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Coxeter Groups as Automorphism Groups
of Solid Transitive 3-simplex Tilings

Milica Stojanovié?

?Faculty of Organizational Sciences, Jove Iliéa 154, 11040 Belgrade, Serbia

Abstract. In the papers of LK. Zhuk, then more completely of E. Molndr, L. Prok, J. Szirmai all simplicial
3-tilings have been classified, where a symmetry group acts transitively on the simplex tiles. The involved
spaces depends on some rotational order parameters. When a vertex of a such simplex lies out of the
absolute, e.g. in hyperbolic space H3, then truncation with its polar plane gives a truncated simplex or
simply, trunc-simplex.

Looking for symmetries of these tilings by simplex or trunc-simplex domains, with their side face
pairings, it is possible to find all their group extensions, especially Coxeter’s reflection groups, if they exist.
So here, connections between isometry groups and their supergroups is given by expressing the generators
and the corresponding parameters. There are investigated simplices in families F3, F4, F6 and appropriate
series of trunc-simplices. In all cases the Coxeter groups are the maximal ones.

1. Introduction

The isometry groups, acting discontinuously on the hyperbolic 3-space with compact fundamental
domain, are called hyperbolic space groups. One possibility to describe them is to look for their fundamental
domains. Face pairing identifications of a given polyhedron give us generators and relations for a space
group by Poincaré Theorem [1], [3], [7].

The simplest fundamental domains are simplices and truncated simplices by polar planes of vertices
when they lie out of the absolute. There are 64 combinatorially different face pairings of fundamental
simplices [17], [6], furthermore 35 solid transitive non-fundamental simplex identifications [6]. I. K. Zhuk
[17] has classified Euclidean and hyperbolic fundamental simplices of finite volume up to congruence.
Some completing cases are discussed in [2], [5], [11], [12], [13], [14], [15], [16]. An algorithmic procedure
is given by E. Molnar and L. Prok [5]. In [6], [8] and [9] the authors summarize all these results, arranging
identified simplices into 32 families. Each of them is characterized by the so-called maximal series of simplex
tilings. Besides spherical, Euclidean, hyperbolic realizations there exist also other metric realizations in
3-dimensional simply connected homogeneous Riemannian spaces, moreover, metrically non-realizable
topological simplex tilings occur as well [4].

This paper is a continuation of [14] and the presented results are as follows:

Main result. Investigating symmetries of the series of simplices in families F3, F4, F6 and corresponding series
of trunc-simplices, it is given relationship between their isometry groups and possible supergroups. The maximal
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supergroups are always the Coxeter reflection groups, whose realizations can be described by the usual machinery,
illustrated here only for family Fé6.

Moreover, there are also constructed some new series of fundamental domains, by truncating simplices
and half-simplices. The results will be given in Sections 3, 4 and in tables. Notations used here for simplices
and families of simplices are introduced in [6], [8], [9], while the investigated trunc-simplices are introduced
in [14].

2. Maximal tilings and principles of truncating simplices

2.1Let (7, T) denote a face-to-face tiling T by topological simplices T1, T, ... as a usual incidence structure
of 0-, 1-, 2-, 3-dimensional constituents in a simply connected topological 3-space (X°, G) with a groupT < G
that acts on 7~ by topological mapping of X?, preserving the incidences.

Let I be tile-transitive on 7, i.e. for any two 3-tiles T1, T, € 7 there exists (at least one) y € I such that

y:T =T, Ti-T:=T).

Two tilings (7,T) and (77,I") are called combinatorially (topologically) equivariant, and lie in the same
equivariance class, iff there is a bijective incidence preserving (topological) mapping

@:T >T', T T :=T% suchthat I" = ¢ 'Te.

(7,T) is a maximal tiling iff T = Aut7 is a (maximal) group of automorphisms of 7. A maximal tiling
(7 =7 ,T" = Aut7") represents a family of tilings (7, I') such that there is a bijection (topological mapping)
above

@:T =T, with 7T <T* = Aut7 .

2.2 When the rotational order parameters (, v, ...) are such that the simplex T; (used enumeration for the
simplices is the same as in [6, 8, 9]) is hyperbolic and vertices in an equivalence class ¢ are out of the absolute,
then it is possible to truncate the simplex by polar planes of these vertices. We get the trunc-simplex of
finite volume (possibly with 8 faces, as octahedron) denoted by O!. Dihedral angles around the new edges
are 1t/2. It means there are four congruent trunc-simplices around such an edge in the fundamental space
filling. We can equip O! with additional pairings of the new triangular faces (trunc-faces). Then O} will be
a fundamental domain for the new group G;(O!) which will be a supergroup of T;, for each value of edge
parameters. The trivial group extension is always possible with plane reflections in polar planes of the
outer vertices. Let us denote this group by G1(O?).

If there is a further possibility to equip the new triangular faces to outer vertices in class ¢, represented
by Ay, with face pairing isometries, then the new additional face pairings of Of have to satisfy the following
criteria. The polar plane of Ay and so the stabilizer I'(A;) will be invariant under these new transformations
and exchange the half-spaces obtained by the polar plane. Thus, the fundamental domain Py, is divided
into two parts, and the new stabilizer of the polar plane will be a supergroup for I'(Ax) of index two. Inner
symmetries of the Py, -tiling give us the idea how to introduce the new generators.

Note that truncations of vertices in different equivalence classes can independently be combined, even
it is possible to truncate vertices in a class and leave others without truncating.

3. Supergroups of the simplex and trunc-simplex tilings

Here will be discussed the supergroups of simplicial fundamental domains from the families F6, F3,
F4, and the corresponding trunc-simplicial domains. In all cases Coxeter groups will be the maximal ones.
Coxeter groups will be the maximal supergroups of the simplicial (and related trunc-simplicial) domains
in the family F1, and also in all other families for special cases of parameters [2, 9, 11].



M. Stojanovi¢ / Filomat 28:3 (2014), 557-577 559

Family Fé6. This family is represented by its maximal group "JT1(2, 20,2, %), (2 < 1,2 <0 < @, 3 < X)
with minimal fundamental domain —a simplex Tr¢ : AgAg1A2A3 (Fig.1). This domain is also described in [9],
by D-symbols and Schlegel diagram. The group is special case of the reflection group I'1(24, 2b, 2c, 2d, 2e, 2f),
where for the parametershold2a =%, b=w,c=2,d=1de=2,f =7 ([9]).

When parameters are such that % + % + % < 1vertices Ay, A1 are outer. Also if % + % + )1—( <1,or % + % + )1—2 <1,
vertices A, and Aj are outer and we can truncate them by polar planes of these vertices, respectively.

Vertex domains F(Ap), F'(A) and F°(A3) shown in Fig.1 are such that they haven’t more symmetries
(keeping the adjacencies, i.e. the types of the side lines are invariant), so the additional trunc-side pairings
(Fig.2) are trivial by reflections m;, (i = 0,2,3). It means, the obtained trunc-simplex is fundamental
domain of the new Coxeter group with Coxeter diagram given in Fig.2. Vertices of this diagram indicate
the reflection side planes. The edges marked e.g. with 7 means an angle £ between the corresponding
reflection planes. Not connected vertices means orthogonal planes. Vertices connected with dashed lines
indicate not intersecting (and not parallel, with a common perpendicular line to both) planes. Similar
conventions will be applied later on as well.

Figure 1: F6: Simplex Tr; F(A), (i=0,2,3)

In family F6 there are four face paired simplices, shown in Fig.3,4. Possible trunc-simplices for them
have been described in [14].

It would be obvious that groups for these four fundamental simplices are subgroups of JT'; (2i1, 27, 2w, X)
(relationship between parameters are given in table) if we halve those simplices with plane « through edge
ArAsz and midpoint M = Ay of ApA; (Fig. 5). In all cases we equip the new simplex ApA>AsM with face
pairing by reflections

M Ay As Ay Ay As Ay M A; (Ao M A

’”a‘(M Ao A3)’m1:(A0 Ay A3)’m2:(A0 M A3)'m3'(AO M Az)'

Since it is possible to express generators of each starting group by generators of group 'T'1 (211, 20, 2w, X),
the last one is a supergroup for appropriate parameters.

Similarly, after halving the corresponding trunc-simplex with plane a the supergroup of G;(O!) is the
Coxeter group

o A oy S 2 _ 2 2 2 o N\D
I'(O, 21,20, 2w, X) = (mq, m1, My, M3, Wy, Mg, M3 — My, = my = m, = mz = (M)~ =
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Figure 3: Simplices T and T obtained by gluing two copies of Tre
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Figure 4: Simplices T»4 and T35 obtained by gluing two copies of Trs

Figure 5: Halving a simplex from F6 with its symmetry plane a
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= (m2)* = (M3)* = (maimp)* = (mams)* = (mymz)" = (mzm)” = (mamy)” =
= (mam)* = (lgm)* = (Momy)* = (Moms)* = (gma)* = (ym)* =
= (7gms)? = (iizm,)* = (zm)? = (mamy)* =1,
1 1 1 1 1 1 1

1 1
—+-+—=<1, z+=-4+=<1, =+=+-=-x<1).
2 9 X 2 o x )

Here it is assumed that all vertices Ap, A, A are truncated, although it is possible that e.g. Ag is not an
outer vertex, since 2 + 1 + 1 > 1. Note that the vertex M is always proper.
In Table 1 for each simplex from this family is given:

1. Generators for the simplex group I'; (i = 6,20, 24, 35), with fundamental simplex T;.
2. Relationship between parameters for isometries of I'; and their Coxeter’s supergroup "711(2i1, 20, 2@, %).

3. Additional generators (pairing new triangular faces) for groups of truncated simplex O; (i = 6,20, 24, 35)
given separately for each of the vertex classes | : {Ag, A1}, m : {A}, n : {As}. If there are more possi-

bilities, the trivial one is denoted by I. Vertices of trunc-face of vertex A; are denoted by T{ , where
T; € A,‘Aj.

Table 1: Family 6

1. T6 :F6(2u,4v,4w,2x)
(A1 Ay A3\ (Ao Ay A5\ (Ao A1 A3\ (Ao A1 A,
Mo\ Ay As A3 ™\ Ag Ax As]" T\ AL Ay As)7 T3\ AL A As
2. Uu=10,20=0,2w0 = W,2x = X; ', = MyMy, V3 = MyM3
T! T2 T3
70 7 18
1 1 1
T T) T3
1 13
2 2
T9 T} TZ)

3. ) It iy, 1hp; IL: s: (

m) I: 1iay; II: hy: (

3
7! 70 72
1. T20 :on(Zu, 4Z), 4w, X)
(AL Ay A\ [Av A A3\ (Ao A A

(AO Ay A3)"”2 ' (Ao Ay A3)'m3 ' (Ao Ay Az)
2.u=1,20=0,2w =W, x = X; r = My

T 72 73

3. ) L. 11y, miag; IL: s: (%:? % ?%)
9 TL T3
T% T? T%

2 12 12

n) L. 1ms; I1: hs: (

m) I: 1mp; IL: hy:

n) I: mz; II: ha: ( 3
313 '3
1. T24 :F24(4u,20,4w,x)

(A1 Ay A3z [Ag A1 A3\ [Ap A1 A
" (Ao Ar A3)'m2 ' (Ao A AS),r3 ' (A1 Ao Az)
2.2u=10,0=0,2w =W,X = X; I3 = MyM3, T = My

T 72 73
B

141 4

0 71 73
R

2 12 12

3. ) I iy, 1hp; IL: s: (

m) I: 1mp; IL: hy: (

n) I mz; II: ha: (T%
3
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1. T35 ZF35(2M, 2?}, 2w,x)

(A1 Ay As Ay A1 Az . (Ao A1 A
" (AO Ay A3) (A1 Ao A3)'73 : (Al Ao Az)
2U=1,0=0,W=W,X=X;T» = MyMp, 13 = MyM3,T = My
I T2 T3
i 1)

0 1 3
by g
7 71
A 1)

3 73 °3

12

3. l) I: 1wy, Mo; II: s: (

m) I: 1mp; II: hy: (

n) L: 1ms; 11: hs: (

Family F3. Family is represented by its maximal group *'T'(2i, ), (2 < i1, 3 < ), which is a Coxeter
group [9].

If the parameters are such that % + % + % <1land % + % + 71] < 1, then vertices Ag and A, respectively, are
outer and we can truncate them by polar planes of these vertices. Since vertex domains F’(Ag) and F°(A,)
(Fig.6) haven’'t more symmetries, the additional trunc-side pairings are trivial by reflections 771y and 7,
(Fig.6). So, such trunc-simplex is the fundamental domain of the new Coxeter group with Coxeter diagram
given in (Fig.6).

FO(4p)

my gy
O--mmmm—m—- O
| |
|7 v 3]
Oo—O O O
my ms m my

Figure 6: F3: FO(A)), (i = 0,2); trunc-simplex; Coxeter diagram

The simplex group I's3(12u, 6v) is subgroup of the former maximal group iff 6u = i and 6v = . That
would be obvious after splitting the fundamental simplex T33 which has the generators

(A Ar A3\ (Ao Al A3\ [Ay Ay As
MolAy Ay As) P A Ar As)FT\AL A A
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into three congruent parts, we can obtain the supergroup of the starting one. The new fundamental simplex
A1A2A3T, where T is the (formal) barycenter of face ApA1A3 with face pairing isometries

(AT A As) Ay A3 T\ (A3 Ay T
O lA, Ay A2 \As A TV \AL A T

is simplex denoted by T4. It means that the new group and also the starting one are subgroups of the
Coxeter group T The old generators, expressed by the new ones, are

ra = 1 a1,z = rmgr.

Similar splitting of the trunc-simplex Os3 (for each variant of paired faces) provides the fundamental
domain of the supergroup G1(Oa4). So, again the Coxeter groups *”T and G(O) are supergroups of I's3 and
Gi(Oz) (j=1,2).

Figure 7: Symmetries of simplices Ts3, T4, from F3, according to face pairings

Although another simplex T4, from family 3 has the same symmetries as T33, the faces of the same
splitting is not possible to equip with pairing isometries agreeing with those of Ty, since its isometry group
I'4»(6u, 3v) has generators

. _(A1 Ay A3) '(AO A A3)
0 - 7 7

(Ao Ay As
As A AP \A Ap A

A A A

A single one supe?group of isometry group with fundamental domain Ty, is Coxeter group *'T'(2i, ),
3u =1, 3v = ¥ with fundamental simplex e.g. A,A;MT where M is midpoint of edge ApA;-

Also, the only supergroup of G;(Oy) (j = 1,2) is G(O).

Family F4. Family F4 is represented by ’”mfl"l(ﬂ, 20,w) (3 < i < W, 2 < 7), the Coxeter group.

Vertices Ay, A; are outer if % + % + % < 1 and vertices A, A3 are such that if % + % + % < 1. Then it is
possible to truncate these vertices. Since there are no symmetries of F’(Ag) and F°(A;) (Fig.8), the additional
trunc-side pairings are trivial and new trunc-simplex is fundamental domain of the new Coxeter group
with Coxeter diagram given in Fig.8.

Each of the six simplices (Fig. 9, 10, 11), from family F4, is possible to halve either with plane « as before,
or with plane  through edge ApA; and mid point N of A,A3 (Fig. 12). It is also possible to halve with both
of them at the same time. The new faces of simplices AgA>A3M and AgA1A;N are paired with either plane
reflection m, and mg, or with half-turn i around the axis MN. If h is used as a face-pairing of face MA>A3
or NApAj, let us denote it by h, or hg, respectively. In the case of halving with & and g at the same time, a
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FO(4y)

Figure 8: F4: FO(A)), (i = 0,2); trunc-simplex; Coxeter diagram

new, quarter simplex AgA>MN, with plane reflections m,, m3, m,, mp pairing the faces, provides the Coxeter
group "™ (i1, 20, W) as a supergroup of the starting ones.

When simplices T19 and T»g are divided by f it appears simplex T, with the group I'»(44a, 4b, 2c, 2d, 2¢)
(by [9],2a = u, b =2v, c = 2w, e = d = 2), from family 14. Face pairings of this simplex are:

m,AlAzAs r_AoA2A3 m'AO A1 As m'AO A1 Ay
O A; Ay Azl Ag As A2\ Ay A As) "0 \Ay A1 Aq)

The group is maximal in general case, but here it is d = e and so, there are more symmetries (by plane «).
Such new group I', has group ""2T'(i1, 25, @) as a supergroup.

In the «case of simplices Ty and Tz, with  groups TI'1y(2u,4v,2w)  and
I'33(2u,4v, 2w), it is possible to obtain (by notations in [6], [8], [9], [14]) %IZ;(LY, 20, W), with 2ii = 11, 20 = 9,
2w = W and %1“3 (211,490, W), with @1 = 11, 0 = 0, 2@ = @ respectively, as a supergroups of index 2. In these cases
half-turn h around axis MN is identifying couples of points inside of simplices in such a way that we do
not have a new face. It means that new groups are solid transitive although there are no simplices as their
fundamental domain. Let us call their fundamental domains half-simplices and denote them by hT, and
hT3 (Fig.13).

The generators of the group 3T4(u, 2v, w) are

(A0 A A\ (A A A (Ag A Ay A
T lAy As Al 3 A Ay A7 \AL Ay A3 A

and the generators of I'7(2u, 4v, 2w) expressed by those of %H(ﬁ, 20, W) are

ro = l’l?’lh, Ty = h1’3h.
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Figure 10: Simplices Tog and T3g from F4
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Figure 12: Halving a simplex from F4 with planes a and f8
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For the group %1"3 (211, 40, ) the generators are

r'AO A A3'm'A0 Aq Az_h,Ao A1 Ay Az
TlAy Az Al "2 \Ay A1 Ax)'7 AL Ay A Al

while the generators of I';g(2u, 4v, 2w) expressed by them are
ro = hrih,z = mzh.

The only supergroup of both 3(i, 26, ) and 7T'3(24, 40, ®) is the Coxeter group ""2I'y(i1, 20, W) with
corresponding parameters.

We can also truncate half-simplices, when rotatory parameters are such that vertices are out of the
absolute. If we pair then the trunc-faces with plane reflections 7, 171, (trivial group extension) the new
relations are (by the Poincaré algorithm):

e for G1(hO4) and identified vertices Ay, A: (igr1)* = (1or3)* = 1;
for identified vertices A,, As: (for3)? = (1i1a11)* = 1;

e for G1(hO3) and Ay, Az: (777107’1)2 = (rflom3)2 =1;
for A, As: (7’7127’1)2 = (1’71211”[3)2 =1.

Other possibility to pair the trunc-faces of half-simplices, is with half-turns 7, 7. Then we have

e for G(hOy) and Ay, A1: (7’3170)2 = (1’170)2 =1,
for Ay, As: (r172)* = (r372)* = 1;

e for Gz(hOg,) and Ay, A1: (7701713)2 = (1701’1)2 =1
fOI' Az, A3Z (721’1)2 = (7727’1’13)2 =1.

Results for Family 4 are collected in Table 2, where 1-3 are organized as before. Here, the vertex classes
are denoted by I : {Ag, A1} and m : {A3, Az}. In 4-6 there are given data about possible supergroups of index
2: splitting isometry; notation of simplex supergroup; notations of trunc-simplex supergroups. If splitting
of O; gives O; (or hO;), then in all variants of pairings trunc-faces of O; which are given, the trivial pairing
of O; (i.e. hOj) provides a supergroup. Beside that, for some cases of non-trivial pairings of trunc-faces of
O;, there is non-trivial pairing of trunc-faces of O; (i.e. hO;) which gives supergroup. That cases are also
indicated in the table.
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Table 2: Family 4

1. Tqo :F10(2u, 8v, 4"('0)
(A1 Ay A5\ (Ao Ay A\ [Ag Ay As Ao AL Ay

o: (A1 A, A3)'”' (AO As Az)'”' (A1 Ao A3)”3‘ (A1 Ao Az)

2. 2u=1,4v = 0,4w = W,
My = MMMy, 11 = My, 1y = mg(Maim )M, 13 = M3ty

3. l) 1. my, 1y
0 71 T3
m) I iy, 1113; Iz s: (T LT )

T%T%T%
3 °3 "3

5. mg; I'y; G1(Os)

1. T17 :F17(2u, 40, 27,0)

. A1A2A3 . AOAZAS
"4y A Ay T\ Ay As As

s 128

Ag A1 A3\ (Ao A1 Ar
AL Ag A3)7 T3\ AL Ay Ay

2.2u=1,2v = 0,2w = W,
My = ma(mgmy)my, 11 = mgmy, ro = mg(Mzmy)mg, 13 = My s

T T2 T3 T T2 T3
3. l) I: Mo, Mq; II: S1: ( 8 8 g), I1I: 1: ( 8 g 8)
Tl Tl Tl g Tl Tl Tl

T T} T3 T T T3
m) L: 1ip, 13; 1L 55 [ -4 %),‘ III: gzz( 73 5)
T T3 LT T3

4. ha; Tas; G1(O35), G2(O1) = Go(OY)

5. hg, T35; G1(O35), G2(OL,) = G2(05)

6. h,5Ts; G1(hO4), Gi(O};) = Go(hOy)), j=2,3, t € {I, m)

1. ng :F28(2u, 8?), 47,0)

(A1 Ay A3) (Ao Ay A3)
my : ; .

Ay A1 Az
A1 Az A3 7T AO AS AZ

e (A1 Ao Az)

2. 2u=1,4v = 0,4w = W,
Mo = MM My, 11 = Mg, 2 = M3y Mg

3. ) I. 1y, 1y

0 T1 T3
m) L. my, m3; IL: s: (T L T)

Rk

5. mg; I'2; G1(O2)

1. T38 :F38(2u, 47), Zw)
r,Al Ay A3,r,Ao A A3,Z,A0 A1 As
O A, Ay AN \Ay A A7 \AL Ay A

2.2u=1,20 =0,2w = W,
ro = MaMghia My, 11 = Mgy, Z = Mgitla 13

o _ (T} T% T3 T T2 T3

3. ) I: 1, 1y I1: Z: (T? T% T%)’ III: s¢: (T? T% T%)
79 T T3 TO T T3

P R B B | | E PR 5),
T; T3 T; T, T, T,

79 T! T2 79 T T3
h3:( 3 3 3);IV:S:( 3 .3 2)
T T3 3T, T3

m) I 1, 1m3; II: Z1:

4. ha; Te; G1(Os), Ga(O%) = G2(OL)

6. 1, IT3; G1(hO3), G3(OLy) — G2(hO%), G,(O%) — G2(hOY), j = 2,3, 4
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1. T54 IF54(M, 47), ZU)

.A1A2A3..AOA1A3
A Ay A2 Ay A A,

2.u=1,20=0,w = W,
1= Mgl 1y = Mgty

T! T2 T3 T! T2 T3
- = . . . . . 0
3. l) I: My, My, II: S1. TEE T% T% ,III. ho. T(l) T% T%),
0 T2 T3 T! T2 T3
h: (Ti) T% T%)'“'Zl' (T? T% T%)
0 T! T3 0 T! T3
. 17 T . . . 2 21 . . 2
m) L: 171y, 113; 11: so: T§ T; T§ ; IIL: By T% Tg T§)’

TY T! T2 T T T3
. 3 3 3. . . 2

4. 1a; T20; G1(Om), Gi(O%) = Go(OY), j = 2,4

5. iy Tay; G1(Om), Gi(O) > G2(Oyy), j=2,4

1. T57 :F57(u, 40, ZZU)
.Al Az A3..A0 Al A3

Z'(Ao As Az)’r'(Ao A Az)

2. u=1,2v="7,2w = W,
z= mﬁmaml,r = m‘[;m?,

3. D) L: g, mg; I 210 |3 -8 - 3);
N

0 T2 T3 1 72 73
hy: (% % %), IV:sq: (;8 ;8 ;9,)
1

0 3
m) I: 17y, ms; IL: sp: ;% % ]T"% s IIL: Byt
3 3

T0 T! T2 70 T1 T8
h3:( 3 3 3);IV:ZZ:( 2.3 2)
LTS T, T3 T3

1T TS
1T T

TN T2 T3 TN T2 T3
. . Tg B
0

4. ha; Tos; G1(O24), G2(O%) — G2(O%y)
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Note that symmetries of a simplex induce symmetries of the fundamental domain of its vertex figure.
So, it is obvious that if the group of a simplex is the maximal one, then there are no symmetries of the
fundamental domain of the vertex figure according to the face pairing. Consequently, only trivial pairing
of trunc-faces is possible. Also symmetries of T17 and T3s leading to hT4 and hT3; show new, unexpected
symmetry for each of the vertex figures of Ty and T3, respectively. Namely, (in all cases) this is rotation
in the polar plane of the vertex, as it is indicated in Figures 14 and 15. It means that there is one more
possibility for pairing trunc-faces of Oy and Ozg with face pairing identifications, not mentioned yet in [14].

In the case of trunc-simplex O;7 (Fig. 16) the identifying isometries are glide reflections g1, g, and the
new relations for Ay (variant III in Table 2) are

Girsgirs = garogy 't =1,

while for A, (variant III) these are

Jor1g270 = garags '3 = 1.

Here g1, g, are expressed by generators of hO}

n = hn_’lo,gz = hiftp.

For trunc-simplex O35 screw-motion s; identify the trunc-faces of vertices Ay and A; (variant III), so the

relations are

$1z812 1 = slrosl_lrl =1



M. Stojanovi¢ / Filomat 28:3 (2014), 557-577 571

Figure 14: Vertex figures of simplex Ty7

2 \ Oss
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v \
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82 ! - 82
: —
P 0
|

Figure 16: Trunc-simplices O7 and Oss
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: I
and sy is expressed by generators of 1Oy .
S1 = nry.

Identification of vertices A, and As in this way is equivalent to one of the considered cases in [14] (here
denoted by II).

4. Realization of family F6 on the base of Coxeter groups

4.1 If the 4-dimensional real vector space is denoted by V* and its dual space of its linear forms by V4,
then the projective 3-space P3(V4,V,) can be introduced in the usual way. The 1-dimensional subspaces
of V* (or the 3-subspaces of V) represent the points of P?, and the 1-subspaces of V4 (or the 3-subspaces
of V*) represent the planes of P°. The point X(x) and the plane a(a) are incident iff x2 = 0, i.e. the value
of the linear form a on the vector x is equal to zero (x € VA\{0},a € V4 \ {0}). The straight lines of P3 are

characterized by 2-subspaces of V* or of V4, respectively. If {e;} is a basis on V* and {ef } is its dual basis
on V,, ie. eel = 65 (the Kronecker symbol), then the form a = efa]- takes the value xa = x'a; on the vector

x = x'e;. We use the summation convention for the same upper and lower indices.
We can introduce projective metric in P? by giving a bilinear form

</> :(V4 X (V4 — R, <biul‘; b]’()]> = Mibij'z]]'

where i piY) = (b'7) is the Schlifli matrix, and the basis {b'} in V4 represents planes containing simplex
h b b by he Schlafl d the b b YV, rep pl g pl

faces opposite to the vertices A;, respectively. Vectors a; of the dual basis {aj} in V*, defined by ajbi = 6;,
represent the vertices A; of the simplex. The induced bilinear form

GY: VAEX VSR, <xiai; yfaj> = xiaijyj

is defined by the matrix ((ai ; aj>) = (aij) the inverse of (bif )

We assume, that the bilinear form (;) is of signature (+,+,+,—) which characterizes the hyperbolic
metric, or of (+, +, +, +) for elliptic (spherical) metric, or of (+,+,+,0) for Euclidean geometry (see [9] for
the other cases).

It is well-known that the bilinear form induces the distance and the angle measure of the 3-space. Let
X(x) and Y(y) be two points in the projective space P°. Then their distance d(x, y) is determined by

xy)

V)Y y)

(xy)
VX (Y y)

for the elliptic and hyperbolic case, respectively.
For the four simplices in family F6 the Schléfli matrix is

cos (d(x,y)) = and ch(d(x,y)) = -

1 —cos%” —CcosZ —cos%
, o _ 2n _ oo n
bii = (b pl) = cos < 1 cos 7 cos 3
! —cosZ —cosZ 1 —cosZ
_ [ [ i H

cos 3 Cos 3 cos % 1

But, because of symmetries of these simplices, the Schléfli matrix for the half of them, the simplex Ty (Fig.
1) can serve for investigating the space of realization. That matrix is

1 —cos T 0 0
_ z _ T _cosZ
B = cos % 1 cos & cos 3
0 —cos % 1 —cosZ

0 —cosZ —cos%t 1
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1 0 0 —cos %
_ oo id
N 0 1 cos 7 cos
0 —cos T 1 —cos% |
_ oo no_ n
Cos 3 cos = Cos 3 1

the latter is by reordering the basis. It is obvious that it has positive definite 3 X 3 minor

1 0 0
0 1 —cos
0 —cos% 1

so, the signature depends of the sign of the determinant. Its value is

o 4 4 4 4 4 4
detd’ = {1 —cos? = — cos? = — cos? — — 2.¢0S — cOS — COS 7}+
i 0 W il 9 W

T T s T
cos —|cos—|1—cos” —|| =
x x il

:llzl

5 T ) T 5 T 5 T e i i1
={1-cos? = — cos® =} — cos? 1 — cos® = — cos®> — —2C0OS — COS — COS — | =
7 X X W il (7] W

2 T 2 2 T

T T
={1—COS — — COS 7}—Cos T(l_COSZT_COSZ
w X il X

e i T T
— —2.C0S — CcOS — COS T),
7 i 7 W
where the terms in brackets { } are equal to the minor determinants By, B, and Bj of vertex figures for vertices
Ao, Ay and Aj, respectively. The above expression show that, if a vertex figure is of hyperbolic signature
(+,+,-), i.e. the vertex is outer, then the determinant detb” is negative. It means, then the signature of b
is (+, +, +,—), so the geometry is already hyperbolic.

In considering sign of By, B, and Bj it will be used the following identity

D =1-cos’a—cos®p —cos’y —2cosacosfcosy =

cos2a+1 cos2f+1
2 2

= —cos(a + ) cos(a — B) — cos y [cos(a + B) + cos(a — B) + cos y]| =

=1-

—cosy (2cosacosB +cosy) =

— [cos(a + B) + cos y] [cos(a — B) + cos y] =

B a+p+y a+p—vy a—B+vy —a+p+y
= —4 cos 5 Ccos 5 Ccos 5 Ccos > .

ﬂ— aﬁ)

a+ﬂ 4

We are working with angles in the interval [0, ] so cos —— > 0, cos—— > 0, cos —— > 0 and

\F < cos < 1. Itfollows that D > Ofora+p+y >mn,D :0fora+ﬁ+7/: n, D <0fora+ﬁ+7/< .
If D is determinant of vertex figure it describes a vertex which is proper, ideal, outer, respectively.
Condition for Ay is outer vertex, if above we take a = B=%v==E with angel sum smaller then 7.
Similar condition stands for A; and Az whena =%, =%,y =7, and a = %/ B=%,v = 7, respectively.

a+p+y
2

4.2 Similarly as in [10] we can express the generators of the Coxeter group

m — = — N\ ’ ’ ’ 1’2 ,2 ’2 2 _
21121, 20,20, 20) = (m), my, my,my —m'y =m'y =m'y =m'y =

= () = (my)? = () = (o)” =

= (mym})” = (mym})" =1,0>2,0>7>2,%>3)
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by matrices in basis A;(a;) (i = 0,1,2,3). Matrices for plane reflections m/
M, N}, P, respectively:

o, my, my, m; are denoted by My,

01 00 1 0 0 O
1 000 md -1 m? md
’r _ ’ 1 1 1
M=loo10l M= 0o o 1 o]
0 0 01 o 0 0 1
1 0 0 O 1 0 0 O
,_ 10 1 0 0 , 10 1 0 O
M=l w -1 w3 250 0 1 0
0 0 0 1 pops s -l
Here, m1 2cos24,m1—2cosa, my 2cos—ng— 2cos—n 2cos—,p3 p3 2cos—,p3 2cos§.

Namely, we have applied the above relations to the Correspondlng matrices, e.g.

2

0 1 0 0
1 O 0 0
M/N)) = =

( 0 2) n ony -1 n3

0o 0 0 1
1 0 0 0 1 0 0 O
0 1 00| (0100
ny—-ny nyg—ny 1. 0| [0 0 1 0
0 0 0 1 0 0 0 1

If the polar plane of the vertex As(a3) exists (i.e. Az is hyperbolic), its form will be denoted by ;. It holds
for the scalar products of forms <d3, bi> =0fori=0,1,2, <d3, b3> #0; @3 = B3 + blags + bPax + bPass =: blas
in the basis {bi} of forms in V4 (such that a;b/ = 6/), and b = biiaj express the plane - point polarity by

g o -1 )
b = <b’,b1 > Its inverse (b’f ) = (ai/), if exists, expresses the above equation a; = b/a;; for i = 3, as example.

a) The reflection 7713 in the plane 43 can be expressed in the form basis {bi}, first by a matrix M3 — (ej,) as
follows Mj : b — b/ ej.

100 &
My (B B R LU SRR 010 ¢
3'( )—’< )'001%
000 -1

-1
and by its inverse matrix (e}) ,in the vector basis {a;}. It is the same, since 7723 is an involution (as a reflection

in a plane)
ao 100 e§ ay
| a 01 0 e a;
M; : a - 0 0 1 e% a
as 0 0 0 -1 as

Since m3 commutes with m(, m} and m), e.g. from mzm/ = mjm;, (i.e. 1\7[3M'1 = M;M3) yields

1 0 0 @& 1 0 0 &

m‘l) -1 mi m‘;’ + e‘;’ N m‘f -1 mi mgeg — el +m > - mi’

0 0 1 & 0 0 1 & ‘
0 0 0 1 0 0 0 -1
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; 34 03) = 5003 2,3 Gimi LN = N'N 34 03) = 11003 4+ 5103
Le. 2<m1 +e_1) = myey + mje;. Similarly, we get from M3N; = N/ M;, 2(;12 + ez) = n,e; + nyey. From
Mz;Mj, = M{M3 we obtain

01 0 6§ 010 62
1 00 e% N 1 00 eg
001 ¢ 001 e
00 0 -1 0 0 0 -1
i.e. ¢) = 3. Solving the system of the unknown parameters ¢}, e; and €3, the determinant of the system is

27
Dj = (nym7 — 4) + (ndm3 +2m?) =2 —n(4 —n)+2(2 ——2):
3 (leml ) (1’121111 ml) CcOos e Ccos D Cos T

& 7_1))>0.

T T
=8c0527+8c0527—8=8(cos(7+7 - — =
w x X

TC Tt
cOos
w X

w

Thus, we can express

0 -1 0 n n n
3 5 1 3 1 _ COSyCosy +COs 5
=6 =—|2n;, n, 2 | = ,
Ds 3 2 COS(E + E)cos(ﬂ - E)
2m1 -2 my @ X o %
1 -1 0 n n n
;1 0 1 o |- COS 7 COS £ + cos 7
e=—|n, n, 2n .
Ds 2 3 cos(ﬂ + ﬂ)cos (E - E)
my - nmy w X w X

b) The reflection 7, in the plane 4, can be described in the form basis {bi}, by a matrix My — (d;),

Mz : bi - b]d;,

Mz:

and in the vector basis {a j} by

Again, m; commutes with m, m] and m}, these determine

02 32
mld0 + m1d3, 2 5

Dy, =4- mi’pé —Zm(l) - m?pg = —8(cos(% + %)cos(n

and we get
1 0
di=dt = —| 2m?
Dy 52
P3
1 1 -1 0
d% = — mo -2 Zm%
Dy| . ¢ 1 9,2
Ps P3 P3

-1
-2

P

(0 00 B )—> (1 PP

m3

1 0 d§ 0
01 & 0
00 -1 0V
00 & 1
10 @ 0 (a
0 1 d1 0 al
00 -1 0 a
00 & 1)\ a
2,d2,d3. Similarly as before d3 = d?,2 (m% + d%) =

(d% + pg) = pYd? + p3d;. Here, determinant of system is

)

s I I
COS + Cos 7 COS

1
-2

LY I_I
COS(E + ,D)COS()? —

n)’

0

I I o _ 2n s
Z(COS i + cos 5 €OS 7 — COS™ % COS ﬁ)

s T Tt
COS (; + 5) CcOs (—_

)

ST}

X
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c) Finally, the reflection 7 in the plane 4y can be expressed by My : b — bjcé.,

-1 0 0 O

0
o . 10 Bl 12 13 0 1 12 13 g 100
Mo:( 80 b1 B2 B )— (b b BB %010,
g 0 01

and by
ap -1 0 0 O ao
0

| a ¢t 1 0 O a

Mo'a2_>c%010 a

as C3001 az

. - . ;o , 0 0y _ ,,2.0 3.0 0. ,,0) — ,,1.0 3.0
Reflection 719 commutes with mj, m} and m}. So, Z(C1 + ml) = mjc, + mjcs, 2<c2 + nz) = nyc) + 150y,

2 (cg + pg) = pic? + p3c). Determinant Dy is equal to

l/m n =
_ 2,3 1 3,12 3.2 2,1 3.1 _ L A
Dy = =8 + min,p; + min,p; + 2nyp5 + 2min, + 2mip; = 32 cos > (12 + -+ _)

7w
cosl(E +E— E)co l(E —E+ E)cosl(——+— +E)
2\ 0 W 2\i 0 f 2 (N 1V
Hence,
2m m? wmd
1 1 1
c(lJ = D an -2 ny |= N [32 cos® g (1 — cos? g) -
0 2p3 P% ) 0
-16 (1 — cos? z — cos? z — cos? @ —2cos z cos z cos z)] ,
il (7] w il 7 w
1|72 ng my | 32cos? z (cos Zcos Z + cos %)
¢ = o n 2118 n | = 5 ,
0 T 0
P3 2P3 -2
o 1 _12 mi Zmé) 32cos? L (COS Z 4 cos Z cos g)
GG==—|n, -2 2n, |=
D D,
o pi p2 2f °

Summary. The matrices above, expressed by the D-matrix (21, 20, 2w, X) with2 < 1,2 <9 < @,3 < X, i.e.
by angles %, Z, 2, 2, describes the extended reflection groups ”;fl (211, 20,2, X), which exist if conditions
1+lelcg 41«1 141 <1 forvertices to be hyperbolic, are fulfilled.

Acknowledgment. I thank Prof. Emil Molnar for helpful comments to this paper.
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