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Based on recent results on boundedness of Bergman projection with positive Bergman kernel in analytic spaces in various types
of domains in C𝑛, we extend our previous sharp results on distances obtained for analytic Bergman type spaces in unit disk to
some new Bergman type spaces in Lie ball, bounded symmetric domains of tube type, Siegel domains, and minimal bounded
homogeneous domains.

1. Introduction

The goal of this paper is to add several new results for
distances in analytic Bergman type spaces of functions of
several variables. It turns out that our distance theorem we
proved before in case of unit disk, a sharp result under
certain natural additional condition, is valid also in various
domains and various Bergman type analytic spaces. Namely,
we look at analytic Bergman type spaces in Lie ball, bounded
symmetric domains of tube type, Siegel domains of second
type, and minimal bounded homogeneous domains. These
analytic spaces act as direct extensions of well-known analytic
Bergman spaces in the unit disk. These analytic spaces are
relatively new and we will include some basic facts on them
in our paper. They will also be needed for proofs of our
assertions partially. We will start this paper with two sharp
results on distances in Bergman type spaces in two domains:
Siegel domains of second type and in minimal homogeneous
domains inC𝑛. Then one side estimates for distance function
in Lie ball and bounded symmetric domains of tube type
will be given based directly on recent advances related to
boundedness of Bergman type projections in Bergman type
spaces in these type domains.

Our intention in this paper is the same as in our
previous papers on this topic. Namely, we collect some facts
from earlier investigation concerning Bergman projection
with positive Bergman kernel and Bergman kernel and use

them for our purposes in estimates of dist
𝑌
(𝑓,X) function

(distance function).
Following our previous papers [1, 2] we can easily obtain a

sharp result for distance function. We need only several tools
and the following scheme.

First we need an embedding of our quazinormed analytic
space (in any domain) into another one (𝑋 ⊂ 𝑌); this imme-
diately poses a problem of dist

𝑌
(𝑓,𝑋) = inf

𝑔∈𝑋
‖𝑓 − 𝑔‖

𝑌
for

all 𝑓 ∈ 𝑌 \ 𝑋. Then we need the Bergman reproducing for-
mula for all 𝑓 function from 𝑌 space. Then, finally, we use
the boundedness of Bergman type projections with |𝐾(𝑧, 𝑤)|
positive kernel acting from 𝑋 to 𝑋 together with Forelli-
Rudin type sharp estimates of Bergman kernel. These three
tools were used in general Siegel domain of second type,
polydisk, and unit ball in [1–4] (see also various references
there). We continue to use these tools providing new sharp
(and not sharp) results in various spaces of analytic functions
in this paper.

Note that our theorem on Siegel domains was formulated
in [5] without proof. We provide the complete proof here.
We also note that various problems, related to Bergman type
projections, are applied in many problems in function theory
(see, e.g., [6] and references there).

First we provide a known result in the unit disk with
complete proof taken from our previous papers [1, 2]. In the
unit disk case all arguments here are short and transparent
and are based on several tools like Forelli-Rudin type estimate
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and estimates for Bergman type projections with positive
Bergman kernel. Then we will see arguing similarly as in
unit disk and we will easily complete the proof of more
complicated cases. The complete formulations of our last
theorems will be given, but sometimes sketches of proofs will
be added and details of proofs of higher-dimensional cases
will be left to readers.

Note that it is easy to see that our assertions may have
various applications in approximation theory; for example see
[6] and references there.

The base of our proofs is properties of Bergman projec-
tion in various domains given in [7–12]. The estimates of
Bergman kernel from [7–12] are also playing an important
role below in our proofs. Note that arguments we use below
are very close to arguments which were used before in [1,
2, 13]. As a result we alert the reader that the exposition is
sketchy sometimes.

Throughout the paper, we write 𝐶 (sometimes with
indexes) to denote a positive constant which might be differ-
ent at each occurrence (even in a chain of inequalities) but is
independent of the functions or variables being discussed.

Thenotation𝐴 ≍ 𝐵means that there is a positive constant
𝐶, such that𝐵/𝐶 ≤ 𝐴 ≤ 𝐶𝐵.Wewill write for two expressions
𝐴 ≲ 𝐵 if there is a positive constant 𝐶 such that 𝐴 < 𝐶𝐵.

This paper can be viewed as continuation of [13] where
various other cases (domains) were also considered. In [13]
the base of all our proofs in complex domains in higher
dimension was the Bergman reproducing formula, while
here all our assertions are based on some recent results on
boundedness of Bergman projections with positive Bergman
kernel in Bergman spaces in such type domains.

2. Notations, Definitions, and Preliminaries

We will need various definitions and assertions for formula-
tions of main results. These are assertions on various types of
domains we consider in this paper and analytic functions on
them.

We denote by B
𝑛
the unit ball in C𝑛. As usual, we denote

by 𝐻(B
𝑛
) the space of all holomorphic functions in B

𝑛
. For

1 ≤ 𝑝 < +∞ and 𝛼 > −1, denote by𝐻𝑝

𝛼
(B

𝑛
) (or 𝐴𝑝

𝛼
(B

𝑛
)) the

space of all functions 𝑓 holomorphic in B
𝑛
and satisfying the

condition

∫

B
𝑛

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑤)

󵄨
󵄨
󵄨
󵄨

𝑝

(1 − |𝑤|
2

)

𝛼

𝑑] (𝑤) < +∞, (1)

where 𝑑] is the Lebesgue measure in C𝑛.
Further, for a complex number 𝛽 with Re𝛽 > −1, put

𝑐
𝑛
(𝛽) =

Γ (𝑛 + 1 + 𝛽)

𝜋
𝑛
⋅ Γ (1 + 𝛽)

. (2)

Let 𝐴∞

𝛼
(B

𝑛
) = {𝑓 ∈ 𝐻(B

𝑛
) : sup |𝑓(𝑧)|(1 − |𝑧|)

𝛼

< ∞},
𝛼 ≥ 0.

The following theorem is well-known and it has
many applications in various problems in function theory
(see [14]).

Theorem A. Assume that 1 ≤ 𝑝 < +∞, 𝛼 > −1 and that the
complex number 𝛽 satisfies the condition

Re𝛽 ≥ 𝛼, 𝑝 = 1

Re𝛽 >

𝛼 + 1

𝑝

− 1, 1 < 𝑝 < ∞.

(3)

Then each function 𝑓 ∈ 𝐴
𝑝

𝛼
(B

𝑛
) admits the following integral

representations:

𝑓 (𝑧) = 𝑐
𝑛
(𝛽) ⋅ ∫

B
𝑛

𝑓 (𝑤) (1 − |𝑤|
2

)

𝛽

(1 − ⟨𝑧, 𝑤⟩)
𝑛+1+𝛽

𝑑] (𝑤) , 𝑧 ∈ B
𝑛
,
(4)

𝑓(0) = 𝑐
𝑛
(𝛽) ⋅ ∫

B
𝑛

𝑓(𝑤)(1 − |𝑤|
2

)

𝛽

(1 − ⟨𝑧, 𝑤⟩)
𝑛+1+𝛽

𝑑] (𝑤) , 𝑧 ∈ B
𝑛
,

(5)

where ⟨⋅, ⋅⟩ is the Hermitian inner product in C𝑛.

For 𝑛 > 1, the theorem was proved in [15] (when 𝛼 = 0)
and in [16] (when 𝛼 > −1, 𝑛 = 1).

These integral representation theorems were the core of
our approach for estimates of distance function in our recent
papers (see [1, 2, 13, 17]) andwewill see the same in this paper.

We will start this section with various known assertions
on analytic function spaces on Siegel domains of second type.
Next wewill continue adding some lemmas on each Bergman
type analytic space on each domain in higher dimension
which we will consider in this paper. We alert the reader that
some assertions belowwill serve as introductorymaterial and
will not be used during the proof tomake the reading of paper
more convenient.

Let 𝐷 be a usual homogeneous Siegel domain of second
type. Let 𝑑] denote the Lebesgue measure on 𝐷 (for all
other bounded domains in this paper we will also use the
same notation below) and let as usual 𝐻(𝐷) be the space
of holomorphic functions on 𝐷 endowed as usual with the
topology of uniform convergence on compact subsets of𝐷.

The Bergman projection 𝑃 of𝐷 is as usual the orthogonal
projection of 𝐿2

(𝐷, 𝑑]) onto its subspace𝐴2

(𝐷) consisting of
holomorphic functions. Moreover it is known that 𝑃 is the
integral operator defined on 𝐿2

(𝐷, 𝑑]) by the Bergman kernel
𝐵(𝑧, 𝜁) which for𝐷 was computed for example in [18, 19].

Let 𝑟 be a real number, for example. We fix it. Since 𝐷 is
homogeneous, the function 𝜁 → 𝐵(𝜁, 𝜁) does not vanish on
𝐷; we can set

𝐿
𝑝,𝑟

(𝐷) = 𝐿
𝑝

(𝐷, 𝐵
−𝑟

(𝜁, 𝜁) 𝑑] (𝜁)) , 0 < 𝑝 < ∞. (6)

Let𝑝 be an arbitrary positive number.Theweighted Bergman
space is defined as usual by𝐴𝑝,𝑟

(𝐷) = 𝐿
𝑝,𝑟

(𝐷)∩𝐻(𝐷).We put
𝐴

𝑝,0

= 𝐴
𝑝

(𝐷).
The so-called weighted Bergman projection 𝑃

𝜀
is the

orthogonal projection of 𝐿2,𝜀

(𝐷) onto 𝐴
2,𝜀

(𝐷). This fact can
be found in [8, 10]. It is proved in [8, 10] that there exists a
real number 𝜀

𝐷
< 0 such that 𝐴2,𝜀

(𝐷) = {0} if 𝜀 ≤ 𝜀
𝐷
and that

for 𝜀 > 𝜀
𝐷
. 𝑃

𝜀
is the integral operator defined on 𝐿

2,𝜀

(𝐷) by
the weighted Bergman kernel𝐶

𝜀
𝐵

1+𝜀

(𝜁, 𝑧). In all our work we
will assume that 𝜀 > 𝜀

𝐷
.
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The norm ‖ ⋅ ‖
𝑝,𝑟

of 𝐴𝑝,𝑟

(𝐷) with 𝑟 > 𝜀
𝐷
is defined by

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝑝,𝑟

= (∫

𝐷

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨

𝑝

𝐵
−𝑟

(𝑧, 𝑧)𝑑](𝑧))
1/𝑝

, 𝑓 ∈ 𝐴
𝑝,𝑟

(𝐷) .

(7)

We need some assertions (see [8, 10]).
Note the exact expression of Bergman kernel for these

domains can be seen in [8, 10, 18].
We denote by 𝑏((𝜏

1
, 𝜏

2
), (𝜏

3
, 𝜏

4
)) Bergman kernel for the

Siegel domain of the second type, which differs from 𝐵(𝑧, 𝜁)

Bergman kernel by constant. We will use it in text also.

Lemma A. Let ℎ ∈ 𝐿
∞

(𝐷). Take 𝜌 > 𝜌
0
for large fixed 𝜌

0
.

Then the function

𝑧 󳨀→ 𝐺 (𝑧) = ∫

𝐷

𝐵
1+𝜌

(𝑧, 𝜁) ℎ (𝜁) 𝑑] (𝜁) (8)

satisfies the estimate sup
𝑧∈𝐷

|𝐺(𝑧)|𝐵
−𝜌

(𝑧, 𝑧) ≤ 𝐶‖ℎ‖
∞
and 𝐺 ∈

𝐻(𝐷).

Lemma B. For each 𝜌 sufficiently large and for each 𝐺 ∈

𝐻(𝐷) such that sup
𝑧∈𝐷

|𝐺(𝑧)||𝐵
−𝜌

(𝑧, 𝑧)| < ∞ one has the
reproducing formula

𝐺 (𝜁) = 𝐶
𝜌
∫

𝐷

𝐵
1+𝜌

(𝜁, 𝑧) 𝐺 (𝑧) 𝐵
−𝜌

(𝑧, 𝑧) 𝑑] (𝑧) , 𝑧 ∈ 𝐷.

(9)

We will need for our theorems some basic facts for
Siegel domains of second type. We denote by 𝑑

𝑖
, 𝑞

𝑖
, and 𝑛

𝑖

parameters of a Siegel domains of second type (see [4, 5, 8,
10]). We will use usual operations between two vectors for
such parameters below in our text.

The following lemma is complete analogue of so-called
Forelly-Rudin type estimates for our Siegel domains of second
type (see [8, 10]).

Lemma C. Let 𝛼 and 𝜀 be in R𝑙, (𝜁, V) ∈ 𝐷. Then for 𝜀
𝑖
>

(𝑛
𝑖
+ 2)/2(2𝑑 − 𝑞)

𝑖
and 𝛼

𝑖
− 𝜀

𝑖
> 𝑛

𝑖
/(−2)(2𝑑 − 𝑞)

𝑖
, 𝑖 = 1, . . . , 𝑙

∫

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨
𝐵

1+𝛼

((𝜁, V) , (𝑧, 𝑢))
󵄨
󵄨
󵄨
󵄨
󵄨
𝐵

−𝜀

((𝑧, 𝑢) , (𝑧, 𝑢)) 𝑑V (𝑧, 𝑢)

= 𝐶
𝛼,𝜀
𝐵

𝛼−𝜀

((𝜁, V) , (𝜁, V)) .
(10)

Lemma D. Let 𝑟 be a vector of R𝑙 such that 𝑟
𝑖
> (𝑛

𝑖
+

2)/(−2)(2𝑑 − 𝑞)
𝑖
for all 𝑖 = 1, . . . , 𝑙 and 𝑝 is a real number

such that 1 ≤ 𝑝 < min{(𝑛
𝑖
−2(2𝑑−𝑞)

𝑖
(1+𝑟

𝑖
))/𝑛

𝑖
}. Then for all

𝜀 ∈ R𝑙 such that 𝜀
𝑖
> (𝑛

𝑖
+ 2)/(2(2𝑑 − 𝑞)

𝑖
)((𝑝 − 1)/𝑝) + (𝑟

𝑖
/𝑝),

𝑖 = 1, . . . , 𝑙 : 𝑃
𝜀
𝑓 = 𝑓, 𝑓 ∈ 𝐴

𝑝,𝑞.

We list in Lemma E other properties of Bergman kernel.
The last estimate in assertion below is an embedding theorem
which connect so-called growth spaces with Bergman spaces.
This allows to pose a distance problem (see also the complete
analogue of this result in other simpler domains in [1, 17]).

Lemma E. Let 𝛼 ∈ R𝑙, 𝛼
𝑗
≤ 0, 𝑖 = 1, . . . , 𝑙. Then |𝑏

𝛼

((𝜁, V),
(𝑧, 𝑢))| ≤ 𝑐

𝛼
𝑏

𝛼

((𝜁, V), (𝜁, V)) and |𝑏
𝛼

((𝜁, V) + (𝜁
󸀠

, V󸀠

), (𝑧, 𝑢) +

(𝑧
󸀠

, 𝑢
󸀠

))| ≤ 𝑐
𝛼
𝑏

𝛼

((𝜁, V), (𝜁, V)) for all (𝜁, V), (𝜁󸀠

, V󸀠

), (𝑧, 𝑢),
(𝑧

󸀠

, 𝑢
󸀠

) in𝐷. For all 𝑓 ∈ 𝐴
𝑝,𝑟

(𝐷), 𝑝 > 0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧, 𝑢)

󵄨
󵄨
󵄨
󵄨

𝑝

≤ 𝐶𝑏
1+𝑟

((𝑧, 𝑢) , (𝑧, 𝑢))
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝,𝑟
. (11)

The following result concerns the boundedness of
Bergman type projection with positive Bergman kernel in
weighted Bergman spaces. Note that this fact is classical in
simpler domains and it has also many applications in analytic
function theory.

Proposition A. Let 𝜀 and 𝑟 be inR𝑙 such that 𝜀
𝑖
> 1/(2𝑑 − 𝑞)

𝑖

and 𝑟
𝑖
> (𝑛

𝑖
+ 2)/2(2𝑑 − 𝑞)

𝑖
, 𝑖 = 1, . . . , 𝑙. Then 𝑃

𝜀
is bounded

from 𝐿
𝑝,𝑟

(𝐷) into 𝐴𝑙,𝑟

(𝐷) if

max
𝑖=1,...,𝑙

{1,

2𝑛
𝑖
+ 2 − 2(2𝑑 − 𝑞)

𝑖
𝑟

𝑖

𝑛
𝑖
+ 2 − 2(2𝑑 − 𝑞)

𝑖
𝜀

𝑖

}

< 𝑝 < min
𝑖=1,...,𝑙

2𝑛
𝑖
+ 2 − 2(2𝑑 − 𝑞)

𝑖
𝑟

𝑖

𝑛
𝑖

.

(12)

The following assertion provides integral representation
for a certain so-called analytic “growth space” on Siegel do-
mains of the second type.

Proposition B. Let 𝑟 and 𝜀 be two vectors of R𝑙 such that 𝜀
𝑖
>

𝑛
𝑖
/(−2)(2𝑑 − 𝑞)

𝑖
, 𝑟

𝑖
> ((𝑛

𝑖
+ 2)/2(2𝑑 − 𝑞)

𝑖
) + 𝜀

𝑖
, 𝑖 = 1, . . . , 𝑙. Let

𝐺 be in𝐻(𝐷) such that

sup
𝑧∈𝐷

{|𝐺 (𝑧)| 𝐵
−𝜀

(𝑧, 𝑧)} < ∞; (13)

then 𝑃𝑟𝐺 = 𝐺.

The following result explains the structure of functions
from Bergman spaces on Siegel domains of second type. It is
an extension of a classical theorem on atomic decomposition
of Bergman spaces in the unit disk on a complex plane.

Proposition C. Let 𝐷 ⊂ C𝑁 be a symmetric Siegel domain
of second type, 𝑝 ∈ (2𝑁/(2𝑁 + 1), 1), 𝑧 ∈ R𝑙, 𝑟

𝑗
> (𝑛

𝑖
+

2)/2(2𝑑 − 𝑞)
𝑖
. Then there are two constants 𝐶 = 𝐶(𝑝, 𝑟) and

𝐶
1
= 𝐶

1
(𝑝, 𝑟) such that for every 𝑓 ∈ 𝐴

𝑝,𝑟

(𝐷) there exists an
𝑙
𝑝 sequence {𝜆

𝑖
} such that

𝑓 (𝑧) =

∞

∑

𝑖=0

𝜆
𝑖
𝑏

𝛼/𝑝

(𝑧, 𝑧
𝑖
) 𝑏

(1+𝑟−𝛼)/𝑝

(𝑧
𝑗
, 𝑧

𝑗
) , (14)

where {𝑧
𝑖
} is a lattice in𝐷 and the following estimate holds:

𝐶
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝,𝑟
≤ 𝜀

󵄨
󵄨
󵄨
󵄨
𝜆

𝑖

󵄨
󵄨
󵄨
󵄨

𝑝

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝,𝑟
. (15)

We add some basic facts on minimal bounded homoge-
neous domains and we will use them partially in our paper
(see [11, 12]).

Let 𝐷 be a bounded domain in C𝑛. We say that 𝐷 is
a minimal domain with a center 𝑡 ∈ 𝐷 if the following
condition is satisfied: for every biholomorphism𝜓 : 𝐷 → 𝐷

󸀠

with det 𝐽(𝜓, 𝑡) = 1, (𝐽s is the complex Jacobian of the map
𝜓), we have

Vol (𝐷󸀠

) ≥ Vol (𝐷) . (16)
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Let now us denote by 𝐾
𝐷
the Bergman kernel of 𝐷, that

is, the reproducing kernel of 𝐿2

(𝐷). It is known that 𝐷 is a
minimal domain with a center 𝑡 if and only if 𝐾

𝐷
(𝑧, 𝑡) =

𝐾
𝐷
(𝑡, 𝑡) for any 𝑧 ∈ 𝐷, (see [20] and references there).
From [21], Proposition 3.6, we see that 𝐷 is a minimal

domain with a center 𝑡 if and only if

𝐾
𝐷
(𝑧, 𝑡) =

1

Vol (𝐷)

, (17)

for any 𝑧 ∈ 𝐷.
Every bounded homogeneous domain is biholomorphic

to a representative bounded homogeneous domain.
Therefore, every bounded homogeneous domain is

biholomorphic to a minimal bounded homogeneous domain
(see [11, 12]).

For any 𝑧 ∈ U and 𝜌 > 0, let

B (𝑧, 𝜌) = {𝑤 ∈ U : 𝛽 (𝑧, 𝑤) ≤ 𝜌} (18)

be the Bergmanmetric disk with center 𝑧 and radius 𝜌, where
𝛽 denotes the Bergman distance onU, (see [11, 12]).

We fix aminimal bounded homogeneous domainUwith
a center 𝑡. For a bounded linear operator 𝑇 on 𝐴

2

𝛼
(U) (this is

standard analytic part of standard 𝐿2 space inU) the Berezin
symbol ̃𝑇 of 𝑇 is defined by

̃
𝑇 (𝑧) = ⟨𝑇𝑘

𝑧
, 𝑘

𝑧
⟩ (𝑧 ∈ U) , (19)

where 𝑘
𝑧
is a normalized Bergman kernel in Bergman space

𝐴
2

𝛼
in minimal bounded homogeneous domain U. For a

Borel measure 𝜇 onU, we define a function 𝜇 onU by

𝜇 (𝑧) = ∫

U

󵄨
󵄨
󵄨
󵄨
𝑘

𝑧
(𝑤)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝜇 (𝑤) , (20)

which is called the Berezin symbol of the measure 𝜇. Since
𝐾U(𝑧, 𝑤) is a bounded function on B(𝑡, 𝜌) × U, 𝜇 is a
continuous function if 𝜇 is finite.

We will provide some basic facts for a minimal bounded
homogeneous domains.

Lemma F (see [20]). There exists a constant𝑀
𝜌
such that

𝑀
−1

𝜌
≤
󵄨
󵄨
󵄨
󵄨
𝑘

𝑎
(𝑧)

󵄨
󵄨
󵄨
󵄨

2

𝑉𝑜𝑙 (B (𝑎, 𝜌)) ≤ 𝑀
𝜌
, (21)

for all 𝑎 ∈ U and 𝑧 ∈ B(𝑎, 𝜌).

Lemma G (see [20]). There exists a sequence {𝑤
𝑗
} ⊂ U

satisfying the following conditions.
(1) U = ⋃

∞

𝑗=1
B(𝑤

𝑗
, 𝜌).

(2) B(𝑤
𝑖
, 𝜌/4) ∩ B(𝑤

𝑗
, 𝜌/4) = 0.

(3) There exists a positive integer 𝑁 such that each point
𝑧 ∈ U belongs to at most𝑁 of the sets B(𝑤

𝑗
, 2𝜌).

Lemma H (see [20]). There exists a constant 𝐶 such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑎)

󵄨
󵄨
󵄨
󵄨

𝑝

≤

𝐶

𝑉𝑜𝑙 (B (𝑎, 𝜌))

∫

B(𝑎,𝜌)

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨

𝑝

𝑑] (𝑧) (22)

for all 𝑓 ∈ 𝐻(U), 𝑝 ≥ 1, and 𝑎 ∈ U, where𝐻(U) is a space of
analytic functions inU.

TheoremB (see [22]). Take any 𝜌 > 0.Then, there exists𝐶
𝜌
>

0 such that

𝐶
−1

𝜌
≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾U (𝑧, 𝑎)

𝐾U (𝑎, 𝑎)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶
𝜌
, (23)

for all 𝑧, 𝑎 ∈ U with 𝛽U(𝑧, 𝑎) ≤ 𝜌, where 𝛽U means the Berg-
man distance onU.

Authors in [22] introduce certain equivariant holomor-
phic maps 𝜃

𝑛
𝑗

: U → U󸀠 for 𝑗 = 1, . . . , 𝑟 (:=rankU) fromU

into the Siegel diskU
𝑛
of rank 𝑛

𝑗
. Authors in [22] obtain the

following formula for the description of 𝐾U.

Theorem C (see [22]). There exist integers 𝑠
1
, . . . , 𝑠

𝑟
such that

𝐾U (𝑧, 𝑤) = 𝑉𝑜𝑙(U)
−1

𝑟

∏

𝑗=1

{det (𝐼
𝑛
𝑗

− 𝜃
𝑛
𝑗

(𝑧)𝜃
𝑛
𝑗

(𝑤))}

−𝑠
𝑗

(24)

for 𝑧, 𝑤 ∈ U. Recall that the Bergman kernel 𝐾U
𝑚

of the Siegel
diskU

𝑚
is given by

𝐾U
𝑚

(𝑧, 𝑤) = 𝑉𝑜𝑙(U
𝑚
)

−1 det (𝐼
𝑚
− 𝑧𝑧)

−(𝑚+1)

. (25)

Wewill denote theweighted reproducing Bergman kernel
for weighted Bergman 𝐴

2

𝛼
spaces in this type domains below

simply as𝐾
𝛼
omitting indexU.

Note from lemmas above (see [11]) that we have

sup 󵄨󵄨󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
𝐾(𝑧, 𝑧)

𝑡

< 𝐶
󵄨
󵄨
󵄨
󵄨
𝑓
󵄨
󵄨
󵄨
󵄨𝐴
2

𝛽

, where 𝑡 =
(−𝛽 − 1)

2

. (26)

This allows putting distance problems for these domains
which we solve inTheorem 8.

We need now some preliminaries for Bergman spaces in
Lie ball.

Let𝐷 denote each of the following domains in C𝑛, 𝑛 ≥ 3:

(1) the tube Ω = R𝑛

+ 𝑖Γ over the spherical cone

Γ = {(𝑦
1
, . . . , 𝑦

𝑛
) ∈ R

𝑛

: 𝑦
1
> 0, 𝑦

1
𝑦

2
− 𝑦

2

3
− ⋅ ⋅ ⋅ − 𝑦

2

𝑛
> 0} ,

(27)

(2) the Lie ball

𝜔 =

{

{

{

𝑧 ∈ C
𝑛

:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

𝑧
2

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 1, 1 − 2|𝑧|
2

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

𝑧
2

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

> 0

}

}

}

. (28)

Obviously, the first domain is unbounded while the
second one is bounded. It is well- known that they are biholo-
morphically equivalent and, in Elie Cartans classification of
bounded symmetric domains [23], they are representatives
of class IV (according to Huas numbering [24]). We are
interested in bounded Lie ball, bounded symmetric domains
of tube type, Siegel domains of second type, and minimal
bounded homogeneous domains in this paper.

To make the exposition easier, we remind the readers
about the basic definitions again.
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Let 𝐻(𝐷) denote the space of holomorphic functions in
𝐷 domain and let, as above, 𝑑] be Lebesgue measure in C𝑛.
For every 𝑝 ≥ 1, the Bergman space 𝐴

𝑝

(𝐷) is defined by
𝐴

𝑝

(𝐷) = 𝐻(𝐷) ∩ 𝐿
𝑝

(𝐷, 𝑑]). For every 𝑓 ∈ 𝐴
𝑝

(𝐷), we
set ‖𝑓‖

𝐴
𝑝

(𝐷)
= ‖𝑓‖

𝐿
𝑝

(𝐷,𝑑])
for 𝑝 ≥ 1; this is a norm under

which 𝐴
𝑝

(𝐷) is a Banach space. The Bergman projection
𝑃

𝐷
of 𝐷 is the orthogonal projection of the Hilbert space

𝐿
2

(𝐷, 𝑑]) onto its closed subspace 𝐴
2

(𝐷). Moreover, 𝑃
𝐷
is

the integral operator associated with a kernel 𝐵
𝐷
(⋅, ⋅) called

the Bergman kernel of 𝐷. Finally, let 𝑃∗

𝐷
denote the integral

operator associated with the positive kernel |𝐵
𝐷
(⋅, ⋅)|.

The following results were proved in [7].

Theorem D (see [7]). For every 𝑝 ∈ (1, (3𝑛 − 2)/2𝑛] ∪ [(3𝑛 −

2)/(𝑛 − 2),∞), the Bergman projection 𝑃
𝐷
is unbounded on

𝐿
𝑝

(𝐷, 𝑑]).

Theorem E (see [7]). Let 𝑝 ≥ 1. The operator 𝑃∗

𝐷
is bounded

on 𝐿
𝑝

(𝐷, 𝑑]) if and only if 𝑝 ∈ ((2𝑛 − 2)/𝑛, (2𝑛 − 2)/(𝑛 −

2)). Furthermore, the Bergman projection 𝑃
𝐷
is bounded from

𝐿
𝑝

(𝐷, 𝑑]) to 𝐴𝑝

(𝐷) when 𝑝 ∈ ((2𝑛 − 2)/𝑛, (2𝑛 − 2)/(𝑛 − 2)).

For the tube domain Ω some of these results were
announced in [25]. The question whether 𝑃

𝐷
is bounded on

𝐿
𝑝

(𝐷, 𝑑]) when 𝑝 belongs to ((3𝑛 − 2)/2𝑛, (2𝑛 − 2)/𝑛] ∪

[(2𝑛 − 2)/(𝑛 − 2), (3𝑛 − 2)/(𝑛 − 2)) remains open. The case of
all homogeneous Siegel domains of second type has recently
been considered by𝐷. Bekolle and A. Temgoua Kagou. They
proved that there is a range of𝑝, around 2, where theBergman
projection is bounded in 𝐿

𝑝, while there is a range of 𝑝,
around 1 and∞, where it is unbounded (see [8]). In all cases
the critical result is not known.

We add some basic facts on Bergman kernel on these
domains.

Proposition D (see [7]). The Bergman kernel 𝐵
Ω
(𝑠, 𝑧) ofΩ is

given by

𝐵
Ω
(𝜁, 𝑧) = 𝑐

𝑛

[

[

(𝜁
1
− 𝑧

1
) (𝜁

2
− 𝑧

2
) −

𝑛

∑

𝑗=3

(𝜁
𝑗
− 𝑧

𝑗
)

2

]

]

−𝑛

, (29)

where 𝜁 = (𝜁
1
, . . . , 𝜁

𝑛
), 𝑧 = (𝑧

1
, . . . , 𝑧

𝑛
) ∈ Ω.

Definition 1 (see [7]). Let 𝑘(𝑡, 𝑦) denote the positive ker-
nel defined on the cone Γ𝑘(𝑡, 𝑦) = [(𝑡

1
+ 𝑦

1
)(𝑡

2
+ 𝑦

2
) −

∑
𝑛

𝑗=3
(𝑡

𝑗
+ 𝑦

𝑗
)

2

]

−𝑛/2, 𝑡 = (𝑡
1
, . . . , 𝑡

𝑛
), 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
), 𝑦 ∈ Γ.

PropositionE (see [7]). For each𝑝 ≥ 1, there exists a constant
𝐶

𝑝
such that, for all 𝑦 ∈ Γ and 𝜉 = 𝑠 + 𝑖𝑡 ∈ Ω,

∫

R𝑛

󵄨
󵄨
󵄨
󵄨
𝐵

Ω
(𝜁, 𝑥 + 𝑖𝑦)

󵄨
󵄨
󵄨
󵄨

𝑝

𝑑𝑥 = 𝐶
𝑝
[𝑘 (𝑡, 𝑦)]

2𝑝−1

. (30)

Moreover, there exists a constant 𝑐
𝑝
such that, for each 𝑦 ∈ Γ

such that |𝑦| < 1/100 and each 𝜁 = 𝑠 + 𝑖𝑡 ∈ Ω such that
|𝜁| < 1/100,

∫

𝐼×⋅⋅⋅×𝐼

󵄨
󵄨
󵄨
󵄨
𝐵

Ω
(𝜁, 𝑥 + 𝑖𝑦)

󵄨
󵄨
󵄨
󵄨

𝑝

𝑑𝑥 ≥ 𝐶
𝑝
[𝑘 (𝑡, 𝑦)]

2𝑝−1

, (31)

where 𝐼 denotes the interval [−1, 1].

Let 𝑧 = Φ(𝑧
󸀠

) be the linear fractional mapping from 𝜔

onto Ω which is given in [23]. In particular, we assume that
Φ(0) = 𝑒, where 𝑒 = (𝑖, 𝑖, 0, . . . , 0) and Φ is holomorphic
outside 𝑍 = {𝑧 ∈ C𝑛

: 𝑄(𝑧) = 0}, where 𝑄 is a polynomial
such that 𝑄(0) = 1. In view of the change of variables
formula, the Bergman kernel 𝐵

𝜔
(𝜁

󸀠

, 𝑧
󸀠

) of𝜔 has the following
expression in terms of that ofΩ:

𝐵
𝜔
(𝜁

󸀠

, 𝑧
󸀠

) = 𝐵
Ω
(Φ (𝜁

󸀠

) , Φ (𝑧
󸀠

)) 𝐽Φ (𝜁
󸀠

) 𝐽Φ (𝑧
󸀠
), (32)

where 𝐽s is the complex Jacobian of the mapΦ. On the other
hand, since 𝜔 is a circular domain, for each real number 𝜃,

𝐵
𝜔
(𝑒

𝑖𝜃

𝜁
󸀠

, 𝑒
𝑖𝜃

𝑧
󸀠

) = 𝐵
𝜔
(𝜁

󸀠

, 𝑧
󸀠

) (33)

and thus, there exists a constant 𝐶 such that 𝐵
𝜔
(𝜁

󸀠

, 0) = 𝐶 for
each 𝜁

󸀠

∈ 𝜔. Hence, from (32), we get

𝐽Φ (𝜁
󸀠

) = 𝐶
󸀠

[𝐵
𝜔
(Φ (𝜁

󸀠

) , 𝑒]

−1

. (34)

The following property of Bergman kernel is vital.

Lemma I (see [7]). For all 𝑧 and 𝜁 in Ω,
󵄨
󵄨
󵄨
󵄨
𝐵

𝜔
(𝜁, 𝑧)

󵄨
󵄨
󵄨
󵄨
≤ 𝐵

𝜔
(𝑧, 𝑧) . (35)

We add some basic facts on bounded symmetric domains
of tube type from [23].

Let 𝐷 be an irreducible bounded symmetric domain of
tube type in C𝑛. That is, 𝐷 is conformally equivalent to a
tube domain ̃

𝑇̃
Ω

= R𝑛

+ 𝑖Ω̃ over a symmetric cone Ω̃ in
R𝑛. Irreducible symmetric cones are completely classified (see
[26]), being either light-cones

Λ
𝑛
= {(𝑦

1
, 𝑦

󸀠

) ∈ R
𝑛

: 𝑦
1
>

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦

󸀠
󵄨
󵄨
󵄨
󵄨
󵄨
} , 𝑛 ≥ 3, (36)

or cones of positive-definite symmetric or hermitian matri-
ces, namely,

Sym
+
(𝑟,R) , Her

+
(𝑟,C) , Her

+
(𝑟,H) ,

Her
+
(3,O) .

(37)

We write 𝑟 for the rank of the cone (which in light-cones is
𝑟 = 2) and Δ for the associated determinant function (which
in light-cones is the Lorentz form Δ(𝑦) = 𝑦

2

1
− |𝑦

󸀠

|

2).
An important open question in these domains, 𝐷 and

̃
𝑇̃

Ω
, concerns the 𝐿𝑝 boundedness of the associated Bergman

projections, that is, the orthogonal projection 𝑃 mapping 𝐿2

into the subspace of holomorphic functions 𝐴2. In contrast
with Cauchy-Szego projections (which are not bounded in 𝐿𝑝

for any 𝑝 ̸= 2, if 𝑛 > 1), the 𝐿𝑝-boundedness of Bergman
projections has been conjectured in a small interval around
𝑝 = 2, namely,

1 +

𝑛 − 𝑟

2𝑛

< 𝑝 < 1 +

2𝑛

𝑛 − 𝑟

. (38)

At the moment, positive results are only known to hold in a
proper subinterval

1 +

𝑛 − 𝑟

2𝑛 − 𝑟

< 𝑝 < 1 +

2𝑛 − 𝑟

𝑛 − 𝑟

, (39)
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with a small improvement over this range in the case of light-
cones.

Also, we are interested in applying the transference
principle to the family of weighted Bergman projections in
𝐷 and ̃

𝑇̃
Ω
. Using the notation in the text from [26], Chapter

XIII, these operators are defined for ] > (2𝑛/𝑟) − 1 by

𝑃]𝑓 (𝑧) = ∫

𝐷̃

𝐵
𝐷̃

] (𝑧, 𝑤) 𝑓 (𝑤) 𝑑𝜇] (𝑤) , 𝑧 ∈ 𝐷,

P]𝑔 (𝜁) = ∫

̃
𝑇
Ω̃

𝐵

̃
𝑇
Ω̃

] (𝜁, 𝜂) 𝑔 (𝜂) 𝑑𝜆] (𝜂) , 𝜁 ∈
̃
𝑇̃

Ω
,

(40)

where the Bergman kernels and their associated measures
have the explicit expressions

𝐵
𝐷̃

] (𝑧, 𝑤) = 𝑐]ℎ(𝑧, 𝑤)
−]
, 𝑑𝜇] (𝑤) = ℎ(𝑤)

]−(2𝑛/𝑟)

𝑑𝑤,

𝐵

̃
𝑇
Ω̃

] (𝜁, 𝜂) = 𝑐
󸀠

]Δ(𝜁 − 𝜂)
−]
, 𝑑𝜆] (𝜂) = Δ(I𝑚𝜂)

]−(2𝑛/𝑟)

𝑑𝜂

(41)

for certain constants 𝑐], 𝑐
󸀠

] . Here ℎ(𝑧, 𝑤) denotes the unique
polynomial (holomorphic in 𝑧 and antiholomorphic in 𝑤)
such that ℎ(𝑧) := ℎ(𝑧, 𝑧) is 𝑈-invariant and ℎ(𝑥) = Δ(𝑒 − 𝑥

2

),
𝑥 ∈ R𝑛.

The Bergman kernels in these two domains are related by
the formula

𝐵
𝐷̃

] (𝑧, 𝑤) = 𝑐]𝐵
̃
𝑇
Ω̃

] (Φ (𝑧) , Φ (𝑤)) (𝐽
Φ
(𝑧)𝐽

Φ
(𝑤))

]/(2𝑛/𝑟)

. (42)

Corollary 2 (see [9]). Let ] > (2𝑛/𝑟) − 1 and 𝑝, 𝑞 ∈ [1,∞].
Then the following are equivalent:

(a) 𝑃] is bounded from 𝐿
𝑝

(𝐷, 𝑑𝜇]) → 𝐿
𝑞

(𝐷, 𝑑𝜇]);

(b) PB
] is bounded from 𝐿

𝑝

(
̃
𝑇̃

Ω
, 𝑑𝜆]) → 𝐿

𝑞

(
̃
𝑇̃

Ω
, 𝑑𝜆]).

Remark 3. The statements in the corollary can only hold if
𝑝 ≥ 𝑞.

The transference principle also applies to the positive
operators

𝑃
+

] 𝑓 (𝑧) = ∫

𝐷̃

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐵
𝐷̃

] (𝑧, 𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑤) 𝑑𝜇] (𝑤) ,

P
+

]𝑔 (𝜁) = ∫

̃
𝑇
Ω̃

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐵

̃
𝑇
Ω̃

] (𝜁, 𝜂)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑔 (𝜂) 𝑑𝜆] (𝜂) .

(43)

In this case we can even state a stronger result. We consider a
new operator, acting on functions in Ω̃ by

𝑓 󳨃󳨀→ Q𝑓 (𝑦) = 𝜒B (𝑦) ∫
̃
Ω∩B

𝑓 (𝑢)

Δ(𝑦 + 𝑢)
]−(𝑛/𝑟)

𝑑𝜆] (𝑢) ,

𝑦 ∈ Ω̃.

(44)

Here, with a slight abuse of notation, we still write 𝑑𝜆] for the
measure Δ]−(2𝑛/𝑟)

(𝑢)𝑑𝑢 in Ω̃ and B for the closed unit ball in

R𝑛. We write 𝐿𝑝,𝑝

] (
̃
𝑇̃

Ω
) = 𝐿

𝑝

𝑦
(Ω̃, 𝜆]; 𝐿

𝑝

𝑥
(R𝑛

)), that is, the space
with mixed norm given by

‖𝐹‖
𝐿
𝑝,𝑝

]
= (∫

̃
Ω

[∫

R𝑛

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥 + 𝑖𝑦)

󵄨
󵄨
󵄨
󵄨

𝑝

𝑑𝑥]

𝑝/𝑝

𝑑𝜆](𝑦))

1/𝑝

, (45)

where 𝑝, 𝑝 ∈ (0,∞].

Proposition F (see [9]). Let ] > (2𝑛/𝑟)−1 and 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞.
The following are equivalent:

(a) 𝑃+

] is bounded from 𝐿
𝑝

(𝐷, 𝑑𝜇]) → 𝐿
𝑞

(𝐷, 𝑑𝜇]);

(b) P+,B
] is bounded from 𝐿

𝑝

(
̃
𝑇̃

Ω
, 𝑑𝜆]) → 𝐿

𝑞

(
̃
𝑇̃

Ω
, 𝑑𝜆]);

(c) P+,B
] is bounded from 𝐿

𝑝,𝑝

] (
̃
𝑇̃

Ω
) → 𝐿

𝑞,𝑞

] (
̃
𝑇̃

Ω
) for all

1 ≤ 𝑞 ≤ 𝑝 ≤ ∞;

(d) Q is bounded from 𝐿
𝑝

(Ω̃, 𝑑𝜆]) → 𝐿
𝑞

(Ω̃, 𝑑𝜆]).

The Bergman projection 𝑃
0
for a bounded domain in

C𝑛, along with the associated Bergman kernel function, has
proved fundamental for the theory of boundary behavior of
holomohic mappings (see [27, 28] and their references).

It is well-known that on smooth bounded strongly pseu-
doconvex domains the Bergman projection preserves each
Sobolev space𝑊𝑟, 𝑟 ≥ 0. The same is true more generally for
those smooth boundedweakly pseudoconvex domainswhich
admit subelliptic estimates for the 𝜕-Neumann problem (see
[27, 28]).

By the mean value property for 𝑛 ≥ 1 we have for any
bounded𝐷 domain C𝑛

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑝

𝐴
𝑝

0

⋅ (dist (𝑧, 𝜕𝐷))
−𝑛

,

𝐴
𝑝

0
= {𝑓 ∈ 𝐻 (𝐷) : ∫

𝐷

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨

𝑝

𝑑𝛿 (𝑧) < ∞} , 0 < 𝑝 < ∞,

(46)

where 𝑧 ∈ 𝐷 and 𝛿(𝑧) is Lebesgues measure on 𝐷 and dist is
Euclidean distance from 𝑧 to the boundary of𝐷.

This immediately pose a dist problem in all such very
general 𝐷 domains. We give one side estimates based on
recent results on Bergman projection in Lie ball, bounded
symmetric domains of tube type, Siegel domains of second
type, and minimal bounded homogeneous domains.

We follow also our sharp recent result in unit disk. Note
if bounded𝐷 domain has smooth 𝐶2 boundary, then

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
[dist (𝑧, 𝜕𝐷)

(𝑛+1)/𝑝

] ≤ 𝐶
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐴
𝑝

0

. (47)

Abounded domain inC𝑛,Ω ⊂ C𝑛 is called smooth if there is a
𝐶

∞ defining function 𝜌 : C𝑛

→ R such that Ω = {𝑧 : 𝜌 < 0}

the boundary 𝑏Ω = {𝑧 : 𝜌(𝑧) = 0} and the gradient of 𝜌 does
not vanish in 𝑏Ω (see [7, 12, 14, 23, 29]).

Inequality similar to (47) also is valid for weighted
Bergman spaces (see [30]).
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3. On Distance Function in
Bergman Type Spaces in Certain
Domains in Higher Dimension

In this section we provide main results of the paper. Based
fully on preliminaries of previous section, the plan of this
section is the following: first we formulate a result in the
unit disk and then repeat arguments we provided in proof
of that theorem in various situations in Bergman type spaces
in Lie ball, bounded symmetric domains of tube type, Siegel
domains of second type, and minimal bounded homoge-
neous domains. Since all proofs are short the repetitions of
arguments which are needed in higher dimension will be
omitted; sometimes sketches will be given.

Our results on Siegel domains and minimal homoge-
neous domains are sharp.

LetU be, as usual, the unit disk on the complex plane, and
let 𝑑𝑚

2
(𝑧) be the normalized Lebesgue measure on U. Let

𝐻(U) be the space of all analytic functions on the unit disk
U. For 𝑓 ∈ 𝐻(U) and 𝑓(𝑧) = ∑

𝑘
𝑎

𝑘
𝑧

𝑘, define the fractional
derivative of the function𝑓 as usual in the followingmanner:

𝐷
𝛼

𝑓 (𝑧) =

∞

∑

𝑘=0

(𝑘 + 1)
𝛼

𝑎
𝑘
𝑧

𝑘

, 𝛼 ∈ R. (48)

We will write𝐷𝑓(𝑧) if 𝛼 = 1. Obviously, for all 𝛼 ∈ R,𝐷𝛼

𝑓 ∈

𝐻(U) if 𝑓 ∈ 𝐻(U).
For 𝑘 > 𝑠, 0 < 𝑝, 𝑞 ≤ ∞, the weighted analytic Besov

space 𝐴𝑞,𝑝

𝑠
(U) is the class of analytic functions satisfying

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑞

𝐴
𝑞,𝑝

𝑠

= ∫

1

0

(∫

T

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷

𝑘

𝑓 (𝑟𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝 󵄨
󵄨
󵄨
󵄨
𝑑𝜉
󵄨
󵄨
󵄨
󵄨
)

𝑞/𝑝

(1 − 𝑟)
(𝑘−𝑠)𝑞−1

𝑑𝑟 < ∞,

(49)

where T = {𝜉 : |𝜉| = 1} is circle and 𝑑𝜉 is the Lebesgue
measure on the circle T.

We denote by 𝐴𝑞

𝑠
(U) the 𝐴𝑞,𝑞

𝑠
(U) analytic Besov spaces in

the unit disk for all real 𝑠 numbers. Note also that for 𝑠 <

0 we have that these spaces are 𝐴𝑞

−𝑠𝑞−1
(U) Bergman spaces

according to definition above for unit ball and we will use this
notation below for all negative 𝑠 numbers in Besov spaces.

It is well-known that 𝐴𝑞

−𝑠𝑞−1
(U) ⊂ 𝐴

∞

−𝑡
(U), 𝑡 = 𝑠 − (1/𝑞),

𝑡 < 0, 𝑠 < 0.
Let further Ω𝑘

𝜀,−𝑡
= {𝑧 ∈ U : |𝐷

𝑘

𝑓(𝑧)|(1 − |𝑧|
2

)
𝜀

≥ −𝑡},
𝜀 ≥ 0, 𝑡 < 0, Ω0

𝜀,−𝑡
= Ω

𝜀,−𝑡
.

It is easy to note that, based on previous section results,
the complete analogues of the embedding we just provided
are valid also in Bergman type spaces in Lie ball, bounded
symmetric domains of tube type, Siegel domains of second
type, andminimal bounded homogeneous domains.We leave
this easy task to readers. This allows posing a dist problem in
each space we consider in this paper.

In the following theorem (see [1]) we calculate distances
from a weighted Bloch class to Bergman spaces for 𝑞 ≤ 1. We
will see that almost each argument below is also valid not only
in unit disk but based on preliminaries in previous section
in Bergman type spaces in Lie ball, bounded symmetric
domains of tube type, Siegel domains of second type, and

minimal bounded homogeneous domains. So this theorem
is very typical for us though it is known.

Theorem 4. Let 0 < 𝑞 ≤ 1, 𝑠 < 0, 𝑡 ≤ 𝑠 − (1/𝑞), 𝛽 > ((1 −

𝑠𝑞)/𝑞) − 2, and 𝛽 > −1− 𝑡. Let 𝑓 ∈ 𝐴
∞

−𝑡
. Then the following are

equivalent:

(a) 𝑙
1
= 𝑑𝑖𝑠𝑡

𝐴
∞

−𝑡

(𝑓, 𝐴
𝑞

−𝑠𝑞−1
);

(b) 𝑙
2
= inf{𝜀 > 0 : ∫U(∫Ω

𝜀,−𝑡
(𝑓)

((1 − |𝑤|)
𝛽+𝑡

/|1 − 𝑧𝑤|
2+𝛽

)

𝑑𝑚
2
(𝑤))

𝑞

(1 − |𝑧|)
−𝑠𝑞−1

𝑑𝑚
2
(𝑧) < ∞}.

Proof. First we show that 𝑙
1
≤ 𝐶𝑙

2
. For 𝛽 > −1 − 𝑡, we have

𝑓 (𝑧) = 𝐶 (𝛽)(∫

U\Ω
𝜀,−𝑡

𝑓 (𝑤) (1 − |𝑤|)
𝛽

(1 − 𝑤𝑧)
𝛽+2

𝑑𝑚
2
(𝑤)

+∫

Ω
𝜀,−𝑡

𝑓 (𝑤) (1 − |𝑤|)
𝛽

(1 − 𝑤𝑧)
𝛽+2

𝑑𝑚
2
(𝑤))

= 𝑓
1
(𝑧) + 𝑓

2
(𝑧) ,

(50)

where𝐶(𝛽) is awell-knownBergman representation constant
(see [31]).

For 𝑡 < 0,

󵄨
󵄨
󵄨
󵄨
𝑓

1
(𝑧)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶∫

U\Ω
𝜀,−𝑡

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑤)

󵄨
󵄨
󵄨
󵄨
(1 − |𝑤|)

𝛽

|1 − 𝑤𝑧|
𝛽+2

𝑑𝑚
2
(𝑤)

≤ 𝐶𝜀∫

U

(1 − |𝑤|)
𝛽+𝑡

|1 − 𝑤𝑧|
𝛽+2

𝑑𝑚
2
(𝑤)

≤ 𝐶𝜀

1

(1 − |𝑧|)
−𝑡
.

(51)

So sup
𝑧∈U|𝑓1

(𝑧)|(1 − |𝑧|)
−𝑡

< 𝐶𝜀.
For 𝑠 < 0, 𝑡 < 0, we have

∫

U

󵄨
󵄨
󵄨
󵄨
𝑓

2
(𝑧)

󵄨
󵄨
󵄨
󵄨

𝑞

(1 − |𝑧|)
−𝑠𝑞−1

𝑑𝑚
2
(𝑧)

≤ 𝐶∫

U
(∫

Ω
𝜀,−𝑡

(1 − |𝑤|)
𝛽+𝑡

|1 − 𝑤𝑧|
𝛽+2

𝑑𝑚
2
(𝑤))

𝑞

(1 − |𝑧|)
−𝑠𝑞−1

𝑑𝑚
2
(𝑧)

≤ 𝐶.

(52)

So we finally have

dist
𝐴
∞

−𝑡

(𝑓, 𝐴
𝑞

−𝑠𝑞−1
) ≤ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑓 − 𝑓

2

󵄩
󵄩
󵄩
󵄩𝐴
∞

−𝑡

= 𝐶
󵄩
󵄩
󵄩
󵄩
𝑓

1

󵄩
󵄩
󵄩
󵄩𝐴
∞

−𝑡

≤ 𝐶𝜀. (53)

It remains to prove that 𝑙
2

≤ 𝑙
1
. Let us assume that 𝑙

1
<

𝑙
2
. Then we can find two numbers 𝜀, 𝜀

1
such that 𝜀 >

𝜀
1

> 0, and a function 𝑓
𝜀
1

∈ 𝐴
𝑞

−𝑠𝑞−1
, ‖𝑓 − 𝑓

𝜀
1

‖
𝐴
∞

−𝑡

≤ 𝜀
1
,

and ∫U (∫
Ω
𝜀,−𝑡

((1 − |𝑤|)
𝛽+𝑡

/|1 − 𝑧𝑤|
𝛽+2

)𝑑𝑚
2
(𝑤))

𝑞

(1 − |𝑧|)
−𝑠𝑞−1

𝑑𝑚
2
(𝑧) = ∞. Hence as above we easily get from
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‖𝑓 − 𝑓
𝜀
1

‖
𝐴
∞

−𝑡

≤ 𝜀
1
that (𝜀 − 𝜀

1
)𝜒

Ω
𝜀,−𝑡

(𝑓)
(𝑧)(1 − |𝑧|)

𝑡

≤ 𝐶|𝑓
𝜀
1

(𝑧)|,
and hence

𝑀 = ∫

U
(∫

U

𝜒
Ω
𝜀,−𝑡

(𝑓)
(𝑧) (1 − |𝑤|)

𝛽+𝑡

|1 − 𝑤𝑧|
𝛽+2

𝑑𝑚
2
(𝑤))

𝑞

× (1 − |𝑧|)
−𝑠𝑞−1

𝑑𝑚
2
(𝑧)

≤ 𝐶∫

U
(∫

U

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓

𝜀
1

(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − |𝑤|)

𝛽

|1 − 𝑤𝑧|
𝛽+2

𝑑𝑚
2
(𝑤))

𝑞

× (1 − |𝑧|)
−𝑠𝑞−1

𝑑𝑚
2
(𝑧) .

(54)

Since for 𝑞 ≤ 1, (see [31])

(∫

U

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓

𝜀
1

(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − |𝑤|)

𝛼

|1 − 𝑤𝑧|
𝑡

𝑑𝑚
2
(𝑤))

𝑞

≤ 𝐶∫

U

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓

𝜀
1

(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑞

(1 − |𝑤|)
𝛼𝑞+𝑞−2

𝑑𝑚
2
(𝑤)

|1 − 𝑤𝑧|
𝑡𝑞

,

(55)

where 𝛼 > (1 − 𝑞)/𝑞, 𝑡 > 0, 𝑓
𝜀
1

∈ 𝐻(U), 𝑧 ∈ U, and

∫

U

(1 − |𝑧|)
−𝑠𝑞−1

|1 − 𝑤𝑧|
𝑞(𝛽+2)

𝑑𝑚
2
(𝑧) ≤

𝐶

(1 − |𝑤|)
𝑞(𝛽+2)+𝑠𝑞−1

, (56)

where 𝑠 < 0, 𝛽 > ((1 − 𝑠𝑞)/𝑞) − 2, 𝑤 ∈ U. we get

𝑀 ≤ 𝐶∫

U

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓

𝜀
1

(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑞

(1 − |𝑧|)
−𝑠𝑞−1

𝑑𝑚
2
(𝑧) , (57)

So, we arrive at a contradiction. The theorem is proved.

The following theorem is a version of Theorem 4 for the
case 𝑞 > 1.

Theorem 5. Let 𝑞 > 1, 𝑠 < 0, 𝑡 ≤ 𝑠 − (1/𝑞), 𝛽 > (−1 − 𝑠𝑞)/𝑞,
and 𝛽 > −1−𝑡. Let𝑓 ∈ 𝐴

∞

−𝑡
.Then the following are equivalent:

(a) 𝑙
1
= 𝑑𝑖𝑠𝑡

𝐴
∞

−𝑡

(𝑓, 𝐴
𝑞

−𝑠𝑞−1
);

(b) ̂𝑙
2
= inf{𝜀 > 0 : ∫U (∫

Ω
𝜀,−𝑡

(𝑓)

((1 − |𝑤|)
𝛽+𝑡

/|1 − 𝑧𝑤|
2+𝛽

)

𝑑𝑚
2
(𝑤))

𝑞

(1 − |𝑧|)
−𝑠𝑞−1

𝑑𝑚
2
(𝑧) < ∞}.

The proof of Theorem 5 is the same actually as the
proof of Theorem 4. The only difference is the boundedness
of Bergman type projection operator but with the positive
Bergman kernel. This fact will be heavily used by us below.

Indeed the close inspection of the proof of Theorem 4
shows that the proof of Theorem 5 is the same as the proof
ofTheorem 4, but here we will use (58) (see below) instead of
(55). For 𝜀 > 0, 𝑞 > 1, 𝛽 > 0, 𝛼 > −1/𝑞,

(∫

U

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
(1 − |𝑧|)

𝛼

|1 − 𝑤𝑧|
𝛽+2

𝑑𝑚
2
(𝑧))

𝑞

≤ 𝐶∫

U

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨

𝑞

(1 − |𝑧|)
𝛼𝑞

|1 − 𝑤𝑧|
𝛽𝑞−𝜀𝑞+2

𝑑𝑚
2
(𝑧) (1 − |𝑤|)

−𝜀𝑞

, 𝑤 ∈ U,

(58)

which follows immediately fromHölder’s inequality and (56).

Remark 6. Analytic 𝐴∞

𝛼
spaces in unit disk are well-known

in literature as so-called growth spaces (see, e.g., [31]). It
can be shown easily that these spaces are Banach spaces.
These spaces are playing a vital role in this paper and are
embedded in Bergman spaces 𝐴𝑝

𝛽
, for large enough 𝛽 (the

same is valid in any bounded domain with 𝐶
2 boundary).

Hence the representation (4) is valid also in the unit disk
with 𝛽 large enough index depending on 𝛼 for all functions
from such classes. The mentioned embedding is well-known
and almost obvious and we leave the proof of it to interested
readers. This fact is crucial for the proofs of Theorems 7 and
8 below and along with well-known Forelli-Rudin estimates,
for to each domain we defined, (see [31]), actually serves as
base of both proofs.

We formulate a general theorem for Siegel domains of
second type in C𝑛. Then we use the same ideas to formulate
the same result in minimal bounded homogeneous domains
in C𝑛 using very recent advances of Yamaji (see [20, 22] and
references there).

We formulate finally also some new one side estimates
for distances based on projection theorems for symmetric
domain of tube type, Lie ball, without proofs, since arguments
are similar to unit disk case. Our results for Siegel domains of
second type and minimal homogeneous domains are sharp.

Theorem 7. Let𝐷 be Siegel domain of second type. Let

𝑟
0

𝑗
= max(

𝑛
𝑖
+ 2

2(2𝑑 − 𝑞)
𝑖

, −1 −

𝑛
𝑖

2(2𝑑 − 𝑞)
𝑖

) , 𝑗 = 1, . . . , 𝑙.

(59)

Let 𝑓 ∈ 𝐴
∞

1+𝑟
and

𝑁
𝜀,𝑟
(𝑓) = {𝑧 ∈ 𝐷 :

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
𝑏

1+𝑟

(𝑧, 𝑧) > 𝜀} , (60)

where 𝜀 is a positive number. Then the following two quantities
are equivalent 𝑙

1
≍ 𝑙

2
, where

𝑙
1
= 𝑑𝑖𝑠𝑡̃

𝐴
∞

1+𝑟

(𝑓, 𝐴
1,𝑟

) (61)

𝑙
2
= inf {𝜀 > 0 :

∫

𝐷

(∫

𝑁
𝜀,𝑟

(𝑓)

̃
𝑏

−𝑘+1+𝑟

(𝜏, 𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝑏 (𝜏, 𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑘+1

𝑑]̃ (𝜏))

×
̃
𝑏

−𝑟

(𝑧, 𝑧) 𝑑]̃ (𝑧) < ∞} ,

(62)

for all 𝑟 and 𝑘 so that, 𝑟 = (𝑟
1
, . . . , 𝑟

𝑙
), 𝑘 = (𝑘

1
, . . . , 𝑘

𝑙
), 𝑟

𝑗
∈

(𝑟
𝑗

0
,∞), and 𝑘

𝑗
∈ (𝑘

0
,∞), 𝑗 = 1, . . . , 𝑙 and for certain fixed

vector 𝑘
0
= (𝑘

1

0
, . . . , 𝑘

𝑙

0
), depending on 𝑟

𝑗
and on parameters of

the Siegel𝐷 domains 𝑑
𝑖
, 𝑞

𝑖
, and 𝑛

𝑖
.

Proof of Theorem 7. We will follow the proof of Theorem 4.
First we show that 𝑙

1
≤ 𝐶𝑙

2
. Let 𝑘 ∈ R𝑙, 𝑟 ∈ R𝑙, 𝑝 ∈ R

+
, 𝑟

𝑗
≥

0, 𝑗 = 1, . . . , 𝑙. Then 𝑓(𝑧) = 𝐶
𝜀
∫

𝐷

𝑓(𝑢)𝑏
1+𝑘

(𝑧, 𝑢)𝑏
−𝑘

(𝑢)𝑑𝑢,



Journal of Function Spaces 9

𝑓 ∈ 𝐴
∞

1+𝑟
, 𝑧 ∈ 𝐷, 𝑘

𝑖
> 𝑚

𝑖
for the same large enough 𝑚

𝑖

set depending on parameters of Siegel domain, for all 𝑓 ∈

𝐴
1,𝑟

(𝐷).
Hence we have that 𝑓 = 𝑓

1
+ 𝑓

2

󵄨
󵄨
󵄨
󵄨
𝑓

1
(𝑧)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶∫

𝐷\𝑁
𝜀,𝑟

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑢)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏

1+𝑘

(𝑧, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏

−𝑘

(𝑢, 𝑢) 𝑑𝑢

≤ 𝐶𝜀∫

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏

1+𝑘

(𝑧, 𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏

−𝑘+1+𝑟

(𝑢, 𝑢) 𝑑] (𝑢)

≤ 𝐶𝜀𝑏(𝑧, 𝑧)
1+𝑟

, 𝑧 ∈ 𝐷.

(63)

Also, we have that

∫

𝐷

󵄨
󵄨
󵄨
󵄨
𝑓

2
(𝑧)

󵄨
󵄨
󵄨
󵄨
𝑏

−𝑟

(𝑧, 𝑧) 𝑑] (𝑧)

≤ ∫

𝐷

(∫

𝑁
𝜀,𝑟

𝑏
−𝑘+1+𝑟

(𝜏, 𝜏) |𝑏 (𝜏, 𝑧)|
𝑘+1

𝑑] (𝜏)) 𝑏
−𝑟

(𝑧, 𝑧) 𝑑] (𝑧)

≤ 𝐶.

(64)

Note then we used that for

𝑘
𝑗
− 1 − 𝑟

𝑗
>

𝑛
𝑖
+ 2

2(2𝑑 − 𝑞)
𝑖

𝑘
𝑗
− 1 − 𝑟

𝑗
−

𝑛
𝑖

2(2𝑑 − 𝑞)
𝑖

< 𝑘
𝑗
, 𝑗 = 1, . . . , 𝑙,

∫

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏

1+𝑘

(𝑧, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏

−𝑘+1+𝑟

(𝑢, 𝑢) 𝑑] (𝑢) ≤ 𝐶𝑏(𝑧, 𝑧)
1+𝑟

, 𝑧 ∈ 𝐷.

(65)

So dist
𝐴
∞

1+𝑟

(𝑓, 𝐴
1,𝑟

) ≤ 𝐶 ‖ 𝑓 − 𝑓
2
‖

𝐴
∞

1+𝑟

= 𝐶 ‖ 𝑓
1
‖

𝐴
∞

1+𝑟

≤ 𝐶𝜀.
We show the reverse implication now following again unit

disk case arguments (see Theorems 4 and 5). We have the
following. Let us assume that 𝑙

1
< 𝑙

2
. Then we can find two

numbers 𝜀, 𝜀
1
such that 𝜀 > 𝜀

1
> 0 and a function 𝑓

𝜀
1

∈ 𝐴
1,𝑟,

‖𝑓 − 𝑓
𝜀
1

‖
𝐴
1,𝑟
≤ 𝜀

1
and hence

(𝜀 − 𝜀
1
) 𝜒

𝑁
𝜀
(𝑓)

(𝑧) 𝑏(𝑧, 𝑧)
1+𝑟

≤ 𝐶

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓

𝜀
1

(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

(66)

and hence

∫

𝐷

(∫

𝐷

𝜒
𝑁
𝜀
(𝑓)

(𝑧) 𝑏(𝑧, 𝑧)
1+𝑟−𝑘

|𝑏 (𝜏, 𝑧)|
𝑘+1

𝑑] (𝑧))

× 𝑏
−𝑟

(𝜏, 𝜏) 𝑑] (𝜏)

≤ 𝐶∫

𝐷

(∫

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓

𝜀
1

(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏(𝑧, 𝑧)

−𝑘

|𝑏 (𝜏, 𝑧)|
𝑘+1

𝑑] (𝑧))

× 𝑏
−𝑟

(𝜏, 𝜏) 𝑑] (𝜏)

≤ 𝐶∫

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓

𝜀
1

(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏(𝑧, 𝑧)

−𝑟

𝑑] (𝑧) .

(67)

We used that (see [5, 8])

∫

𝐷

|𝑏 (𝜏, 𝑧)|
𝑘+1

𝑏
−𝑟

(𝜏, 𝜏) 𝑑] (𝜏) ≤ 𝐶(𝑏 (𝑧, 𝑧))
𝑘−𝑟

, 𝑧 ∈ 𝐷

𝑟
𝑗
>

𝑛
𝑖
+ 2

2(2𝑑 − 𝑞)
𝑖

, 𝑖 = 1, . . . , 𝑙,

𝑘
𝑗
> 𝑟

𝑗
−

𝑛
𝑖

2(2𝑑 − 𝑞)
𝑖

, 𝑖 = 1, . . . , 𝑙.

(68)

These estimates give a lower estimate for 𝑘
0
= (𝑘

1

0
, . . . , 𝑘

𝑙

0
).

Theorem 7 is proved.

For 𝑝 > 1 and 𝛼 > −1, denote by 𝐴𝑝

𝛼
(𝐷) the space of all

functions 𝑓 holomorphic in𝐷 and satisfying the condition

∫

𝐷

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑤)

󵄨
󵄨
󵄨
󵄨

𝑝 dist (𝑧, 𝜕𝐷)
𝛼

𝑑] (𝑤) < +∞, (69)

where 𝑑] is the Lebesgue measure in𝐷 domain.
Let𝐾

𝛼
denote reproducing weighted Bergman kernel for

weighted Bergman space 𝐴2

𝛼
(see [11, 12])

𝐾
𝛼
(𝑧, 𝑤) = 𝐾(𝑧, 𝑤)

1+𝛼

, (70)

where𝐾(𝑧, 𝑤) is a Bergman kernel for 𝐴2

0
. Based on prelimi-

naries of previous section onBergman type spaces inminimal
homogeneous domains and arguments of proof of Theorems
4 and 5 and comments related to them, we can formulate the
following result.

Note that it is known that there exists a constant𝛼min such
that𝐴2

𝛼
is nontrivial if and only if𝛼 > 𝛼min, (see [11, 12]). From

now, we consider nontrivial weighted Bergman spaces.

Theorem8. Assume that 𝛼 > 𝛼min and letU be boundedmin-
imal homogeneous domains with 𝐶

2 boundary. Let 𝐺
𝜀,𝛼
(𝑓) =

{𝑧 ∈ U : |𝑓(𝑧)||𝐾
𝛼
(𝑧, 𝑧)|

−1/2

> 𝜀}. Then for 𝑓 ∈ 𝐴
∞

𝛼
we have

that 𝑙
1
≍ 𝑙

2
, where

𝑙
1
= 𝑑𝑖𝑠𝑡

𝐴
∞

𝛼

(𝑓, 𝐴
2

𝛼
) ,

𝑙
2
= inf {𝜀 > 0 : ∫

U

(∫

𝐺
𝜀,𝛼

𝐾(𝑧, 𝑧)
(1−𝛼)/2 󵄨

󵄨
󵄨
󵄨
𝐾

𝛼
(𝑧, 𝑎)

󵄨
󵄨
󵄨
󵄨
𝑑] (𝑧))

2

×𝐾(𝑎, 𝑎)
−𝛼

𝑑] (𝑎) < ∞} ,

(71)

for all 𝛼 > 𝛼
0
for some fixed 𝛼

0
.

We add only the full sketch of proof of this theorem since
it is quite similar to proofs of previous theorems.We consider
the operator 𝑃+

U defined by

𝑃
+

U𝑔 (𝑧) = ∫

U

󵄨
󵄨
󵄨
󵄨
𝐾U (𝑧, 𝑤)

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑤) 𝑑] (𝑤) , 𝑔 ∈ 𝐿

2

(U, 𝑑]) .

(72)
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𝑃
+

U is operator U on 𝐿
2

(U, 𝑑]). The fact that Bergman type
projection 𝑃

+

U with positive Bergman kernel is a bounded
operator in 𝐿

2

𝛼
spaces (weighted Lebegue spaces) can be seen

in recent paper [11]. It is well-known also, since𝐴2

𝛼
is aHilbert

space that the Bergman reproducing formula for all functions
from these spaces is valid and since our domain is bounded,
this space for large enough 𝛼 contains 𝐴

∞

𝛽
for any 𝛽. So

the Bergman representation formula for each function taken
from 𝐴

∞

𝛽
is also valid with large enough 𝛼. These two facts

along with Forelly-Rudin type estimates for these domains
(see [12]) complete the proof.

All other results of this paper are one side estimates for
distance function and are fully based on results on bound-
edness of Bergman type projection with positive Bergman
kernel as we have seen in unit disk case in Bergman type
spaces, but over specific domain which we mentioned above
in previous section as separate assertions.

Based on preliminaries of previous section on Bergman
type spaces in Lie ball and arguments of proof of Theorems
4 and 5 and comments related to them, we can formulate the
following result.

Theorem 9. Let 𝐷 be Lie ball with 𝐶
2 boundary. Let 𝑝 ∈

((2𝑛 − 2)/𝑛, (2𝑛 − 2)/𝑛 − 2), 𝑛 > 2, 𝑓 ∈ 𝐴
∞

𝑛/𝑝
. Let 𝐷

𝑡
=

{𝑧 : |𝑓(𝑧)|𝑑𝑖𝑠𝑡(𝑧, 𝜕𝐷)
𝑡

≥ 𝜀}, 𝑡 = 𝑛/𝑝. Then

𝑑𝑖𝑠𝑡
𝐴
∞

𝑛/𝑝

(𝑓, 𝐴
𝑝

0
)

≥ 𝐶 inf {𝜀 > 0 : ∫

𝐷

(∫

𝐷

𝜒
𝐷
𝑡

(𝑧) 𝑑𝑖𝑠𝑡(𝑧, 𝜕𝐷)
𝑡

×𝐵
𝐷
(𝑧, 𝑤)𝑑](𝑧))

𝑝

𝑑] (𝑤) < ∞} .

(73)

We omit details of the proof referring to unit disk case.
Based on preliminaries of previous section on Bergman

type spaces in bounded symmetric domains of tube type
and arguments of proof of Theorems 4 and 5 and comments
related to them, we can formulate the following result.

Theorem 10. Let 𝐷 be bounded symmetric domain of tube
type with 𝐶

2 boundary. Let 𝑝 ∈ (1,∞), 𝑛 > 2, 𝑓 ∈ 𝐴
∞

𝑛/𝑝
.

Let𝐷1

𝑡
= {𝑧 : |𝑓(𝑧)|𝑑𝑖𝑠𝑡(𝑧, 𝜕𝐷)

𝑡

≥ 𝜀}, 𝑡 = 𝑛/𝑝. Then

𝑑𝑖𝑠𝑡
𝐴
∞

𝑛/𝑝

(𝑓, 𝐴
𝑝

0
)

≥ 𝐶 inf {𝜀 > 0 : ∫

𝐷

(∫

𝐷

𝜒
𝐷
1

𝑡

(𝑧) 𝑑𝑖𝑠𝑡(𝑧, 𝜕𝐷)
𝑡

𝐵
𝐷

]

×(𝑧, 𝑤) 𝑑] (𝑧))
𝑝

𝑑] (𝑤) < ∞} .

(74)

Remark 11. It is known that (see [30]) if 𝛼 > −1 and 𝑝 ∈

(0,∞) and if𝐷 is general bounded domainwith𝐶2 boundary
then

dist (𝑧, 𝜕𝐷)
(𝑛+𝛼+1)/𝑝 󵄨

󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐴
𝑝

𝛼

. (75)

This allows posing a dist problem for weighted Bergman
spaces in such type domains and based on preliminaries of
previous section to formulate Theorem 9 even for weighted
Bergman spaces. We leave this to readers.
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new analytic Bergman type spaces in C𝑛,” Journal of Function
Spaces, vol. 2014, Article ID 275416, 10 pages, 2014.

[14] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball,
Springer, New York, NY, USA, 2005.

[15] F. Forelli and W. Rudin, “Projections on spaces of holomorphic
functions in balls,” Indiana University Mathematics Journal, vol.
24, no. 6, pp. 593–602, 1975.

[16] M. Djrbashian, “Survey of some achievements of Armenian
mathematicians in the theory of integral representations and



Journal of Function Spaces 11

factorization of analytic functions,”Matematički Vesnik, vol. 39,
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