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Based on recent results on boundedness of Bergman projection with positive Bergman kernel in analytic spaces in various types
of domains in C", we extend our previous sharp results on distances obtained for analytic Bergman type spaces in unit disk to
some new Bergman type spaces in Lie ball, bounded symmetric domains of tube type, Siegel domains, and minimal bounded

homogeneous domains.

1. Introduction

The goal of this paper is to add several new results for
distances in analytic Bergman type spaces of functions of
several variables. It turns out that our distance theorem we
proved before in case of unit disk, a sharp result under
certain natural additional condition, is valid also in various
domains and various Bergman type analytic spaces. Namely,
we look at analytic Bergman type spaces in Lie ball, bounded
symmetric domains of tube type, Siegel domains of second
type, and minimal bounded homogeneous domains. These
analytic spaces act as direct extensions of well-known analytic
Bergman spaces in the unit disk. These analytic spaces are
relatively new and we will include some basic facts on them
in our paper. They will also be needed for proofs of our
assertions partially. We will start this paper with two sharp
results on distances in Bergman type spaces in two domains:
Siegel domains of second type and in minimal homogeneous
domains in C". Then one side estimates for distance function
in Lie ball and bounded symmetric domains of tube type
will be given based directly on recent advances related to
boundedness of Bergman type projections in Bergman type
spaces in these type domains.

Our intention in this paper is the same as in our
previous papers on this topic. Namely, we collect some facts
from earlier investigation concerning Bergman projection
with positive Bergman kernel and Bergman kernel and use

them for our purposes in estimates of disty(f, ) function
(distance function).

Following our previous papers [1, 2] we can easily obtain a
sharp result for distance function. We need only several tools
and the following scheme.

First we need an embedding of our quazinormed analytic
space (in any domain) into another one (X ¢ Y); this imme-
diately poses a problem of disty (f, X) = inngXHf - gl for
all f € Y\ X. Then we need the Bergman reproducing for-
mula for all f function from Y space. Then, finally, we use
the boundedness of Bergman type projections with |[K(z, w)|
positive kernel acting from X to X together with Forelli-
Rudin type sharp estimates of Bergman kernel. These three
tools were used in general Siegel domain of second type,
polydisk, and unit ball in [1-4] (see also various references
there). We continue to use these tools providing new sharp
(and not sharp) results in various spaces of analytic functions
in this paper.

Note that our theorem on Siegel domains was formulated
in [5] without proof. We provide the complete proof here.
We also note that various problems, related to Bergman type
projections, are applied in many problems in function theory
(see, e.g., [6] and references there).

First we provide a known result in the unit disk with
complete proof taken from our previous papers [1, 2]. In the
unit disk case all arguments here are short and transparent
and are based on several tools like Forelli-Rudin type estimate



and estimates for Bergman type projections with positive
Bergman kernel. Then we will see arguing similarly as in
unit disk and we will easily complete the proof of more
complicated cases. The complete formulations of our last
theorems will be given, but sometimes sketches of proofs will
be added and details of proofs of higher-dimensional cases
will be left to readers.

Note that it is easy to see that our assertions may have
various applications in approximation theory; for example see
[6] and references there.

The base of our proofs is properties of Bergman projec-
tion in various domains given in [7-12]. The estimates of
Bergman kernel from [7-12] are also playing an important
role below in our proofs. Note that arguments we use below
are very close to arguments which were used before in [1,
2, 13]. As a result we alert the reader that the exposition is
sketchy sometimes.

Throughout the paper, we write C (sometimes with
indexes) to denote a positive constant which might be differ-
ent at each occurrence (even in a chain of inequalities) but is
independent of the functions or variables being discussed.

The notation A = B means that there is a positive constant
C, such that B/C < A < CB. We will write for two expressions
A < Bif there is a positive constant C such that A < CB.

This paper can be viewed as continuation of [13] where
various other cases (domains) were also considered. In [13]
the base of all our proofs in complex domains in higher
dimension was the Bergman reproducing formula, while
here all our assertions are based on some recent results on
boundedness of Bergman projections with positive Bergman
kernel in Bergman spaces in such type domains.

2. Notations, Definitions, and Preliminaries

We will need various definitions and assertions for formula-
tions of main results. These are assertions on various types of
domains we consider in this paper and analytic functions on
them.

We denote by B,, the unit ball in C". As usual, we denote
by H(B,,) the space of all holomorphic functions in B,,. For
1 < p < +ooand & > -1, denote by HY(B,)) (or Af (B,)) the
space of all functions f holomorphic in B, and satisfying the
condition

[, r@l(-wp)Yavw <o

where dv is the Lebesgue measure in C".
Further, for a complex number f3 with Re 8 > -1, put

_ F(n+1+p)

T f) @

¢ (B)

Let A7 (B,) = {f € HB,) : sup|f(2)|(1 - |z])* < oo},
a>0.
The following theorem is well-known and it has

many applications in various problems in function theory
(see [14]).
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Theorem A. Assume that 1 < p < +00, « > —1 and that the
complex number [ satisfies the condition
Ref>a, p=1

a+1 (3)
-1, 1<p<oo.

Re 3 >

Then each function f € AP (B,) admits the following integral
representations:

Fw (1-wpP)’
: (1 _ (Z, w))n+1+ﬁ

N B
S (W)(1 - |w|
f(o):cn(ﬁ).J M

B, (l _ (Z, w))n+1+ﬁ

f@=6@-] dv(w), zeB, @

dv(w), zeB,,

where (-, ) is the Hermitian inner product in C".

For n > 1, the theorem was proved in [15] (when o = 0)
and in [16] (whena > -1, n = 1).

These integral representation theorems were the core of
our approach for estimates of distance function in our recent
papers (see [1,2,13,17]) and we will see the same in this paper.

We will start this section with various known assertions
on analytic function spaces on Siegel domains of second type.
Next we will continue adding some lemmas on each Bergman
type analytic space on each domain in higher dimension
which we will consider in this paper. We alert the reader that
some assertions below will serve as introductory material and
will not be used during the proof to make the reading of paper
more convenient.

Let D be a usual homogeneous Siegel domain of second
type. Let dv denote the Lebesgue measure on D (for all
other bounded domains in this paper we will also use the
same notation below) and let as usual H(D) be the space
of holomorphic functions on D endowed as usual with the
topology of uniform convergence on compact subsets of D.

The Bergman projection P of D is as usual the orthogonal
projection of L*(D, dv) onto its subspace A%(D) consisting of
holomorphic functions. Moreover it is known that P is the
integral operator defined on L*(D, dv) by the Bergman kernel
B(z,{) which for D was computed for example in [18, 19].

Let r be a real number, for example. We fix it. Since D is
homogeneous, the function { — B({,{) does not vanish on
D; we can set

LP"(D) = L? (D,B" ({,{)dv({)), 0<p<oo. (6)

Let p be an arbitrary positive number. The weighted Bergman
space is defined as usual by A”"(D) = LP"(D)nNH(D). We put
AP = AP(D).

The so-called weighted Bergman projection P, is the
orthogonal projection of L**(D) onto A>*(D). This fact can
be found in [8, 10]. It is proved in [8, 10] that there exists a
real number ¢, < 0 such that A*$(D) = {0} ife < &p and that
for ¢ > ¢p. P, is the integral operator defined on L*>*(D) by
the weighted Bergman kernel C,B'**({, z). In all our work we
will assume that € > ¢,
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The norm | - [|,, of AP"(D) with r > e, is defined by

1/p
171, = <JD|f(Z)|pB_r(z, z)dv(z)) , feAP (D).
(7)

We need some assertions (see [8, 10]).

Note the exact expression of Bergman kernel for these
domains can be seen in [8, 10, 18].

We denote by b((1,, 1,), (15, T4)) Bergman kernel for the
Siegel domain of the second type, which differs from B(z, ()
Bergman kernel by constant. We will use it in text also.

Lemma A. Let h € L(D). Take p > p, for large fixed p,.
Then the function

2 —G) = jD B (2,0 h(() dv () (8)

satisfies the estimate sup,,.p|G(z)|B™*(z,z) < C|lhlly, and G €
H(D).

Lemma B. For each p sufficiently large and for each G €
H(D) such that sup,.,|G(2)||B*(z,2z)| < oo one has the
reproducing formula

GO =¢, JDB”P ((,2)G(z) B (z,2)dv(z), ze€D.
©)

We will need for our theorems some basic facts for
Siegel domains of second type. We denote by d;, g;, and n;
parameters of a Siegel domains of second type (see [4, 5, 8,
10]). We will use usual operations between two vectors for
such parameters below in our text.

The following lemma is complete analogue of so-called
Forelly-Rudin type estimates for our Siegel domains of second
type (see [8,10]).

Lemma C. Let « and ¢ be in R, ({,v) € D. Then for ¢ >
(n; +2)/2(2d — q); and o; — & > n;/(=2)(2d — @), i =1,...,1

j B (@), (2 w)| B (2. 0), (2,u)) dv (z,u)
D (10)

= Coe B (1), (Gv) -

Lemma D. Let r be a vector of R' such that r; > (n; +
2)/(=2)(2d - q); for alli = 1,...,1 and p is a real number
such that 1 < p < min{(n; - 2(2d — q);(1 +1,))/n;}. Then for all
¢ € R' such that g > (m;+2)/(22d - 9);))((p—1)/p) + (r;/p)s
i=1,...,1:P.f=f feAPL

We list in Lemma E other properties of Bergman kernel.
The last estimate in assertion below is an embedding theorem
which connect so-called growth spaces with Bergman spaces.
This allows to pose a distance problem (see also the complete
analogue of this result in other simpler domains in [1, 17]).

Lemma E. Let a € R/, a; <0,i=1,...,L Then [6*((C, v),
(z,w)| < ¢b*(((,v),((,v)) and [b*((C,v) + (V). (z,u) +

Nl < b (), (G ) for all (Gv), V), (zu),
(z',u')in D. Forall f € AP"(D), p>0

|f @wl” <Cb" (zu), @ uw) | f]},- (1)

The following result concerns the boundedness of
Bergman type projection with positive Bergman kernel in
weighted Bergman spaces. Note that this fact is classical in
simpler domains and it has also many applications in analytic
function theory.

Proposition A. Let ¢ and r be in R' such that &; > 1/(2d - q);
andr; > (n; +2)/2(2d — q);, i = 1,...,1. Then P, is bounded
from LP" (D) into A (D) if

2m;+2-2(2d - q)1;
i:1,..)fl T +2-2(2d - q);;

(12)
2n;+2-2(2d - q),1;

The following assertion provides integral representation
for a certain so-called analytic “growth space” on Siegel do-
mains of the second type.

Proposition B. Let r and & be two vectors of R such that ¢; >
n/(=2)2d—q)p r; > ((m; +2)/2(2d - q);) +€,i=1,...,1 Let
G be in H(D) such that

sup {IG(2)| B (2,2)} < 005 (13)

then PrG = G.

The following result explains the structure of functions
from Bergman spaces on Siegel domains of second type. It is
an extension of a classical theorem on atomic decomposition
of Bergman spaces in the unit disk on a complex plane.

Proposition C. Let D ¢ C" be a symmetric Siegel domain
of second type, p € 2N/(2N + 1),1), z € R, r; > (m +
2)/2(2d - q);. Then there are two constants C = C(p,r) and
C, = C(p,r) such that for every f € AP"(D) there exists an

1P sequence {A;} such that

f(z)= iA,.b“/P (z.2) bV (z,2,),  (14)

i
i=0
where {z;} is a lattice in D and the following estimate holds:
Clfls, < elil” < CUfI, (15)

We add some basic facts on minimal bounded homoge-
neous domains and we will use them partially in our paper
(see [11, 12]).

Let D be a bounded domain in C". We say that D is
a minimal domain with a center t € D if the following
condition is satisfied: for every biholomorphismy : D — D’
with det J(y,t) = 1, (Js is the complex Jacobian of the map
y), we have

Vol (D') = Vol (D). (16)



Let now us denote by K|, the Bergman kernel of D, that
is, the reproducing kernel of L*(D). 1t is known that D is a
minimal domain with a center t if and only if Kj(z,t) =
K (t,t) for any z € D, (see [20] and references there).

From [21], Proposition 3.6, we see that D is a minimal
domain with a center ¢ if and only if

Kp(z,1) 17)

~ Vol (D)’
forany z € D.

Every bounded homogeneous domain is biholomorphic
to a representative bounded homogeneous domain.

Therefore, every bounded homogeneous domain is
biholomorphic to a minimal bounded homogeneous domain
(see [11, 12]).

Foranyz € % and p > 0, let

B(z,p)={we%: p(z,w) < p} (18)

be the Bergman metric disk with center z and radius p, where
B denotes the Bergman distance on %, (see [11, 12]).

We fix a minimal bounded homogeneous domain % with
a center t. For a bounded linear operator T on Ai(% ) (this is
standard analytic part of standard L* space in %) the Berezin
symbol T of T is defined by

T (2) = (Tk,.k,) (z € %), 19)

where k, is a normalized Bergman kernel in Bergman space

2 . .. .
A’, in minimal bounded homogeneous domain %. For a

Borel measure y on %, we define a function @ on % by

i@ = |k, w)[duw), (20)
U

which is called the Berezin symbol of the measure y. Since
Ky (z,w) is a bounded function on B(t,p) x %, fi is a
continuous function if y is finite.

We will provide some basic facts for a minimal bounded
homogeneous domains.

Lemma F (see [20]). There exists a constant M p such that
M. < |k, (2)|"Vol (B (a, p)) < M,, (1)
foralla € U and z € B(a, p).

Lemma G (see [20]). There exists a sequence {wj} cC U
satisfying the following conditions.

1) %= U;Zl B(w), p).
(2) B(w;, p/4) N B(wj,p/4) =0.

(3) There exists a positive integer N such that each point
z € U belongs to at most N of the sets B(w;, 2p).

Lemma H (see [20]). There exists a constant C such that

C
@ < s [ f@fae
TS B ) by )
forall f € HU), p>1, and a € U, where H(%) is a space of
analytic functions in %.

(22)
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Theorem B (see [22]). Take any p > 0. Then, there exists C,>
0 such that

Ky (z,a)

cl<
K?/ (a) a)

P

<C, (23)
forall z,a € % with By(z,a) < p, where 35, means the Berg-
man distance on %.

Authors in [22] introduce certain equivariant holomor-
phic maps an :U — U for j=1,...,r (:=rank %) from %
into the Siegel disk %, of rank ;. Authors in [22] obtain the

j
following formula for the description of Ky,.

Theorem C (see [22]). There exist integers s,, ..., s, such that

Ky (z,w) = Voz(?z)*lf[{det (1, - 6,@8, @)} @
j=1

for z,w € %. Recall that the Bergman kernel Ky, of the Siegel
disk U, is given by

(m+1)

Ky (z,w) = Vol(%,,)”" det(I,, - z2)” (25)
We will denote the weighted reproducing Bergman kernel
for weighted Bergman A? spaces in this type domains below
simply as K, omitting index %.
Note from lemmas above (see [11]) that we have

CA-1) )

sup|f (2)| K(2,2)" < Clf|q, where t = =

This allows putting distance problems for these domains
which we solve in Theorem 8.

We need now some preliminaries for Bergman spaces in
Lie ball.

Let D denote each of the following domains in C", n > 3:

(1) the tube Q = R” + il over the spherical cone

2

) €R" 1y > 0,9, - y5 == yr > 0},

(27)
(2) the Lie ball
. 2
w:{zeC":szz. >0}. (28)
=

Obviously, the first domain is unbounded while the
second one is bounded. It is well- known that they are biholo-
morphically equivalent and, in Elie Cartans classification of
bounded symmetric domains [23], they are representatives
of class IV (according to Huas numbering [24]). We are
interested in bounded Lie ball, bounded symmetric domains
of tube type, Siegel domains of second type, and minimal
bounded homogeneous domains in this paper.

To make the exposition easier, we remind the readers
about the basic definitions again.

Fz{(yl,...

n

2.7
j

Jj=1

<L1-2z+
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Let H(D) denote the space of holomorphic functions in
D domain and let, as above, dv be Lebesgue measure in C".
For every p > 1, the Bergman space AP(D) is defined by
AP(D) = H(D) n LP(D,dv). For every f € AF(D), we
set ||f||A,,(D) = ||f||U>(D,dV) for p > 1; this is a norm under
which AP(D) is a Banach space. The Bergman projection
P, of D is the orthogonal projection of the Hilbert space
L*(D,dv) onto its closed subspace A*(D). Moreover, Py, is
the integral operator associated with a kernel B (-, ) called
the Bergman kernel of D. Finally, let P/ denote the integral
operator associated with the positive kernel |Bp (-, -)|.

The following results were proved in [7].

Theorem D (see [7]). Forevery p € (1,(3n—2)/2n] U [(3n -
2)/(n - 2),00), the Bergman projection Pp, is unbounded on
LP(D, dv).

Theorem E (see [7]). Let p > 1. The operator Py, is bounded
on LP(D,dv) if and only if p € ((2n — 2)/n,(2n - 2)/(n -
2)). Furthermore, the Bergman projection Pp, is bounded from
LP(D,dv) to AP(D) when p € (2n - 2)/n, 2n-2)/(n-2)).

For the tube domain Q some of these results were
announced in [25]. The question whether P}, is bounded on
LP(D,dv) when p belongs to ((3n — 2)/2n,(2n — 2)/n] U
[(2n—-2)/(n—-2),(3n—2)/(n - 2)) remains open. The case of
all homogeneous Siegel domains of second type has recently
been considered by D. Bekolle and A. Temgoua Kagou. They
proved that there is a range of p, around 2, where the Bergman
projection is bounded in Lf, while there is a range of p,
around 1 and 0o, where it is unbounded (see [8]). In all cases
the critical result is not known.

We add some basic facts on Bergman kernel on these
domains.

Proposition D (see [7]). The Bergman kernel By (s, z) of Q) is
given by
-n

Bo(G2) =6, -2) (G -2)- Y (4-7) | » 29

Jj=3

where{ = ((},...,C,), z = (z1,...,%,) € Q.

Definition 1 (see [7]). Let k(t, y) denote the positive ker-
nel defined on the cone Tk(t,y) = [(t; +y)(t,+ y,) —

n -n/2
Yist+y)’ 1 b=t nt) y = (s y), y €T

Proposition E (see [7]). Foreach p > 1, there exists a constant
C, such that, forall y € T and § = s +it € Q,

JW 1Bo (¢ +iy)Pdx = C, [k (6 9)* . (30)

Moreover, there exists a constant c, such that, for each y € T
such that |y| < 1/100 and each { = s + it € Q such that
IC| < 1/100,

LM 1B (6x+iy)|Pdx = C, [k (6 )P, (3D)

where I denotes the interval [-1, 1].

Let z = ®(z') be the linear fractional mapping from w
onto Q) which is given in [23]. In particular, we assume that
®(0) = e, wheree = (4,4,0,...,0) and @ is holomorphic
outside Z = {z € C" : Q(z) = 0}, where Q is a polynomial
such that Q(0) = 1. In view of the change of variables
formula, the Bergman kernel B, (¢ ', 2") of w has the following
expression in terms of that of Q:

B,({,2") =By (@({'), @ (<)o () jo (<), (32)

where Js is the complex Jacobian of the map ®. On the other
hand, since w is a circular domain, for each real number 6,

Bw (eiecr’eiezl> _ Bw (Cr, ZI) (33)

and thus, there exists a constant C such that B, ({ ',0) = C for
each { € w. Hence, from (32), we get

-1

Jo({')=C'[B,(@ () e] (34)
The following property of Bergman kernel is vital.
Lemma I (see [7]). Forall z and { in Q,
|B, ((,2)| < B, (2,2). (35)

We add some basic facts on bounded symmetric domains
of tube type from [23].

Let D be an irreducible bounded symmetric domain of
tube type in C". That is, D is conformally equivalent to a
tube domain T = R” + iQ) over a symmetric cone Q in
R".Irreducible symmetric cones are completely classified (see
[26]), being either light-cones

Ay={(yy) eR :y > |}, nz3 6

or cones of positive-definite symmetric or hermitian matri-
ces, namely,

Sym, (r,R), Her, (r,C), Her, (r,H),

(37)
Her, (3,0).

We write r for the rank of the cone (which in light-cones is
r = 2) and A for the associated determinant function (which
in light-cones is the Lorentz form A(y) = yf — | y'lz).

An important open question in these domains, D and
T5, concerns the L boundedness of the associated Bergman
projections, that is, the orthogonal projection P mapping L*
into the subspace of holomorphic functions A, In contrast
with Cauchy-Szego projections (which are not bounded in L?
for any p # 2, ifn > 1), the L’-boundedness of Bergman
projections has been conjectured in a small interval around
p = 2, namely,

n—r 2n
1+ —<p<l+——r. 38
2n P n-—r (38)
At the moment, positive results are only known to hold in a

proper subinterval

n—r 2n—r
1+ <p<l+ S 39
2n—r P n—r (39)




with a small improvement over this range in the case of light-
cones.

Also, we are interested in applying the transference
principle to the family of weighted Bergman projections in
D and Tﬁ. Using the notation in the text from [26], Chapter
XIII, these operators are defined for v > (2n/r) — 1 by

P,f(z) = LB? (z,w) f (w)dy, (w), zeD,
D
(40)

7,90 =] BP@matdr, @), ey

Q

where the Bergman kernels and their associated measures
have the explicit expressions

B? (Z; w) = th(Z, w)_v, d(’lv (w) — h(w)v—(Zn/r)dw)

da, () = A(Smn)~ " dy
(41)

BJ (¢,n) = AL -7) s

for certain constants c,, c,. Here h(z, w) denotes the unique
polynomial (holomorphic in z and antiholomorphic in w)
such that h(z) := h(z, z) is U-invariant and h(x) = A(e — x?),
x e R".

The Bergman kernels in these two domains are related by
the formula

B (z,w) = BT (0 (2),® () (Jo(2)To)) . (42)

Corollary 2 (see [9]). Let v > (2n/r) — 1 and p,q € [1,00].
Then the following are equivalent:

(a) P, is bounded from L (D, du,) — LY(D,du,);
(b) 935 is bounded from LP(Tﬁ,d/\,,) — Lq(T~,d)L1,).

Remark 3. The statements in the corollary can only hold if
p=q

The transference principle also applies to the positive
operators

Pf @ = | [B) w] f wdn, w),

(43)

BJ (¢n)| g (n)dA, (n)

Q

Z,9() =J

In this case we can even state a stronger result. We consider a
new operator, acting on functions in Q by

Fear=n0 [ e, "

yeQ.

Here, with a slight abuse of notation, we still write dA,, for the
measure A”"?""(4)du in Q and B for the closed unit ball in
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R". We write L2 (Tg) = LA(Q, A,; LZ(R")), that is, the space
with mixed norm given by

Il 70 = (Jﬁ ”R |F (x + iy)|ﬁdx]p/ﬁd/\v(y))l/p, (45)

where p, p € (0, 00].

Proposition F (see [9]). Letv > (2n/r)—land1 < g < p < co.
The following are equivalent:

(a) P! is bounded from L?(D,dy,) — LD, dp,);
(b) 9’;““3 is bounded from LP(TQ, dr,) — LT, dA,);

(c) Q’I’B is bounded from LE’P (Tﬁ) — L‘z’q(f’ﬁ) for all
1<gG<p<oo;

(d) @ isbounded from LP(Q,dA,) — LUQ,dA,).

The Bergman projection P, for a bounded domain in
C", along with the associated Bergman kernel function, has
proved fundamental for the theory of boundary behavior of
holomohic mappings (see [27, 28] and their references).

It is well-known that on smooth bounded strongly pseu-
doconvex domains the Bergman projection preserves each
Sobolev space W', r > 0. The same is true more generally for
those smooth bounded weakly pseudoconvex domains which

admit subelliptic estimates for the 0-Neumann problem (see
[27, 28]).

By the mean value property for n > 1 we have for any
bounded D domain C"

|f @] < ClI £, - (dist(z,0D)) ",

AP = {feH(D):JD|f(z)|Pd8(z) <ol 0<pcoo,
(46)

where z € D and 6(z) is Lebesgues measure on D and dist is
Euclidean distance from z to the boundary of D.

This immediately pose a dist problem in all such very
general D domains. We give one side estimates based on
recent results on Bergman projection in Lie ball, bounded
symmetric domains of tube type, Siegel domains of second
type, and minimal bounded homogeneous domains.

We follow also our sharp recent result in unit disk. Note
if bounded D domain has smooth C* boundary, then

|f @] [dist (z,0D)" ] < C| f] - (47)

Abounded domainin C", Q) ¢ C"is called smooth if there isa
C® defining function p : C* — R such that Q = {z: p < 0}
the boundary bQ) = {z : p(z) = 0} and the gradient of p does
not vanish in bQ (see (7, 12, 14, 23, 29]).

Inequality similar to (47) also is valid for weighted
Bergman spaces (see [30]).
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3. On Distance Function in
Bergman Type Spaces in Certain
Domains in Higher Dimension

In this section we provide main results of the paper. Based
fully on preliminaries of previous section, the plan of this
section is the following: first we formulate a result in the
unit disk and then repeat arguments we provided in proof
of that theorem in various situations in Bergman type spaces
in Lie ball, bounded symmetric domains of tube type, Siegel
domains of second type, and minimal bounded homoge-
neous domains. Since all proofs are short the repetitions of
arguments which are needed in higher dimension will be
omitted; sometimes sketches will be given.

Our results on Siegel domains and minimal homoge-
neous domains are sharp.

Let U be, as usual, the unit disk on the complex plane, and
let dm,(z) be the normalized Lebesgue measure on U. Let
H(U) be the space of all analytic functions on the unit disk
U. For f € H(U) and f(z) = ¥, a,z", define the fractional
derivative of the function f as usual in the following manner:

(e

D*f(2) = ) (k+1)*gz", acR. (48)
k=0

We will write Df (z) if « = 1. Obviously, for alla € R, D* f €
H(U)if f € H(U).

Fork > 5,0 < p, g < oo, the weighted analytic Besov
space ATP(U) is the class of analytic functions satisfying

1 alp
Ity = [ ([, 10 o 1) 0 -t <co
(49)

where T = {& : |§] = 1} is circle and d& is the Lebesgue
measure on the circle T.

We denote by A%(U) the A?(U) analytic Besov spaces in
the unit disk for all real s numbers. Note also that for s <
0 we have that these spaces are Aq_sq_l(U) Bergman spaces
according to definition above for unit ball and we will use this
notation below for all negative s numbers in Besov spaces.

It is well-known that Aq_sq_l(U) c A%(U), t =s-(1/9),
t<0,s<0.

Let further ng’ft ={zeU: |Dkf(z)|(1 —2%)° > -t}
£20,6<0,Q) ,=0Q, .

It is easy to note that, based on previous section results,
the complete analogues of the embedding we just provided
are valid also in Bergman type spaces in Lie ball, bounded
symmetric domains of tube type, Siegel domains of second
type, and minimal bounded homogeneous domains. We leave
this easy task to readers. This allows posing a dist problem in
each space we consider in this paper.

In the following theorem (see [1]) we calculate distances
from a weighted Bloch class to Bergman spaces for g < 1. We
will see that almost each argument below is also valid not only
in unit disk but based on preliminaries in previous section
in Bergman type spaces in Lie ball, bounded symmetric
domains of tube type, Siegel domains of second type, and

minimal bounded homogeneous domains. So this theorem
is very typical for us though it is known.

Theorem 4. Let0 < g < 1,5 <0, ¢t <s—(1/gq), B> ((1 -

sq)/q) -2, and 3 > —1—t. Let f € A,. Then the following are
equivalent:

() Iy = dist yoo (f, AT ));

(b) I, = inf{e > 0 : fU(IQH(f)((l — w11 - zw*P)

dmy(w))(1 - |2)) " dm,(z) < co}.

Proof. First we show that [; < CL,. For 8 > -1 —t, we have

_ £ @)1= )
r@-c(f, T2 w
f ) (1 - wh’ (50)
i L (1 - wz)P*? am; (w)>
=hH@+ f(2),
where C(f3) is a well-known Bergman representation constant
(see [31]).
Fort <0,
|f ()| (1 -~ lw])”
n@lsc] e )
(1= wh™ (51
< Ce JU TR dm, (w)
< CS%
(1= lzl)

So sup,ylfi (2)I(1 - lz])™" < Ce.
For s < 0, t < 0, we have

L 1 @1~ [2)) 1 dm, (2)

(1= fwp* T
el ([, g ) o

<C.
(52)

So we finally have

dist zey (f Aq—sq—l) <C|f = fallas = Cllfill s < Ce. (53)

It remains to prove that [, < [;. Let us assume that [; <

I,. Then we can find two numbers ¢,& such that ¢ >

e > 0,and a function f, € AT, If-f . < &
—t

and [ (J, (1= [wD®/11 = ZwlP)dm, ()" (1~ |2) 0!

dmy(z) = o00. Hence as above we easily get from



If - fe ”A‘f} < ¢ that (e - 31))(05,4(]()(2)(1 -zl < Clf,, @I,
and hence

Xo, () @) (1= [w)P* q
M = :
jU (IU 11— wz|f*? dm, (w)

x (1= |z1)™ " dm, (2)

<[l

x (1-z)"""dm, (z).

(54)

fo, )| (1= w))?

1 - wz|P*?

q
dm, (w)>

(55)

>

1 - |w])® !

( J fo, )| (1= Jwl) dmz(w)>
U

11 - wz|"

11 -wz|f
where o > (1 -¢q)/gq,t > 0, f‘gl € H(U), z € U,and

J (1-leh)™"" C
U

- =7 <
11— Ez|q(ﬁ+2) m, (2) < (1- |w|)q(ﬁ+2)+sq—1 >

Since for g < 1, (see [31])
e J |f., @)|'(1 = w9 2dm, ()
U

(56)
where s <0, 8> ((1 -3sq)/q) — 2, w € U. we get
msc| |, @fa-E @, 6

So, we arrive at a contradiction. The theorem is proved. [

The following theorem is a version of Theorem 4 for the
caseq > 1.

Theorem 5. Letq > 1,s < 0,t <s—(1/q), B> (-1 -39)/q
and 8 > —1—t. Let f € A%. Then the following are equivalent:

(@) I, = dist g (f, AT ));
(b) 1, = inffe > 0: [ ([, (@~ Tw)/11 - Zwl™P)

dmy(w))? (1 - |2)) ™ dm,(z) < co}.

The proof of Theorem 5 is the same actually as the
proof of Theorem 4. The only difference is the boundedness
of Bergman type projection operator but with the positive
Bergman kernel. This fact will be heavily used by us below.

Indeed the close inspection of the proof of Theorem 4
shows that the proof of Theorem 5 is the same as the proof
of Theorem 4, but here we will use (58) (see below) instead of
(55). Fore >0,g>1,5>0,a > -1/q,

_ o q
(I |f )| (1 - Iz]) dm, (z)>
U

11 — wz|P*?

weU,

q o1
scj |f @' - 1z)™
U

e 4 (@ (L=l

(58)

which follows immediately from Holder’s inequality and (56).
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Remark 6. Analytic A% spaces in unit disk are well-known
in literature as so-called growth spaces (see, e.g., [31]). It
can be shown easily that these spaces are Banach spaces.
These spaces are playing a vital role in this paper and are
embedded in Bergman spaces A%, for large enough f (the

same is valid in any bounded domain with C* boundary).
Hence the representation (4) is valid also in the unit disk
with 8 large enough index depending on « for all functions
from such classes. The mentioned embedding is well-known
and almost obvious and we leave the proof of it to interested
readers. This fact is crucial for the proofs of Theorems 7 and
8 below and along with well-known Forelli-Rudin estimates,
for to each domain we defined, (see [31]), actually serves as
base of both proofs.

We formulate a general theorem for Siegel domains of
second type in C". Then we use the same ideas to formulate
the same result in minimal bounded homogeneous domains
in C" using very recent advances of Yamaji (see [20, 22] and
references there).

We formulate finally also some new one side estimates
for distances based on projection theorems for symmetric
domain of tube type, Lie ball, without proofs, since arguments
are similar to unit disk case. Our results for Siegel domains of
second type and minimal homogeneous domains are sharp.

Theorem 7. Let D be Siegel domain of second type. Let

n; +2 n;

P =max| —————,-1- —— j=1 I
J 2(2d - q), 22d-q), )’
(59)

Let f € AT, and

1+r
N, (f)={zeD:|f2)|b"" (z,2) > &},  (60)

where € is a positive number. Then the following two quantities
are equivalent I, = I, where

I = distze (fA™) (61)

L= inf{5>0:

J (J BT (2,1 |E(r,z)|k“da(r))
p \ N, (0

x b (z,2)d¥ (2) < oo} ,
(62)

for all r and k so that, r = (ry,...,n), k = (ky,....k), r; €
(ré,oo), and k; € (ky,00), j = 1,...,1 and for certain fixed

vectorky = (kg, ..., ké), depending on r; and on parameters of
the Siegel D domains d,, q;, and n;.

Proof of Theorem 7. We will follow the proof of Theorem 4.
First we show that [, < Cl,. Letk € [R{l, r € IRZ, peR,, =

0,j = L....L Then f(z) = C, [, f@)b"™*(z,u)b™(w)du,
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f € AT,z € D, k; > m; for the same large enough m,
set depending on parameters of Siegel domain, for all f €
AV (D).

Hence we have that f = f; + f,

1, @) SCJ f @l o 0

D\
< Csj |b1+k @ w)| B (1 10) dy () (63)
D
< Ceb(z,2)"",

z € D.

Also, we have that
JD I, @)|b7 (z,2)dv(z)

SJ (J pkrir (T,T)|b(‘r,z)|k+1dv(r)>b_r(z,z)dv(z)
D N,

Er

<C.
(64)

Note then we used that for

K ) n;+2
; -r
i 77 2(2d - g),
n.
k,_l_ JR R — k-, =1,- )lr
i i 2(2d—q)i<1 /

j b7 (2,w)| b7 (1) dv () < Cbl(z,2)'"", 2 € D.
D
(65)

Sodistye (,AY)<CIl f= follaw =C fillae < Ce.
We show the reverse implication now following again unit
disk case arguments (see Theorems 4 and 5). We have the
following. Let us assume that /; < I,. Then we can find two

numbers ¢, & such thate > & > 0 and a function f, € AL,
If = fell ;i < & and hence

(e-2) xnp (@ b(z2)" < Clf., (2)| (66)
and hence

JD <JD xn,(p) (2) b(z, 2)" b (1, 2) dy (z))

x b (1,7)dv (1)

<[, (J,

x b (1,7)dv (1)
o
D

fo, @bz 27 W (1, 2) v (z)) (67)

fe, (Z)| b(z,z)"dv(z).

9
We used that (see [5, 8])
j b, 2)"'0 (r,7)dv (1) < C(b(2,2))"", zeD
D
ro> 2 i=1 l
j z(zd_q)la T e b
n.
k. -t i=1,...,L
1717 0 -g),
(68)
These estimates give a lower estimate for k, = (k.. ., kf)).
Theorem 7 is proved. O

For p > 1 and a > -1, denote by AP (D) the space of all
functions f holomorphic in D and satisfying the condition

J |f (w)|p dist (z,0D)*dv (w) < +00, (69)
D

where dv is the Lebesgue measure in D domain.
Let K, denote reproducing weighted Bergman kernel for
weighted Bergman space A2 (see [11, 12])

K, (z,w) = K(z, w)"*%, (70)

where K(z,w) is a Bergman kernel for A%. Based on prelimi-
naries of previous section on Bergman type spaces in minimal
homogeneous domains and arguments of proof of Theorems
4 and 5 and comments related to them, we can formulate the
following result.

Note that it is known that there exists a constant e ;, such
that A2 is nontrivial ifand only if a > &, (see [11,12]). From
now, we consider nontrivial weighted Bergman spaces.

Theorem 8. Assume that « > o, and let % be bounded min-
imal homogeneous domains with C* boundary. Let G, (f) =

{z € U : |f(2)lIKy(z, z)l_l/2 > e}. Then for f € A’ we have
that I, = I, where

L =dist 0 (f, A2)

oo (1

e

2
K(z,z)1™72 |K, (2,a)| dv (z))

xK(a,a) *dv(a) < oo]» ,
(71)
for all & > e for some fixed o,

We add only the full sketch of proof of this theorem since
itis quite similar to proofs of previous theorems. We consider
the operator P, defined by

Py g(z) = L{ |Ky (z,w)| g (w)dv(w), g el (% dv).
(72)
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P;, is operator % on L*(%,dv). The fact that Bergman type
projection P,, with positive Bergman kernel is a bounded
operator in Li spaces (weighted Lebegue spaces) can be seen
in recent paper [11]. It is well-known also, since A2 is a Hilbert
space that the Bergman reproducing formula for all functions
from these spaces is valid and since our domain is bounded,
this space for large enough « contains A%O for any f. So
the Bergman representation formula for each function taken
from A% is also valid with large enough «. These two facts
along with Forelly-Rudin type estimates for these domains
(see [12]) complete the proof.

All other results of this paper are one side estimates for
distance function and are fully based on results on bound-
edness of Bergman type projection with positive Bergman
kernel as we have seen in unit disk case in Bergman type
spaces, but over specific domain which we mentioned above
in previous section as separate assertions.

Based on preliminaries of previous section on Bergman
type spaces in Lie ball and arguments of proof of Theorems
4 and 5 and comments related to them, we can formulate the
following result.

Theorem 9. Let D be Lie ball with C* boundary. Let p €
(en-2)/n, 2n-2)/n—=2),n > 2, f € AS) . Let D, =

n/p*
{z : | f(2)\dist(z,0D)" > e}, t = n/p. Then

. P
dlStA?f}P (f,AO)
> Cinf {e >0: J <J Xp, (2) dist(z, oD)'
p\Jp

x By (2, w)dv(z))Pdv (W) < oo} .
(73)

We omit details of the proof referring to unit disk case.

Based on preliminaries of previous section on Bergman
type spaces in bounded symmetric domains of tube type
and arguments of proof of Theorems 4 and 5 and comments
related to them, we can formulate the following result.

Theorem 10. Let D be bounded symmetric domain of tube
type with C* boundary. Let p € (1,00), n > 2, f € A

n/p
Let Dt1 ={z: |f(2)|dist(z, oD) > ¢}, t = n/p. Then

. p
dlstA?;;P (f, Ao)
> Cinf {s >0: J (J xp! (2)dist(z, aD)fB?
p\Jp™*

p
x (z,w) dv(z)) dv (w) < 00}.
(74)

Remark 11. It is known that (see [30]) f « > —1 and p €
(0, 00) and if D is general bounded domain with C? boundary
then

dist (z,0D) """ | f (2)| < C| ]l e (75)
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This allows posing a dist problem for weighted Bergman
spaces in such type domains and based on preliminaries of
previous section to formulate Theorem 9 even for weighted
Bergman spaces. We leave this to readers.
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