensor2);

Mul_1 out := MUL(FanCtrl.Speed, FanCtrl.out2, 40);

Abs_1 out := ABS(Mul_1 out);

AbsSig := INT_TO_USINT(Abs_1 out);

SI1G3 := Eg_1_out;

Add_Dstr_out := ADD(DstrSrc, DstrSrc, REAL_TO_INT
(Custom_FB2.outl));

S1G444 := Custom_FB2.out2;

END_PROGRAM

By constructing the language and using the IEC 611.31 ST generator, we
have achieved two important goals that can be accomplished neither by
modeling tools that focus only on FBDs nor by UML tools. The first goal was
to construct a language that could be easily transformed into a DSL in order
to satisfy some domain-specific requirements. The second goal was to
transform abstract models into an arbitrary target language, as well as into
native code, For some FBs, it is possible to generate code according to some
syntax, e.g., to that of VHDL, that would initialize wired-logic controllers. In
Fig. 7, such a FB is shown with a processor symbol in the middle. Submodels
of a model are transformed into even more different languages. Since DSM
tools do not support explicit declaration of a submodel, we achieved this by
introducing the IsWired property to FBs and writing a generator that utilizes
that property.

From the user's point of view, in addition to fast and complete specification
of a modeling language, it is also very important how models are verified.

1610 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

Numerous tools support model verification but only for complete
specifications. Our approach is based on the following idea: each
specification, from an empty model to the most complex specification, should
be interpreted simultaneously with the modeling process. We refer to such
model execution as the interpretation with incremental updating. Similar
approaches may be found within simulation tools, such as Simulink [36] or
LabView [23]. However, in those cases, the semantics of a modeling
language is fixed in advance, which significantly simplifies the whole process.
Because of the restrictions associated with language construction, model
execution using these tools cannot be considered as a full-fledged MeMID
activity.

@ {” FanCtr:CFB_HomeHeating

e
E

1 Speed
|

inZ @ out?
in3
o A

i m o

Fig. 8. Incremental update of a MCS

In the rest of this section, we present a practical example of using
incremental updating and action generators in a typical MeMID activity. In
Fig. 8, two states of a model for fan control, S1 and S2, are depicted as
submodels of the model featured in Fig. 7. The state of the model S1
corresponds to the state of a real system when Sensor 1 (T1) is functioning
normally. The state of the model S2 corresponds to the state of the real
system when sensor T1 is being repaired or replaced. This is the case when a
problem with rotation speed of a fan may occur due to a thermometer
malfunction. In the model, thermometer replacement is defined as a complex
transaction that is made of various MeMID activities. It is also possible for an
external application that is synchronized with the model or interpreter to
display an image which shows that the installation is in progress. Sensor
change is recorded in a document that contains information about the
location, time, and identifier of the replaced sensor. In order to better
understand the example featured in Fig. 8, it may be worth consulting the
specification of function block diagrams in accordance with the IEC 611.31
specification [18] and watching a video clip [9] that demonstrates the
construction of a DSL and model execution in a target interpreter.

According to the MeMID scenario, a sensor replacement procedure and
documenting of the replacement include the following actions:

— An action report that simulates the replacement is executed. It changes the
model from state S1 to state S2 and sets an appropriate image in a client
application.

— An action report that generates a service order in PDF format is executed.
All specifications are in various DSLs.

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1611

Verislav Djukic et al.

— Sensor 1 (T1) is detached from the function block and a default value that
corresponds to the temperature which is measured by some other
thermometer is assigned to the input il (i1=21°C). The transaction is then
confirmed by the model. Using this information, a code update is
generated for a target interpreter. This update is only an increment and not
a complete program.

— A service person replaces the sensor.

— In the simulator, the model changes to the previous state and checks the
functioning of a new sensor (Sensor 1 is reattached to i1).

— The model is connected to the real system and returns to interpreting from
the previous state.

— An action report that generates the documentation about the changes in
the system during sensor replacement is executed.

Documenting model changes, as a part of the MeMID activity, is partially

covered in the example featured in Section 5. When action reports are used

in documenting results of the testing of a MCS, they retain a similar structure.

They feature nested commands that contain a DSL script or functions which

return document content increment.

The aforementioned examples illustrate one advanced scenario of
applying DSM tools in specialized production environments. While DSM tools
support meta-modeling and modeling well, when it comes to the
transformation of submodels to certain target languages, their use in complex
MCSs is limited. The main reason is the way how they synchronize with
external applications and their poor support for logical connection of actions
in a real system to operations on models. General purpose DSM tools are
less user-friendly for modeling when compared to specialized CASE tools or
applications for modeling measurement and control systems. Efficient use of
DSM tools also requires improvement of their graphical interfaces. In the
following section, these improvements are described as user operations on
models.

8. Action Reports and Operations on Model

DSM tools are usually more advanced in terms of concepts when compared
to CASE tools and applications used to model MCSs. On the other hand,
dedicated CASE tools and applications have better suited graphical
interfaces that support drawing of models considerably closer to the specific
standards of a particular business domain. In previous sections, we
demonstrated how DSM tools may be improved for the purpose of
supporting: (i) model execution and (ii) usage of DSM tools as client
applications for monitoring, i.e., surveilance of states in a real system [9]. In
this section, we explain how the graphical interface of a DSM tool may be
improved for the purpose of its more efficient utilization in specific application
domains.

1612 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

Using action reports for formal specification and implementation of three
groups of operations constitutes the basis for the improvement of DSM tools.
The first group includes operations that accelerate the construction of a DSL
and different visual representations of language concepts in a DSM tool by
relying on the existing user HMI components. The second group includes
operations used to define the behavior of the graphical interface for basic
user operations: insert, delete, connect, disconnect, update, move, etc. The
third group includes operations on submodels. With some minor extensions,
navigation languages for M2T transformations could support all three groups
of operations.

The general structure of reports used to define operations of the first
group, i.e., those used to transfer a part of the definition of an external HMI
component to a meta-model, is presented in Listing 8. As previously
discussed, the DSM tool and user application need to include instances of an
action report interpreter capable of interpreting specified actions.

Listing 8. General structure of reports defining operations that transfer
definitions of external HMI components to meta-models

ACTION_BEGIN
ObjectDef | RelDef | RoleDef | PropDef
ACTION_END

Operations used to define the behavior of the graphical interface should
provide expected spatial arrangement of model elements during all kinds of
user actions. One method of defining the behavior of a graphical interface is
to apply structural patterns in the way that we used them to define document
layout. In Listing 9, we present only some of the typical patterns, while a
more detailed description of grammar rules and examples may be found in
[14]. Each pattern consists of an ordered (OL) or unordered list (UL) of
elements, which represent objects and relations in a DSM model. Validation
or customization of the model according to the specified patterns is
performed during the execution of user operations (insert, delete, connect,
etc.). Semantic actions that perform validation according to the patterns are
executed using action reports. During this process, rules of spatial layout and
structural rules are translated into topological properties of model elements.

Listing 9. Pattern examples

PATTERN A UL(B,C,D) END

// The A element consists of three elements, which may appear
in any order.

PATTERN A OL(B,C,D) END

// The A element consists of three elements, which may appear
only in the specified order.

PATTERN A UL(B,C,D) isLeftOf(C,D) END

// The A element consists of three elements, but the C element
must appear before the D element.

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1613

Verislav Djukic et al.

PATTERN A UL(B,C,D) isLeftOf(C,D) isBelow(D,B) END

// The A element consists of three elements, but the C element
must appear to the left of the D element while the D element
must appear above the B element.

PATTERN A UL(B,C[3..5],D) END

// The B element appears exactly once, the C element appears
from three to five times, while the D element appears exactly
once. The elements may appear in any order.

PATTERN A OL(B*,0L(C,D)) END

// The B elements must appear first for any number of times,
followed by the C element and the D element, respectively.
PATTERN A UL(B*,C*,D*) END

// The elements B, C, and D may appear for any number of times
in any order.

The third group of operations, whose semantics may be expressed through
action reports, is used to: (i) construct submodels and carry out all operations
on (sub)models without the need for the execution of low-level API functions
on the repository; and (ii) define transactions.

The construction of submodels and corresponding operations is similar to
the definition of views in relational databases or the definition of complex
objects in object databases. We focus on operations that could significantly
improve MeMID activities when the modeling tool is linked to the target
interpreter via action reports. Therefore, we give an overview of the selected
operation set:

— CreateSubmodel (listOfElems) — creates a submodel based on the
specified list of objects, connections, relations, roles, and properties from
an existing model,

SetCurrentSubm (m_ID) — sets one of the defined submodels as the
current one;

DeleteSubmodel (m_ID) — deletes the submodel definition;

AddModel (m_1,m_2) — joins two submodels into one without modifying
any relations;

Subtract (m_1,m_2) — removes m_2 from the existing composite model
m_1,

Multiply (m_1,n) — creates a new model by repeating the model m_1 n
times;

Intersection (m_1,m_2) — returns a model containing intersecting element
fromm_1and m_2;

Union (m_1,n) — joins two models without repeating elements having
same identifiers;

SimDifference (m_1,m_2) — finds a symmetric difference between the two
models;

Remove (objType|relType) — removes objects or relations of the specified
type from the submodel; and

Clone (objType|relType|roleType) — clones the complete model or just
object, relations, roles, and properties of the specified type or matching the
specified pattern.

1614 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

We used DVDocIDE, a DSM tool for document modeling, to test usage of
action reports and patterns as means of a more efficient DSM modeling of
documents and their templates. We used DVQL [25], a command/query
language for documents, to implement operations on submodels. In order to
verify usefulness of these operations in general purpose DSM tools, the latter
should be considerably extended. This issue is also one of the topics of our
future research.

9. Related Work

Over the last few years, Executable UML has been a recurring topic in both
the academic and engineering community [32]. Numerous papers and
practical solutions extend its usability for simulations and model execution
[17], [23], [36]. However, it seems that the transfer of very narrow specialized
knowledge to web services (Cloud computing) is advancing more rapidly as
opposed to the use of UML tools for the domain-specific problems. In the
academic community, much of the model transformation research relies on
the OMG’s specification Query/View/Transformation (QVT) [28]. The
specification consists of three interrelated languages: (i) Relations, (ii) Core
and (iii) Operational Mapping. Atlas Transformation Language (ATL) [2] by
the Eclipse Foundation [15] is an example of a model-to-model (M2M)
transformation language in accordance with the QVT standard. Among the
commercial tools, one of the best known transformation languages is
MetaEdit+ Reporting Language (MERL) [30]. It is a language mainly focused
on model-to-text (M2T) transformations. It partially supports transformations
that conduct synchronization between the model, client applications, and
target interpreter. By minimally extending MERL to allow specification and
interpretation of action reports, it would be possible to synchronize
applications that feature disparate user interfaces, and target interpreters or
“execution machines” [1], [4], [6], [24], [31], [38].

In [20] and [27], the authors present ideas and solutions for domain-
specific model transformations and debugging. Our consideration of code
generators differs slightly from the one presented in [20]. We believe that
template-based M2T transformations are complex, insufficiently flexible, and
complicated to be implemented within the HMI components and target
interpreter of models.

In [16], the authors present a translational and an interpretational approach
to execution of domain-specific models. These approaches are based on
explicit definition of semantics for execution of each model. The translational
approach relies on generating code that should be compiled and then
executed, while the interpretational approach relies on model interpretation
by a target interpreter. The disadvantage of the former approach is that it is
unsuitable for simulations and rapid prototyping. On the other hand, the latter
approach is considerably more suitable for both rapid prototyping and
incremental update of an active system. The authors recognized the

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1615

Verislav Djukic et al.

necessity of the use of transactions and logging of all model changes for the
purpose of backtracking. They resolve the issue of the synchronization
between a model and the execution engine by relying on the concurrent
access to configuration files used by the DSM editor and execution machine.
From their simple example implemented using Eclipse EMF, it seems that
the application of their idea is limited to less complex cases. In our approach,
which is based on the use of M2T transformations, there are slight extensions
of existing navigational languages for M2T transformations and two logically
independent execution engines: a report interpreter and a target interpreter of
models.

In [37], the authors describe the OMG’s approach to standardization of
UML model execution, which involves using Action Semantics, i.e., explicit
definition of execution rules at the level of the UML meta-model. The goal of
this standardization is to allow: (i) software independent specification of
actions on UML models; and (ii) execution of UML models. Their approach is
based on the following three abstractions: meta-model, execution model
(UML model), and actions. The semantics of actions is defined, but not the
concrete syntax, because it depends on the target language used in code
generation from a model. Because this approach requires knowledge about
UML meta-modeling, it seems unlikely that it will be widely applied in domain
specific problems, particularly for modeling measurement and control
systems.

Among numerous tools for modeling measurement and control system that
may be used in the extension of DSM tools, or for better illustration of action
reports and use of modeling tool as client applications, the following two
stand out: Simulink [36] and IbaLogic [17]. Simulink is a tool primarily aimed
at drawing function block diagrams. It features a large library of function
blocks that may be customized and supports generation of source code in the
C language. In the context of the MeMID activities, Simulink does not
adequately support meta-modeling and generation of documentation about
model execution. IbalLogic is a tool for modeling measurement and control
systems that employs structured text and function block diagrams according
to the IEC 611.31 specification, where a function block model is also an
execution model. This tool supports linking to various run-time systems that
may interpret or execute a model. However, meta-modeling and code
generation for different programming languages are not supported. Owing to
the featured implementation of a set of basic operations on models, it
supports: (i) every version of the incremental update for a target system
during interpretation; and (ii) visualization of the state of a real system within
the modeling tool.

10. Conclusion

In this paper, we present the first practical results and foundations of an
approach aimed at further improvement of DSM tools. Our objective is to

1616 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

better automate the MeMID activities: meta-modeling, modeling, testing of
models, generated code, and interpreter, and generation of documentation
about test cases. In the areas of document engineering and development of
measurement and control systems, the action report approach allows us to
specify the following procedures within abstract models: (i) the process of
documenting model validation; and (ii) in the context of certain business rules
and procedures, the synchronization of actions on a model to the state of the
real system. Owing to this, action reports are especially effective when
combined with DSM tools that, instead of relying on patterns, conduct M2T
transformations by using a dedicated target language and interpreter. In
production systems where business procedures are specified both precisely
and formally, there is also a need to document each action on the model or to
execute each action on the model by relying solely on the previously
generated and authorized document. By using action reports, it is possible to
synchronize not only the different components that are part of the MeMID
activities but also the heterogeneous business and control processes, which
feature complex business rules and operation of arbitrary control systems.

Our future research directions include: (i) construction of a language for
the description of constraints on presentation elements (graphs), which in turn
would simplify the customization of meta-modeling and modeling tools for
different domains of application; (ii) construction of M2T transformations, i.e.,
code generators that would produce binary or assembly code for different
processors by starting from abstract models; and (iii) conceptualization of
run-time systems that would interpret abstract models, which in turn would be
transformed into different target languages, software logic or wired logic. The
ultimate goal of our research is to support, to the greatest extent possible, the
MeMID scenario, which consists in using modeling tools as client applications
to manage business and control processes. The approach presented in this
paper was created to be focused on the domain of application and provide
pragmatic support to users. For these reasons, its application capabilities
may not be fully generic. However, the goal of developing the approach is not
primarily oriented to this end, but to provide the foundation for a quality
support to users in the domain of monitoring the measurement and control
processes. At present, our approach supports modeling and executing
models of measurement and control systems. We expect that our ideas,
examples, and practical solutions presented in this paper are going to
contribute to a better use of DSM tools as client applications for the
monitoring of measurement and control processes.

Acknowledgment. This research was supported by Ministry of Education, Science
and Technological Development of Republic of Serbia, Grant 111-44010: Intelligent
Systems for Software Product Development and Business Support based on Models.
The authors are grateful to their colleague Tefik Becirovi¢ for help with the testing of
action reports using user WPF components and also to Juha-Pekka Tolvanen of the
MetaCase company for valuable support in the rapid construction of the IEC 611.31
language using the MetaEdit+ Modeler.

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1617

Verislav Djukic et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Apache Software Foundation: FOP. [Online]. Available: http://xmligraphics.
apache.org/fop/0.95/index.html (Accessed: May, 2013)

ATL - A Model Transformation Technology. [Online]l. Available:
http://lwww.eclipse.org/atl/ (Accessed: May, 2013)

Beaudoux, O., Blouin, A.: Using Model Driven Engineering technologies for
building authoring applications. Proceedings of ACM Symposium on Document
Engineering. (2010)

Djuki¢, V. DVDoc Renderer Benchmak. [Online]. Available:
http://www.dvdocgen.com/Framework/DVDocRenderBench.pdf (Accessed: May,
2013)

Djuki¢, V.: DVDocFlowLang Demo, video. [Online]. Available: http://www.
dvdocgen.com/Framework/DVDocFlow.wmv (Accessed: May, 2013)

Djuki¢, V.: DVDocGen Framework, Application Interface. [Online]. Available:
http://www.dvdocgen.com/Framework/DVDocFramework.pdf (Accessed: May,
2013)

Djuki¢, V.:.DVDocLang Language Reference. [Online]. Available: http://www.
dvdocgen.com/Framework/DVDocLang.pdf (Accessed: May, 2013)

Djuki¢, V.. DVRepLang Demo, video. [Online]. Available: http://www.
dvdocgen.com/Framework/ModelTransformation.wmv (Accessed: May, 2013)
Djuki¢, V.: MeMID Activities, DSM Tools and Model Execution, video. [Online].

Available: http://www.dvdocgen.com/Framework/MetaEditModelExec.wmv
(Accessed: May, 2013)
Djukic, V. Using DVDoclIDE, video. [Online]. Available:

http://lwww.dvdocgen.com/

Framework/UsingDVDoclIDE.wmv (Accessed: May, 2013)

Djuki¢, V., Lukovi¢, ., Popovi¢, A.: Domain-Specific Modeling in Document
Engineering. Proceedings of the Federated Conference on Computer Science
and Information Systems, Poland. (2011)

Djuki¢, V., Lukovi¢, ., Popovi¢, A., Dimitrieski, V.: Domain-Specific Modeling
Tools as Client Applications Providing the Production of Documents.
Proceedings of the Industrial Track of Software Language Engineering workshop,
Dresden, Germany. (2012)

Djuki¢, V., Lukovi¢, I., Popovi¢, A., Ivancevi¢, V.: Using Action Reports for
Testing Meta-models, Models, Generators and Target Interpreter in Domain-
Specific Modeling. Proceedings of the Federated Conference on Computer
Science and Information Systems, Wroclaw, Poland. (2012)

Djuki¢, V., Popovi¢, A.: .DVRepLang Grammar Specification. [Online]. Available:
http://www.dvdocgen.com/Framework/DVDocRepLang.pdf ~ (Accessed: May,
2013)

Eclipse Modeling Framework Project (EMF). [Online]. Available:
http://mwww.eclipse.org/modeling/emf/ (Accessed: May, 2013)

Hartmann, T., Sadilek, D. A.: Undoing Operational Steps of Domain-Specific
Modeling Languages. Proceedings of the 8th OOPSLA Workshop on Domain-
Specific Modeling (DSM 2008), University of Alabama at Birmingham. (2008)
IbaLogic, IbaAG. [Online]. Available: http://www.iba-ag.org (Accessed: May,
2013)

IEC 611.31 Specification. [Online]. Available: http://www.dvdocgen.com/
Framework/ModelTransformation.wmv (Accessed: May, 2013)

1618 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code
Generation. ISBN: 978-0-470-03666-2. Wiley-IEEE Computer Society Press.
(2008)

Klatt, B.: A Closer Look at the Model2text Transformation Language. [Online].
Available: http://wiki.eclipse.org/Model2Text_using_Xpand_and_QVT_for_Query
(Accessed: May, 2013)

Kleppe, A.. Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley, ISBN: 0-321-55345-4. (2008)
Kosar T., Oliveira N., Mernik M., Pereira M. J. V., Crepinéek M., Cruz D.,
Henriques P. R.: Comparing General-Purpose and Domain-Specific Languages:
An Empirical Study. Computer Science and Information Systems (ComSIS),
ISSN: 1820-0214, Vol. 7, No. 2, 247-264. (2010)

LabVIEW System Design Software. [Online]. Available:
http://www.ni.com/labview/ (Accessed: May, 2013)
Lukovi¢, |I., Djuki¢, V.. DVDocLang vs. XSL-FO. [Online]. Available:

http://www.dvdocgen.com/Framework/DVDocLang_XSL-FO.pdf (Accessed: May,
2013)

Lukovi¢, 1., Djuki¢, V.. DVQL Language Specification. [Online]. Available:
http://www.dvdocgen.com/Framework/DVQL.pdf (Accessed: May, 2013)

Lukovi¢, ., Mogin, P., Pavi¢evi¢, J., Risti¢, S.: An Approach to Developing
Complex Database Schemas Using Form Types. Software: Practice and
Experience, ISSN: 0038-0644, Vol. 37, No. 15, 1621-1656. (2007)

Mannadiar, R., Vangheluwe, H.: Debugging in Domain-Specific Modelling.
SLE'10 Proceedings of the Third international conference on Software language
engineering. (2010)

Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
[Online]. http://lwww.omg.org/spec/QVT/1.0/ (Accessed: May, 2013)

MetaEdit+ 5.0 Beta Primer. [Online]. Available: http://www.metacase.com/
download/metaedit/MetaEdit+ 5.0 Beta Primer.pdf (Accessed: May, 2013)
MetaEdit+ Workbench, MetaCase. [Online]. Available: http://www.metacase.com
(Accessed: May, 2013)

Microsoft Extensible Application Markup Language (XAML). [Online]. Available:
http://ww.microsoft.com/en-us/download/details.aspx?id=19600 (Accessed:
May, 2013)

Milicev, D.: Model-Driven Development with Executable UML. Wiley Publishing
Inc. (2009), ISBN: 978-0-470-48163-9

Object Management Group. [Online]. Available: http://www.omg.org/ (Accessed:
May, 2013)

OMG Systems Modeling Language. [Online]. Available:
http://imww.omgsysml.org/ (Accessed: May, 2013)

Selic, B., Gullekson, G., Ward, P.T.: Real-time Object-oriented Modeling. ISBN
0-471-59917-4. John Wiley & Sons, New Jersey, USA. (1994)

Simulink — Simulation and Model-Based Design. [Online]. Available:
http://mww.mathworks.com/products/simulink/ (Accessed: May, 2013)

Sunyé, G., Pennaneac’h, F., Ho, W. M., Le Guennec, A., Jézéquel, J. M.: Using
UML Action Semantics for Executable Modeling and Beyond. In Dittrich, K.R.,
Geppert, A., Norrie, M.C. (eds.) Advanced Information Systems Engineering
(CAISE 2001), LNCS, Vol. 2068, Springer Berlin Heidelberg, 433-447. (2001)
User Interface Markup Language (UIML). [Online]. Available: https://www.oasis-
open.org/committees/download.php/28457/uiml-4.0-cd01.pdf (Accessed: May,
2013)

ComsSIS Vol. 10, No. 4, Special Issue, October 2013 1619

Verislav Djukic et al.

39. Windows Presentation Foundation. [Online]. Available: http://windowsclient.
net/wpf (Accessed: May, 2013)

Verislav Djukié received his M.Sc. degree in the area of Software Support
for Information Systems from the Faculty of Military and Technical Sciences
in Zagreb. At the University of Belgrade, Faculty of Organizational Sciences,
he completed his Mr degree in the area of Formal Specification of Software
Interfaces. He is currently a Ph.D. student at the University of Novi Sad,
Faculty of Technical Sciences. He lives in Germany where he works as a
director of a software company specializing in domain-specific modeling in
document engineering, and measurement and control systems.

Ivan Lukovié received his M.Sc. degree in Informatics from the Faculty of
Military and Technical Sciences in Zagreb in 1990. He completed his Mr (2
year) degree at the University of Belgrade, Faculty of Electrical Engineering
in 1993, and his Ph.D. at the University of Novi Sad, Faculty of Technical
Sciences in 1996. Currently, he works as a Full Professor at the Faculty of
Technical Sciences at the University of Novi Sad, where he lectures in
several Computer Science and Informatics courses. His research interests
are related to Database Systems and Software Engineering. He is the author
or co-author of over 90 papers, 4 books, and 30 industry projects and
software solutions in the area.

Aleksandar Popovié¢ graduated from Faculty of Science at the University of
Montenegro. He completed his Mr (2 year) degree at the University of Novi
Sad, Faculty of Technical Sciences. Currently, he is a Ph.D. student and
teaching assistant at the University of Montenegro, Faculty of Science. He
assists in teaching several Computer Science and Informatics courses. His
research interests include Software Engineering, Database Systems and
Domain Specific Languages.

Vladimir Ivanéevi¢ is a PhD student in Applied Computer Science and
Informatics and a teaching assistant at the Faculty of Technical Sciences,
University of Novi Sad (Serbia), where he also gained his BSc and MSc in
Electrical Engineering and Computing. His research interests include domain
specific languages (DSLs), data mining (DM), and databases. At the moment,
he is involved in several projects concerning application of DSLs and DM in
the fields of software engineering, education, and public health.

Received: December 28, 2012; Accepted: June 21, 2013

1620 ComsSIS Vol. 10, No. 4, Special Issue, October 2013

