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New sharp estimates of traces of Bergman type spaces of analytic functions in bounded strictly pseudoconvex domains are obtained.
These are, as far as we know, the first results of this typewhich are valid for any bounded strictly pseudoconvex domainswith smooth
boundary.

1. Introduction and Formulation of Problem

In this note we obtain new sharp estimates for traces in
Bergman type spaces of analytic spaces in strictly pseudocon-
vex domainswith smooth boundary.This line of investigation
can be considered as a continuation of our previous papers
on traces in analytic function spaces [1–4] where similar
results were obtained but only in simpler bounded domains
in higher dimension. We remark that in this note for the first
time in the literature we consider this known problem related
with trace estimates in spaces of analytic functions in more
general pseudoconvex domains in C𝑛, namely, in strictly
pseudoconvex domains with smooth boundary.The next sec-
tion contains required preliminaries on analysis on bounded
strictly pseudoconvex domains with smooth boundary. Our
new sharp results are contained in the last section of this note.
Related estimates for Bergman type projections will be also
provided. All our main results in context of unit ball can be
seen in [2–4]. All preliminary assertions of this paper have
their direct analogues in context of unit ball and this can
be seen in [2–4] and references therein. It is known that the
geometry of pseudoconvex domains is more complicated and
extra arguments were needed to get technical lemmas which
are used to prove main results of this paper. These subtle
lemmas can be seen in particular in recent papers [5, 6].

Now we will shortly present the history of the diagonal
map (or traces) problem. After the appearance of [7], various
papers appeared where arguments which can be seen in [7]
were extended, changed, and modified in various directions
in one and higher dimension (see, e.g., [1, 3, 8, 9] and also
various references therein). In particular inmentioned papers
various new sharp results on traces for analytic function
spaces in higher dimension (unit polyball) were obtained.
New results for large scales of analytic 𝑄

𝑝
type spaces in

polyball were proved (see [4]). Later several new sharp
results for harmonic functions of several variables in the
unit ball and upper half-plane of Euclidean space were also
obtained (see, e.g., [1] and references therein). For the first
time in the literature, these types of problems connected with
diagonal map in analytic spaces appeared before in [7]. In
[7], this problem was formulated and certain concrete cases
connected with spaces of analytic functions in the unit disk
were considered.

Some interesting applications of diagonal map can be
seen in [8, 10] where other problems around this topic can
be found also. The goal of this note is to develop further
some ideas from our recent mentioned papers and present
new sharp theorems in strictly pseudoconvex domains with
smooth boundary.
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Extension problems were studied mainly by two different
methods. The one is the extension using integral formula in
the case where 𝐷 is bounded pseudoconvex domains with
a support function (domains with smooth boundary). The
other is the 𝐿2 extension using the Hilbert space theory in the
case when 𝐷 is general bounded pseudoconvex domain (see
[11–14]).

For formulation of our results, we will need various
standard definitions from the theory of strictly pseudoconvex
domains with smooth boundary. In this and next section, we
mention some vital facts which will be heavily used in proofs
of our assertions (see, e.g., also for parallel assertion in other
domains [2–4]).

Let 𝐷 = {𝑧 : 𝜌(𝑧) < 0} be a bounded strictly pseudo-
convex domain of C𝑛 with 𝐶

∞ boundary. We assume that
the strictly plurisubharmonic function 𝜌 is of class 𝐶∞ in a
neighborhood of 𝐷; that is, −1 ≤ 𝜌(𝑧) < 0, 𝑧 ∈ 𝐷, |𝜕𝜌| ≥
𝐶
0
> 0 for |𝜌| ≤ 𝑟

0
. Let further 𝐻(𝐷) be the space of all

analytic functions on𝐷.
Let (see [15])

𝐴
𝑝,𝑞

𝛿,𝑘
(𝐷) = {𝑓 ∈ 𝐻 (𝐷) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝑞,𝛿,𝑘 < ∞} , (1)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝑞,𝛿,𝑘 = ( ∑

|𝛼|≤𝑘

∫

𝑟0

0

(∫
𝜕𝐷𝑟

󵄨󵄨󵄨󵄨𝐷
𝛼

𝑓
󵄨󵄨󵄨󵄨
𝑝

𝑑𝜎
𝑟
)

𝑞/𝑝

𝑟
𝛿𝑞/𝑝−1

𝑑𝑟)

1/𝑞

,

(2)

where𝐷
𝑟
= {𝑧 ∈ C𝑛

: 𝜌(𝑧) < −𝑟}, 𝜕𝐷
𝑟
is boundary, 𝑑𝜎

𝑟
is the

normalized surface measure on 𝜕𝐷
𝑟
and by 𝑑𝑟 normalized

volume element on (0, 𝑟), 0 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞, 𝛿 > 0,
𝑘 = 0, 1, 2, . . ., and
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝,∞,𝛿,𝑘

= sup
{

{

{

( ∑

|𝛼|≤𝑘

𝑟
𝛿

∫
𝜕𝐷𝑟

|𝐷
𝛼

𝑓|
𝑝

𝑑𝜎
𝑟
)

1/𝑝

: 0 < 𝑟 < 𝑟
0

}

}

}

,

(3)

where𝐷𝛼 is a differential operator acting from𝐻(𝐷) to𝐻(𝐷)

(see [15] and references therein for this operator and it is
properties). For 𝑝, 𝑞 < 1, it is quasinorm (see [15]). For 𝑝 = 𝑞,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝛿,𝑘 = ( ∑

|𝛼|≤𝑘

∫
𝐷

󵄨󵄨󵄨󵄨𝐷
𝛼

𝑓
󵄨󵄨󵄨󵄨
𝑝

(−𝜌)
𝛿−1

𝑑𝑚(𝜉))

1/𝑝

, (4)

where 𝑑𝑚 is the Lebesgue measure on the 𝐷 domain. We
listed some properties of these classes below in Lemma C.

For 𝑝 = 𝑞, 𝑘 = 0, we get Bergman spaces 𝐴𝑝

𝛿
(𝐷) (see

[5, 6]).
Let 𝐵

𝐷
(𝑧, 𝑟) be Kobayashi ball in bounded pseudoconvex

domain (see [5, 6]), 𝛿(𝑤) : 𝐷 → R+, and 𝛿(𝑤) = 𝑑(𝑤, 𝜕𝐷).
One of the intentions of this paper is to consider new

trace problem and trace map for this case of bounded strictly
pseudoconvex domains with smooth boundary. It is a map

Tr𝑓(𝑧) = 𝑓(𝑧, . . . , 𝑧), 𝑧 ∈ 𝐷, if 𝑓 ∈ 𝑋 ⊂ 𝐻(𝐷
𝑚

) for
certain quasinormed space 𝑋 on 𝑚 products of 𝐷 domains
𝐷

𝑚, where𝐻(𝐷
𝑚

) is a space of analytic functions in products
domains𝐷𝑚.

Note these type maps were previously considered by
various authors in particular cases when Ω = D (unit disc),
when Ω = B (unit ball). Applications of this map to various
problems in function theory are also known (see, e.g., [2, 4,
10] and references therein).

Note in addition that we use heavily the same machinery
which was recently developed in [5, 6].

The trace problem in particular is in short the following.
Let 𝑓 ∈ 𝐻(𝐷

𝑚

), 𝐷𝑚

= 𝐷 × ⋅ ⋅ ⋅ × 𝐷 and 𝑓 satisfies certain
growth condition 𝑓 ∈ 𝑋, 𝑋 ⊂ 𝐻(𝐷

𝑚

) and then get as much
information as possible about growth of 𝑓(𝑧, . . . , 𝑧), 𝑧 ∈ 𝐷,
where 𝑋 can be certain fixed functional class of analytic
functions 𝑓(𝑧

1
, . . . , 𝑧

𝑚
), 𝑧

𝑖
∈ 𝐷, 𝑖 = 1, . . . , 𝑚 (analytic by

each variable). We also will look at the same time at estimates
of various multifunctional operators and expressions closely
related with restriction map.

The technique we use is based also on a work of Beatrous
(see [12]) and Ortega-Fabrega (see [15]) and some informa-
tion from [5, 6] on pseudoconvex domains (namely, some
subtle estimates from very recent papers [5, 6]) will be also
used. Note that various similar extension theorems were
previously studied by many authors (Henkin, Adachi, and
Cumenge); see [11–13, 15] and various references therein.

Actually in this paper we continue (partially) the investi-
gation of Jimbo and Sakai (see [16]) related to function spaces
on products of pseudoconvex domains in C𝑛.

To define new Bergman type analytic spaces on products
of pseudoconvex domains we have to replace one integral
by multiple integrals in spaces above. For example, the
mentioned quasinorms will take this form:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝛿1,...,𝛿𝑚 ,𝑘1 ,...,𝑘𝑚

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝, ⃗
𝛿,

⃗
𝑘

= ( ∑

|𝛼1|≤𝑘1
|𝛼𝑚|≤𝑘𝑚

∫
𝐷

⋅ ⋅ ⋅ ∫
𝐷

󵄨󵄨󵄨󵄨𝐷
𝛼1 ⋅⋅⋅𝛼𝑛𝑓 (𝑧

1
, . . . , 𝑧

𝑚
)
󵄨󵄨󵄨󵄨
𝑝

⋅ (−𝜌)
𝛿1−1

⋅ ⋅ ⋅ (−𝜌)
𝛿𝑚−1 𝑑𝑚 (𝜉

1
) ⋅ ⋅ ⋅ 𝑑𝑚 (𝜉

𝑚
))

1/𝑝

,

(5)

where 𝑓 ∈ 𝐻(𝐷
𝑚

) and 𝛿
𝑗
> 0, 𝑗 = 1, . . . , 𝑚.

We formulate in the next section some new results related
to restriction maps in products of pseudoconvex domains
and multifunctional spaces generalizing previous estimates
for polydisk (when 𝐷 is a unit disk). Note now our goal
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in this paper to study only particular case of general 𝐴𝑝,𝑞

𝛿,𝑘

classes and integral operators (Bergman type) on them. Note
also that Bergman type projection from various points of
view in pseudoconvex domainswas studied before via various
authors (see, e.g., [12, 15, 17–19] and references therein).

The study of traces of general𝐴𝑝,𝑞

𝛿,𝑘
spaces (including limit

case) is a separate problemwhichwill be addressed by authors
in a separate paper.

The study of analytic spaces in products of pseudoconvex
domains was started probably in [16, 20].This paper is heavily
based on arguments that appeared in proofs of results from
[2, 4]. Using them, we here extend various assertions which
can be found in unit ball in [2, 4] to the case of general strictly
pseudoconvex bounded domains𝐷 with smooth boundary.

Throughout the paper 𝐶, sometimes with indexes, stands
for various positive constants which can be different even in
a chain of inequalities and are independent of the discussed
functions or variables.

Thenotation𝐴 ≍ 𝐵means that there is a positive constant
𝐶, such that𝐵/𝐶 ≤ 𝐴 ≤ 𝐶𝐵.Wewill write for two expressions
𝐴 ≲ 𝐵 if there is a positive constant 𝐶 such that 𝐴 < 𝐶𝐵.

2. Preliminaries and Formulations of
Main Theorems

In this section, we collect preliminaries and formulations of
all main results of this paper.

We define Bergman spaces on polypseudoconvex
domains as

𝐴
𝑝

⃗
𝛽

(𝐷
𝑚

)

= 𝐴
𝑝

(𝐷
𝑚

, ⃗𝛽)

= {𝑓 ∈ 𝐻 (𝐷 × ⋅ ⋅ ⋅ × 𝐷) :

∫
𝐷

⋅ ⋅ ⋅ ∫
𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑤
1
, . . . , 𝑤

𝑚
)
󵄨󵄨󵄨󵄨
𝑝

𝛿 (𝑤
1
)
𝛽1

× ⋅ ⋅ ⋅ × 𝛿 (𝑤
𝑚
)
𝛽𝑚 𝑑𝑚 (𝑤

1
) ⋅ ⋅ ⋅ 𝑑𝑚 (𝑤

𝑚
)

< ∞} ,

(6)

where 𝑑𝑚 is the Lebesguemeasure on the𝐷 domain, 0 < 𝑝 <

∞, and 𝛽
𝑗
> −1, 𝑗 = 1, . . . , 𝑚. These are Banach spaces for

1 < 𝑝 < ∞ and complete metric spaces for 0 < 𝑝 ≤ 1. We put
𝑑𝑚

𝑠
(𝑧) = 𝛿

𝑠

(𝑧)𝑑𝑚(𝑧), 𝑠 > −1.
Let Trace(𝑋) = {𝑓(𝑧, . . . , 𝑧) : 𝑓 ∈ 𝑋 ⊂ 𝐻(𝐷

𝑚

)}, where 𝑋
is quasinormed space in product domains. Theorem 1 is one
of the main results of this paper.

Theorem 1. Let 𝑝 ∈ (0,∞), and 𝛽
𝑖
> −1, 𝑖 = 1, . . . , 𝑚. Then,

𝑇𝑟𝑎𝑐𝑒𝐴
𝑝

(𝐷
𝑚

, ⃗𝛽) ⊂ 𝐴
𝑝

(𝐷,

𝑚

∑

𝑖=1

𝛽
𝑖
+ (𝑚 − 1) (𝑛 + 1)) . (7)

The proof of this theorem is based only on Propositions
3 and 4. It is completely parallel to the case of unit ball,
which was considered before as in [2, 4]. We omit it now. We
start with covering lemma (then other four lemmas) for𝐷 by
using Kobayashi balls 𝐵

𝐷
(𝑧, 𝑟) (see [5, 6]), but first we need

Definition 2.

Definition 2 (see [5, 6]). Let 𝐷 ⊂ C𝑛 be a bounded domain
and 𝑟 > 0. An 𝑟-lattice in 𝐷 is a sequence {𝑎

𝑘
} ⊂ 𝐷 such that

𝐷 = ⋃
𝑘
𝐵
𝐷
(𝑎

𝑘
, 𝑟) and there exists 𝑚 > 0 such that any point

in 𝐷 belongs to at most𝑚 balls of the form 𝐵
𝐷
(𝑎

𝑘
, 𝑅), where

𝑅 = (1/2)(1 + 𝑟).

Proposition 3 (see [5, 6]). Let 𝐷 ⊂ C𝑛 be a bounded strictly
pseudoconvex domain with smooth boundary. Then for every
𝑟 ∈ (0, 1) there exists an 𝑟-lattice in 𝐷; that is, there exists
𝑚 ∈ N and a sequence {𝑎

𝑘
} ⊂ 𝐷 of points such that 𝐷 =

⋃
∞

𝑘=0
𝐵
𝐷
(𝑎

𝑘
, 𝑟) and no point of 𝐷 belongs to more than 𝑚 of

the balls 𝐵
𝐷
(𝑎

𝑘
, 𝑅), where 𝑅 = (1/2)(1 + 𝑟).

Proposition 4 (see [5, 6]). Let 𝐷 ⊂ C𝑛 be a bounded strictly
pseudoconvex domain with smooth boundary. Given 𝑟 ∈ (0, 1),
set 𝑅 = (1/2)(1 + 𝑟) ∈ (0, 1). Then, there exists a 𝑘

𝑟
> 0

depending on 𝑟 such that for all 𝑧
0
∈ 𝐷 and for all 𝑧 ∈ 𝐵

𝐷
(𝑧

0
, 𝑟)

(1) 𝑓(𝑧) ≤ (𝑘
𝑟
/𝑚(𝐵

𝐷
(𝑧

0
, 𝑟))) ∫

𝐵𝐷(𝑧0 ,𝑟)

(𝑓(𝑤))𝑑𝑚(𝑤),

(2) 𝑚(𝐵
𝐷
(⋅, 𝑟)) ≈ 𝛿

𝑛+1,

for every 𝑓-nonnegative plurisubharmonic function 𝑓 : 𝐷 →

R+.

Let now 𝐷 be a 𝐶
∞-bounded strongly pseudoconvex

domain with defining function 𝜌. We need some results for
our proofs. We let 𝑔(𝑧, 𝜓) be the associated Levi polynomial
(see [21]). Consider

𝑔 (𝑧, 𝜁) = 2

𝑛

∑

𝑗=1

𝜕𝜌

𝜕𝜁
𝑗

(𝜁) (𝜁
𝑗
− 𝑧

𝑗
)

−

𝑛

∑

𝑗,𝑘=1

𝜕
2

𝜌

𝜕𝜁
𝑗
𝜕𝜁

𝑘

(𝜁) (𝜁
𝑗
− 𝑧

𝑗
) (𝜁

𝑘
− 𝑧

𝑘
) .

(8)

It follows from Taylor’s formula and the strict plurisub-
harmonicity of 𝜌 that there are positive constants 𝐶

1
and 𝑟

and a neighborhood𝐷󸀠 of𝐷 such that

Re𝑔 (𝑧, 𝜁) ≥ 𝜌 (𝜁) − 𝜌 (𝑧) + 𝐶
1

󵄨󵄨󵄨󵄨𝑧 − 𝜁
󵄨󵄨󵄨󵄨
2 (9)

for 𝑧, 𝜁 ∈ 𝐷
󸀠 and |𝑧 − 𝜁| ≤ 𝑟. Setting 𝑔(𝑧, 𝜁) = 𝑔(𝑧, 𝜁) − 2𝜌(𝜁),

it follows that

Re𝑔 (𝑧, 𝜁) = Re𝑔 (𝑧, 𝜁) − 2𝜌 (𝜁)

≥ −𝜌 (𝜁) − 𝜌 (𝑧) + 𝐶
1

󵄨󵄨󵄨󵄨𝑧 − 𝜁
󵄨󵄨󵄨󵄨
2

(10)
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for 𝑧, 𝜁 ∈ 𝐷
󸀠 and |𝑧 − 𝜁| ≤ 𝑟 and 𝑔(𝑧, 𝜁) = 𝑔(𝑧, 𝜁) for 𝜁 ∈ 𝜕𝐷.

Also we have
N𝑔 (𝑧, 𝜁) = O (

󵄨󵄨󵄨󵄨𝑧 − 𝜁
󵄨󵄨󵄨󵄨
2

) , (11)

where N is the complex normal vector field of type (1, 0)

defined byN = ∑
𝑛

𝑗=1
(𝜕𝜌/𝜕𝜁

𝑗
)(𝜕/𝜕𝜁

𝑗
).

LemmaA (see [21]). Let 𝑔,𝐷󸀠, 𝑟, and 𝐶
1
be as above.There is

a neighborhood𝐷 of𝐷with𝐷 ⊃ 𝐷, a𝐶∞ function Φ̃ on𝐷×𝐷,
and a positive constant 𝐶

2
such that

(1) for any 𝜁 ∈ 𝐷 the function Φ̃(⋅, 𝜁) is holomorphic on𝐷;
(2) Φ̃(𝜁, 𝜁) = −2𝜌(𝜁) for 𝜁 ∈ 𝐷 and |Φ̃(𝑧, 𝜁)| ≥ 𝐶

2
for

𝑧, 𝜁 ∈ 𝐷 with |𝑧 − 𝜁| ≥ 𝑟/2;
(3) there is a nonvanishing 𝐶∞ function 𝑄(𝑧, 𝜁) on

Δ
𝑟/2

= {(𝑧, 𝜁) ∈ 𝐷 × 𝐷 :
󵄨󵄨󵄨󵄨𝑧 − 𝜁

󵄨󵄨󵄨󵄨 ≤
𝑟

2
} (12)

such that

Φ̃ (𝑧, 𝜁) = 𝑔 (𝑧, 𝜁) 𝑄 (𝑧, 𝜁) 𝑜𝑛 Δ
𝑟/2
. (13)

Lemma B (see [21]). For each 𝑠 > −1, there is a smooth form
𝜂
𝑠
∈ 𝐶

∞

(𝐷 × 𝐷) such that

(1) 𝜂
𝑠
(𝑧, 𝜁) is holomorphic in 𝑧 on 𝐷 for any fixed 𝜁 ∈ 𝐷

and
(2) for 𝑓 ∈ 𝐴

1

𝑠
(𝐷) and 𝑧 ∈ 𝐷 one has

𝑓 (𝑧) = ∫
𝐷

𝑓 (𝜁)
𝜂
𝑠
(𝑧, 𝜁)

Φ̃ (𝑧, 𝜁)
𝑛+𝑠+1

(−𝜌 (𝜁))
𝑠

𝑑𝑚 (𝜁) . (14)

Definition 5 (see [12]). Let 𝐾(𝑧, 𝜉) be a measurable function
on𝐷×𝐷 and let 𝑡 be a positive number. One says that𝐾 = 𝐾

𝑡

(or 𝐾̃
𝑡
) is a kernel of Bergman type 𝑡 for all 𝑧 ∈ 𝐷, if |𝐾(𝑧, 𝜉)| ≤

𝐶 (|Φ̃(𝑧, 𝜉)|
−𝑡

) where Φ̃ is Henkin-Ramirez function. So, if𝐾
is a kernel of Bergman type 𝑡, then𝐾

𝑠 is a kernel of type 𝑠𝑡.

In this paper we deal with the following kernel 𝐾
𝑛+1+𝑡

(𝑧,

𝑤) of 𝑛 + 𝑡 + 1 type which is the reproducing Bergman kernel
for weighted Bergman spaces in pseudoconvex domains with
smooth boundary (see [12, 22]).

We need also estimates for Bergman type kernel, the so-
called Forelli-Rudin type estimates.The following assertion is
valid if we change the index of kernel 𝑛 + 1 to 𝑛 + 𝑡 + 1 (and
(𝑛+1)(𝑝−1) to (𝑛+1+ 𝑡)𝑝− (𝑛+1) in other places; see [22]).

Proposition 6 (see [5, 6]). Let 𝐷 ⊂ C𝑛 be a bounded strictly
pseudoconvex domain with smooth boundary and let 𝑧

0
∈ 𝐷

and 1 ≤ 𝑝 < ∞. Then, one has the following estimate for
Bergman type kernel 𝐾

𝑛+1
(𝑧, 𝑧

0
):

∫
𝐷

󵄨󵄨󵄨󵄨𝐾𝑛+1
(𝜉, 𝑧

0
)
󵄨󵄨󵄨󵄨
𝑝

⋅ 𝛿 (𝜉)
𝛽

𝑑𝑚 (𝜉)

≲

{{{

{{{

{

𝛿 (𝑧
0
)
𝛽−(𝑛+1)(𝑝−1)

, −1 < 𝛽 < (𝑛 + 1) (𝑝 − 1) ,

󵄨󵄨󵄨󵄨log 𝛿 (𝑧0)
󵄨󵄨󵄨󵄨 , 𝛽 = (𝑛 + 1) (𝑝 − 1) ,

1, 𝛽 > (𝑛 + 1) (𝑝 − 1) .

(15)

Estimate (15) is valid for all𝐾
𝑡
kernels (see [12, 22]).

Let

𝐿
𝑝

𝑠
(𝐷) = {𝑓 ∈ 𝐿

∘

(𝐷) :
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
𝑝

𝑝,𝑠
= ∫

𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑤)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑚
𝑠
(𝑤) < ∞} ,

𝑝 ≥ 1, 𝑠 > −1.

(16)

Let us further define Bergman type integral operators. If
𝐹 ∈ 𝐻(𝐷) ∩ 𝐿

2

𝑠
(𝐷), then we have Bergman type representa-

tion

𝐹 (𝑧) = 𝑃
1,𝑠
(𝐹) (𝑧) ,

𝑃
𝑠,𝑚

𝐹 (𝑧⃗) = ∫
𝐷

𝐹 (𝑤)

𝑚

∏

𝑖=1

(𝐾
(𝑠+𝑛+1)/𝑚

(𝑧
𝑖
, 𝑤)) 𝑑𝑚

𝑠
(𝑤) ,

(17)

for all 𝑧 ∈ 𝐷, 𝑠 > −1. If 𝑓 ∈ 𝐿
1

𝑠
(𝐷), we define the operator

(Bergman type operator) for all 𝑧
𝑗
∈ 𝐷, 𝑗 = 1, . . . , 𝑚:

𝑃
𝑠,𝑚

(𝑓) (𝑧⃗) = ∫
𝐷

𝑓 (𝜉)

𝑚

∏

𝑖=1

(𝐾
(𝑠+𝑛+1)/𝑚

(𝜉, 𝑧
𝑖
)) 𝑑𝑚

𝑠
(𝜉) .

(18)

Lemma C (see [12]). Let 𝑓 ∈ 𝐴
1

𝑡
(𝐷) for sufficiently large 𝑡.

Then,

𝑓 (𝑧) = ∫
𝐷

𝑓 (𝜉)𝐾 (𝑧, 𝜉) 𝛿 (𝜉)
𝑡

𝑑𝑚 (𝜉) , (19)

where𝐾(𝑧, 𝜉) is a certain fixed kernel of 𝑛 + 𝑡 + 1 type, 𝑧 ∈ 𝐷.

Proposition 7 (see [12]). Let𝑓 ∈ 𝐴
𝑝

𝛼
(𝐷), 0 < 𝑝 < ∞, 𝛼 > −1.

Then, (19) integral representation holds with large enough 𝑡.

Proof. If 𝑓 ∈ 𝐴
𝑝

𝛼
(𝐷), then for large enough 𝑡 we have 𝑓 ∈

𝐴
1

𝑡
(𝐷). The proof of these facts follows from the well-known

proof in the unit disk case. Then, use Lemma C.
We now also note that the following is true. Let

Φ(𝑧
1
, . . . , 𝑧

𝑚
)

= ∫
𝐷

𝑓 (𝜉)𝐾
(𝑡+𝑛+1)/𝑚

(𝑧
1
, 𝜉) ⋅ ⋅ ⋅ 𝐾

(𝑡+𝑛+1)/𝑚

⋅ (𝑧
𝑚
, 𝜉) 𝛿 (𝜉)

𝑡

𝑑𝑚 (𝜉) ,

(20)

𝑧
𝑗
∈ 𝐷, 𝑗 = 1, . . . , 𝑚. We have

Φ (𝑧, . . . , 𝑧) = ∫
𝐷

𝑓 (𝜉) (𝐾
(𝑡+𝑛+1)/𝑚

(𝑧, 𝜉))
𝑚

𝛿 (𝜉)
𝑡

𝑑𝑚 (𝜉)

= ∫
𝐷

𝑓 (𝜉) 𝐾̃
𝑡+𝑛+1

(𝑧, 𝜉) 𝛿 (𝜉)
𝑡

𝑑𝑚 (𝜉) = 𝑓 (𝑧) ,

(21)

where 𝑡 > 𝑡
0
, 𝑡

0
is large enough, and 𝑧 ∈ 𝐷, 𝑓 ∈ 𝐴

𝑝

𝛼
, 𝑝 > 0,

𝛼 > −1.
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The study of Φ = 𝑇
𝑚,𝑡

𝑓 operator (expanded Bergman
projection) is of special interest.This operator was considered
by many authors before in various situations (polydisk, unit
ball, and spaces of harmonic functions in R𝑛+1

+
and B) and

used in relation to traces problems (see [2, 4] and references
therein).

We provide some new estimates here for expanded
Bergman projection based on our fully previous work in
unit ball extending known estimates for ordinary Bergman
projection in strictly pseudoconvex domains in weighted
Bergman 𝐴

𝑝

𝛼
spaces. Our results again are heavily based on

lemmas from [5, 6].

Theorem 8. Let 1 ≤ 𝑝 < ∞ and let 𝛼
𝑗
> −1, 𝑗 = 1, . . . , 𝑚,

and

𝑇
𝑚,𝑡

𝑓 (𝑧
1
, . . . , 𝑧

𝑚
)

= ∫
𝐷

𝑓 (𝜉) 𝛿 (𝜉)
𝑚(𝑛+𝑡+1)−(𝑛+1)

⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∏

𝑖=1

𝐾
𝑛+𝑡+1

(𝑧
𝑗
, 𝜉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑚 (𝜉) ,

(22)

where 𝑧
𝑗
∈ 𝐷, 𝑗 = 1, . . . , 𝑚, and 𝑡 > 𝑡

0
for large enough 𝑡

0
.

Then, we have

󵄩󵄩󵄩󵄩𝑇𝑚,𝑡
𝑓
󵄩󵄩󵄩󵄩𝐴𝑝𝛼1

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐴𝑝𝛼1
, (23)

where 𝛼
1
= ∑

𝑚

1
𝛼
𝑗
+ (𝑛 + 1)(𝑚 − 1) and hence

∫
𝐷

⋅ ⋅ ⋅ ∫
𝐷

󵄨󵄨󵄨󵄨𝑇𝑚,𝑡
𝑓 (𝑧

1
, . . . , 𝑧

𝑚
)
󵄨󵄨󵄨󵄨
𝑝

𝛿
𝛼1 (𝑧

1
)

⋅ ⋅ ⋅ 𝛿
𝛼𝑚 (𝑧

𝑚
) 𝑑𝑚 (𝑧

1
) ⋅ ⋅ ⋅ 𝑑𝑚 (𝑧

𝑚
)

≤ 𝐶∫
𝐷

󵄨󵄨󵄨󵄨𝑓 (𝜉)
󵄨󵄨󵄨󵄨
𝑝

𝛿 (𝜉)
𝜏1 𝑑𝑚 (𝜉) ,

𝜏
1
=

𝑚

∑

𝑗=1

𝛼
𝑗
+ (𝑛 + 1) (𝑚 − 1) .

(24)

Remark 9. It will be interesting for reader to compare this
result withTheorem4.1 from [12] where similar integral oper-
ator with𝐾

𝑡
kernel was considered and used in proof of main

results.

Remark 10. A variant ofTheorem 8 is true also for 𝑝 ≤ 1. We
will suggest comparing our proofs with Corollary 5.3 of [12]
where𝑚 = 1 case was considered.

Remark 11. From Proposition 7 we have, for large enough
𝑡, 𝑓 ∈ 𝐴

𝑝

𝛼
, and if we define

Φ̃ (𝑧
1
, . . . , 𝑧

𝑚
) = ∫

𝐷

𝑓 (𝜉)𝐾
(𝑡+𝑛+1)/𝑚

(𝑧
1
, 𝜉)

⋅ ⋅ ⋅ 𝐾
(𝑡+𝑛+1)/𝑚

(𝑧
𝑚
, 𝜉) 𝛿 (𝜉)

𝑡

𝑑𝑚 (𝜉) ,

(25)

then Φ̃(𝑧, . . . , 𝑧) = 𝑓(𝑧); since the integral representation
(19) is valid for large enough 𝑡, 𝑓 ∈ 𝐴

1

𝑡
. This together

with assertion concerning the action of Φ̃(𝑧
1
, . . . , 𝑧

𝑚
) from

Theorem 8 gives another theoremon traces (see proof below).

Theorem 12. Let 𝑓 ∈ 𝐴
𝑝

(𝐷
𝑚

, ⃗𝛽) and 𝛽
𝑗
> −1, 1 ≤ 𝑝 < ∞,

𝑗 = 1, . . . , 𝑚. Then,

𝑇𝑟𝑎𝑐𝑒𝐴
𝑝

(𝐷
𝑚

, ⃗𝛽) = 𝐴
𝑝

(𝐷,

𝑚

∑

𝑖=1

𝛽
𝑖
+ (𝑚 − 1) (𝑛 + 1)) .

(26)

Remark 13. Note that a trace theorem can be extended to
some mixed norm classes defined like this

𝐴
𝑝⃗

(𝐷
𝑚

, ⃗𝛽)

= {𝑓 ∈ 𝐻 (𝐷
𝑚

) :

∫
𝐷

(∫
𝐷

(∫
𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑤⃗)
󵄨󵄨󵄨󵄨
𝑝1 𝛿 (𝑤

1
)
𝛽1 𝑑𝑚 (𝑤

1
)))

𝑝2/𝑝1

< ∞} ,

(27)

where 0 < 𝑝
𝑖
< ∞, 𝛽

𝑗
> −1, 𝑗 = 1, . . . , 𝑚 (see [2, 4] for unit

ball case).

We formulate now new two trace theorems concerning
𝑝 = ∞ case and 𝐴

𝑝

(𝐷
𝑚

, ⃗𝛽), 𝑝 ≤ 1 spaces. Then, we will also
below look at following operators following our papers [2, 4].
Let 𝑓 ∈ 𝐿

1

(𝐷
𝑚

) and

𝐺
⃗𝑥, ⃗𝑦
(𝑓) (𝜉) = ∫

𝐷

⋅ ⋅ ⋅ ∫
𝐷

𝑓 (𝑧
1
, . . . , 𝑧

𝑚
) 𝛿 (𝑧

1
)
𝑥1 ⋅ ⋅ ⋅ 𝛿 (𝑧

𝑚
)
𝑥𝑚

⋅

𝑚

∏

𝑗=1

𝐾
𝑗
(𝑧

𝑗
, 𝜉) 𝑑𝑚 (𝑧

1
) ⋅ ⋅ ⋅ 𝑑𝑚 (𝑧

𝑚
) ,

(28)

where𝐾
𝑖
is a kernel of 𝑥

𝑖
+𝑛+1 type, 𝑖 = 1, . . . , 𝑚, and 𝜉 ∈ 𝐷.

Let also
𝐴

∞

⃗𝑟
(𝐷

𝑚

)

=

{{{{

{{{{

{

𝑓 ∈ 𝐻(𝐷
𝑚

) :

sup
𝑧1∈𝐷

.

.

.

𝑧𝑚∈𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑧
1
, . . . , 𝑧

𝑚
)
󵄨󵄨󵄨󵄨

⋅ 𝛿 (𝑧
1
)
𝑟1 ⋅ ⋅ ⋅ 𝛿 (𝑧

𝑚
)
𝑟𝑚 < ∞

}}}}

}}}}

}

,

𝐴
∞

𝑟
(𝐷) = {𝑓 ∈ 𝐻 (𝐷) : sup

𝑧∈𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝛿 (𝑧)

𝑟

< ∞} .

(29)
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Theorem 14. Let 𝑟
𝑗
> 0, 𝑗 = 1, . . . , 𝑚, 𝑟 = ∑

𝑚

𝑗=1
𝑟
𝑗
. Then,

(1) Trace(𝐴∞

⃗𝑟
(𝐷

𝑚

)) = 𝐴
∞

𝑟
(𝐷),

(2) Trace(𝐴𝑝

⃗
𝛽

(𝐷
𝑚

)) = 𝐴
𝑝

𝑡
(𝐷),

where 𝑝 ≤ 1, 𝛽
𝑗
> −1, 𝑗 = 1, . . . , 𝑚, and 𝑡 = (𝑚 − 1)(𝑛 + 1) +

∑
𝑚

𝑗=1
𝛽
𝑗
.

The second part of the following theorem generalizes
partially Theorem 8.

Theorem 15 (on expanded Bergman projections). (1) Let 1 ≤

𝑝 < ∞, 𝑠
𝑗
> −1, 𝑗 = 1, . . . , 𝑚. Let also 𝑥

𝑗
> 𝑎

0
, 𝑦

𝑗
> 𝑏

0
,

𝑎
0
= 𝑎

0
(𝑝, 𝑠

𝑗
, 𝑛, 𝑚), and 𝑏

0
= 𝑏

0
(𝑝, 𝑠

𝑗
, 𝑛, 𝑚), where 𝑎

0
and 𝑏

0

are large enough, 𝑗 = 1, . . . , 𝑚. Then there is a constant 𝐶 so
that we have

∫
𝐷

󵄨󵄨󵄨󵄨󵄨
𝐺

⃗𝑥, ⃗𝑦
𝑓 (𝜉)

󵄨󵄨󵄨󵄨󵄨

𝑝

(𝛿 (𝜉))
(𝑚−1)(𝑛+1)+∑

𝑚

𝑗=1
𝑠𝑗 𝑑𝑚 (𝜉)

≤ 𝐶∫
𝐷

⋅ ⋅ ⋅ ∫
𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑧
1
, . . . , 𝑧

𝑚
)
󵄨󵄨󵄨󵄨
𝑝

⋅

𝑚

∏

𝑗=1

(𝛿 (𝑧
𝑗
))

𝑠𝑗

𝑑𝑚 (𝑧
𝑗
) .

(30)

(2) Let

𝑆
⃗𝑎,
⃗
𝑏
(𝑓) (𝜉

1
, . . . , 𝜉

𝑚
)

=

𝑚

∏

𝑖=1

(𝛿 (𝜉
𝑖
))

𝑎𝑖 ∫
𝐷

𝑓 (𝑤) (𝛿 (𝑤))
−𝑛−1+∑

𝑚

𝑗=1
𝑏𝑗 𝐾

1
(𝜉

1
, 𝑤)

⋅ ⋅ ⋅ 𝐾
𝑚
(𝜉

𝑚
, 𝑤) 𝑑𝑚 (𝑤) ,

(31)

where 𝐾
𝑗
is a kernel of type 𝑎

𝑗
+ 𝑏

𝑗
, 𝑗 = 1, . . . , 𝑚. Then, for

1 ≤ 𝑝 < ∞, 𝑠
𝑗
> −1,

∫
𝐷

⋅ ⋅ ⋅ ∫
𝐷

󵄨󵄨󵄨󵄨󵄨
𝑆

⃗𝑎,
⃗
𝑏
(𝑓) (𝜉

1
, . . . , 𝜉

𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑚

∏

𝑗=1

(𝛿(𝜉
𝑗
))

𝑠𝑗

𝑑𝑚 (𝜉
𝑗
)

≤ 𝐶∫
𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑤)
󵄨󵄨󵄨󵄨
𝑝

(𝛿(𝑤))
(𝑚−1)(𝑛+1)+∑

𝑚

𝑗=1
𝑠𝑗 𝑑𝑚 (𝑤) ,

(32)

where 𝑎
𝑗
> 𝑎

0
and 𝑏

𝑗
> 𝑏

0
for some large enough 𝑎

0
and 𝑏

0
,

𝑗 = 1, . . . , 𝑚.
(3) Let 𝑝 ≤ 1, 𝑠

𝑗
> −1, 𝑗 = 1, . . . , 𝑚. Then,

∫
𝐷

⋅ ⋅ ⋅ ∫
𝐷

󵄨󵄨󵄨󵄨󵄨
𝑆

⃗𝑎,
⃗
𝑏
(𝑓) (𝑧

1
, . . . , 𝑧

𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑚

∏

𝑗=1

(𝛿 (𝑧
𝑗
))

𝑠𝑗

𝑑𝑚(𝑧
𝑗
)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
𝑝

𝐴
𝑝

(𝑚−1)(𝑛+1)+∑
𝑚

𝑗=1
𝑠𝑗

,

(33)

where 𝑎
𝑗
> 𝑎

0
and 𝑏

𝑗
> 𝑏

0
for some large enough 𝑎

0
and 𝑏

0
,

𝑗 = 1, . . . , 𝑚.

Exact values of 𝑎
0
= 𝑎

0
(𝑝, 𝑠, 𝑛, 𝑚) and 𝑏

0
= 𝑏

0
(𝑝, 𝑠, 𝑛, 𝑚)

can be calculated as in unit ball case (see [3]).

Remark 16. Exact values of 𝑥
0
and 𝑦

0
in Theorem 15 can be

calculated by readers. We refer the reader to unit ball case
where details can be seen (see [2–4]).

Remark 17. The proof ofTheorem 15 will be omitted by us. In
the unit ball it can be seen in [2, 3, 16]. Moreover, the proof is
based on same ideas as the proof ofTheorems 1–14 with small
modifications.

3. Proofs of Theorems 1–15 and
Final Comment

In this section we provide proofs of all our main assertions
which we formulated in this paper in the previous section.

Proof of Theorem 1. We have the following chain of estimates
using properties of Kobayashi balls and Propositions 3–4:

𝐽∫
𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑤, . . . , 𝑤)
󵄨󵄨󵄨󵄨
𝑝

(𝛿(𝑤))
(𝑚−1)(𝑛+1)+∑

𝑚

𝑗=1
𝑠𝑗 𝑑𝑚 (𝑤)

≤ 𝐶
1
∑

𝑘≥0

∫
𝐵𝐷(𝑎𝑘 ,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑤, . . . , 𝑤)
󵄨󵄨󵄨󵄨
𝑝

⋅ (𝛿 (𝑤))
(𝑚−1)(𝑛+1)+∑

𝑚

𝑗=1
𝑠𝑗 𝑑𝑚 (𝑤)

≤ 𝐶
2
∑

𝑘≥0

( sup
𝑤∈𝐵𝐷(𝑎𝑘 ,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑤, . . . , 𝑤)
󵄨󵄨󵄨󵄨
𝑝

)

⋅ ∫
𝐵𝐷(𝑎𝑘 ,𝑟)

(𝛿 (𝑤))
(𝑚−1)(𝑛+1)+∑

𝑚

𝑗=1
𝑠𝑗 𝑑𝑚 (𝑤)

= 𝐶
3
∑

𝑘≥0

( sup
𝑤∈𝐵𝐷(𝑎𝑘,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑤, . . . , 𝑤)
󵄨󵄨󵄨󵄨
𝑝

)

⋅ (𝛿 (𝑎
𝑘
))

𝑡

⋅ 𝐶 (𝑟) ⋅ (𝛿 (𝑎
𝑘
))

𝑛+1

,

(34)

where 𝑡 = (𝑚 − 1)(𝑛 + 1) + ∑
𝑚

𝑗=1
𝑠
𝑗
and 𝐶(𝑟) is constant

(depending on 𝑟). These estimates follow from Lemmas 2.1
and 2.2 of [5] which say

𝑚(𝐵
𝐷
(⋅, 𝑟)) ≈ 𝛿

𝑛+1

, 𝑟 ∈ (0, 1) ,

𝛿 (𝑧) ∈ [
1 − 𝑟

𝐶
⋅ 𝛿 (𝑧

0
) ,

𝐶

1 − 𝑟
⋅ 𝛿 (𝑧

0
)] ,

𝑟 ∈ (0, 1) , 𝑧
0
∈ 𝐷, 𝑧 ∈ 𝐵

𝐷
(𝑧

0
, 𝑟) .

(35)

From (34) we have using Propositions 3–4 finally

𝐽 ≤ 𝐶∑

𝑘1≥0

⋅ ⋅ ⋅ ∑

𝑘𝑚≥0

(

(

sup
𝑤1∈𝐵𝐷(𝑎𝑘1

,𝑟)

.

.

.

𝑤𝑚∈𝐵𝐷(𝑎𝑘𝑚
,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑤
1
, . . . , 𝑤

𝑚
)
󵄨󵄨󵄨󵄨
𝑝)

)

⋅ (𝛿(𝑎
𝑘1
))

𝜏1/𝑚

⋅ ⋅ ⋅ (𝛿(𝑎
𝑘𝑚
))

𝜏𝑚/𝑚

≤ 𝐶
1
𝐽
1
,

(36)
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where

𝐽
1
= ∫

𝐷

⋅ ⋅ ⋅ ∫
𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑤
1
, . . . , 𝑤

𝑚
)
󵄨󵄨󵄨󵄨
𝑝

𝑚

∏

𝑗=1

(𝛿 (𝑤
𝑗
))

𝑠𝑗

𝑑𝑚 (𝑤
𝑗
) ,

(37)

where 𝜏
𝑗
= (𝑛 + 1)𝑚 + 𝑠

𝑗
𝑚, 𝑗 = 1, . . . , 𝑚. We used at the last

step the fact that {𝐵
𝐷
(𝑎

𝑘
, 𝑅)},𝑅 = (1/2)(1+𝑟) family is a finite

covering of𝐷, and so

∑

𝑘1≥0

. . . ∑

𝑘𝑚≥0

∫
𝐵𝐷(𝑎𝑘1

,𝑅)

⋅ ⋅ ⋅ ∫
𝐵𝐷(𝑎𝑘𝑚

,𝑅)

󵄨󵄨󵄨󵄨𝑓 (𝑤
1
, . . . , 𝑤

𝑚
)
󵄨󵄨󵄨󵄨
𝑝

⋅

𝑚

∏

𝑗=1

(𝛿 (𝑤
𝑗
))

𝑠𝑗

𝑑𝑚 (𝑤
𝑗
) ≤ 𝐶𝐽

1
.

(38)

A very careful analysis of the proof of Theorem 1 shows
that we replaced properties of 𝐷(𝑎

𝑘
, 𝑟) 𝑟-lattices of the unit

ball of C𝑛 (see [2, 4] and references therein) with similar
properties of 𝑟-lattice invented recently in strictly pseudo-
convex domains in important papers [5, 6]. This direction
of arguments (replacement of 𝑟-lattices) can be applied prac-
tically to all assertions from [2, 4]; we partially formulated
some parallel assertions above. In view of the mentioned
similarities, we give now complete proofs ofTheorems 12 and
14 leaving proofs of other assertions to readers and referring
to arguments from [2, 4].

Proof ofTheorems 8 and 12. Remark 11 shows that, for any𝑓 ∈

𝐴
𝑝

𝑡
, 0 < 𝑝 < ∞, 𝑡 = ∑

𝑚

𝑖=1
𝛽
𝑖
+ (𝑚 − 1)(𝑛 + 1), there is analytic

function 𝐹(𝑧, . . . , 𝑧) = 𝑓(𝑧), 𝑧 ∈ 𝐷:

𝐹 (𝑧
1
, . . . , 𝑧

𝑚
) = ∫

𝐷

𝑓 (𝜉)

𝑚

∏

𝑗=1

𝐾
𝑠0/𝑚

(𝑧
𝑗
, 𝜉) (𝛿 (𝜉))

̃
𝛽

𝑑𝑚 (𝜉) ,

(39)

where 𝑠
0
= 𝛽

0
+ 𝑛 + 1, for sufficiently large 𝛽 (by Lemma C

and Proposition 7). All we need to show now is that ‖𝐹‖
𝐴
𝑝

⃗𝛽

≤

𝐶‖𝑓‖
𝐴
𝑝

𝑡

, 𝑝 ≥ 1, using Proposition 6 and remark after it.
Note that for 𝑝 = 1 the assertion is easy to see and

follows from Fubini’s theorem directly. For 𝑝 > 1, we have
the following chain of estimates:

(∫
𝐷

󵄨󵄨󵄨󵄨𝑓 (𝜉)
󵄨󵄨󵄨󵄨
𝑝

(𝛿 (𝜉))
̃
𝛽 [

[

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐾

𝑠/𝑚
(𝑧

𝑗
, 𝜉)

󵄨󵄨󵄨󵄨󵄨
]

]

1/𝑚

𝑑𝑚(𝜉))

𝑝

≤ 𝐶
1
(∫

𝐷

󵄨󵄨󵄨󵄨𝑓 (𝜉)
󵄨󵄨󵄨󵄨
𝑝

(𝛿 (𝜉)
̃
𝛽

)

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐾

𝑠/𝑚
(𝑧

𝑗
, 𝜉)

󵄨󵄨󵄨󵄨󵄨

𝛾1𝑝

𝑑𝑚 (𝜉))

⋅ (∫
𝐷

(𝛿 (𝜉))
̃
𝛽

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐾

𝑠/𝑚
(𝑧

𝑗
, 𝜉)

󵄨󵄨󵄨󵄨󵄨

𝛾2𝑞

𝑑𝑚(𝜉))

𝑝/𝑞

≤ 𝐶
2
(∫

𝐷

󵄨󵄨󵄨󵄨𝑓 (𝜉)
󵄨󵄨󵄨󵄨
𝑝

(𝛿 (𝜉))
̃
𝛽

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐾

𝑠/𝑚
(𝑧

𝑗
, 𝜉)

󵄨󵄨󵄨󵄨󵄨

𝛾1𝑝

𝑑𝑚 (𝜉))

⋅ (∫
𝐷

(𝛿 (𝜉))
̃
𝛽 󵄨󵄨󵄨󵄨󵄨
𝐾

𝑠/𝑚
(𝑧

𝑗
, 𝜉)

󵄨󵄨󵄨󵄨󵄨

𝛾2𝑞𝑚

𝑑𝑚(𝜉))

𝑝/𝑞𝑚

,

(40)

where 1/𝑝 + 1/𝑞 = 1, 1 < 𝑝 < ∞, 𝛾
1
+ 𝛾

2
= 1, 𝑧

𝑗
∈ 𝐷,

𝑗 = 1, . . . , 𝑚, and 𝑠 = 𝛽+𝑛+1. Hence, we have by preliminaries
of the previous section

‖𝐹‖
𝐴
𝑝

⃗𝛽

≤ 𝐶
1
∫
𝐷

⋅ ⋅ ⋅ ∫
𝐷

󵄨󵄨󵄨󵄨𝐹 (𝑧
1
, . . . , 𝑧

𝑚
)
󵄨󵄨󵄨󵄨
𝑝

(𝛿 (𝑧
1
))

𝛽1

⋅ ⋅ ⋅ (𝛿 (𝑧
𝑚
))

𝛽𝑚 𝑑𝑚 (𝑧
1
) ⋅ ⋅ ⋅ 𝑑𝑚 (𝑧

𝑚
)

≤ 𝐶
2
∫
𝐷

⋅ ⋅ ⋅ ∫
𝐷

(𝛿 (𝑧
1
))

𝛽1 ⋅ ⋅ ⋅ (𝛿 (𝑧
𝑚
))

𝛽𝑚

⋅ ∫
𝐷

󵄨󵄨󵄨󵄨𝑓 (𝜉)
󵄨󵄨󵄨󵄨
𝑝

⋅ (𝛿 (𝜉))
̃
𝛽

⋅ (

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐾

𝑠/𝑚
(𝑧

𝑗
, 𝜉)

󵄨󵄨󵄨󵄨󵄨

𝛾1𝑝

)(𝛿 (𝑧
1
))

𝑥1

⋅ ⋅ ⋅ (𝛿 (𝑧
𝑚
))

𝑥𝑚 𝑑𝑚 (𝜉) 𝑑𝑚 (𝑧
1
) ⋅ ⋅ ⋅ 𝑑𝑚 (𝑧

𝑚
) ,

(41)

where 𝑥
𝑖
= (𝛽+𝑛+1)(𝑝/𝑞𝑚)−(𝛽+𝑛+1)(𝛾

2
𝑝/𝑚), 𝑖 = 1, . . . , 𝑚,

since 𝛽 is large enough.
An application of Fubini’s theorem and the same estimate

we just used above lead finally to the estimate that is

‖𝐹‖
𝐴
𝑝

⃗𝛽

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐴𝑝
𝑡

,

where 𝑝 ∈ (1,∞) , 𝑡 =

𝑚

∑

𝑖=1

𝛽
𝑖
+ (𝑚 − 1) (𝑛 + 1) .

(42)

At the final step we used the following inequality in particu-
lar:

𝑚

∏

𝑖=1

∫
𝐷

(𝛿 (𝑧
𝑖
))

𝛽𝑖+(
̃
𝛽+𝑛+1)(𝑝/𝑞𝑚)−(

̃
𝛽+𝑛+1)(𝛾2𝑝/𝑚)

⋅
󵄨󵄨󵄨󵄨𝐾𝑠/𝑚

(𝑧
𝑖
, 𝜉)

󵄨󵄨󵄨󵄨
𝛾1𝑝 𝑑𝑚 (𝑧

𝑖
)

≲ 𝐶 (𝛿 (𝜉))
(−

̃
𝛽)+∑

𝑚

𝑖=1
𝛽𝑖+(𝑚−1)(𝑛+1)

, 𝜉 ∈ 𝐷,

(43)

for certain fixed 𝛾
1
, 𝛾

2
, 𝛾

1
+ 𝛾

2
= 1 and large enough 𝛽,

1/𝑝 + 1/𝑞 = 1, 1 < 𝑝 < ∞. Note that an easy technical
computation shows that such 𝛾

1
and 𝛾

2
can be found.We leave

this inspection to readers.
The theorem is proved.
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Remark 18. Note the assertion we just proved is in a little
bit general form and can be found in Theorem 15. We omit
details referring the readers to [2, 4] where unit ball case was
considered.

Remark 19. Note it is easy to see the same arguments are valid
if we replace in formulations of our theorems kernels𝐾

𝛼/𝑚
by

|𝐾
𝛼
|
1/𝑚 to get the same results.

The next lemma, Lemma D, as in unit ball case is playing
the crucial role in the proof of Theorem 14 (𝑝 ≤ 1 case). We
however show Theorem 14 using additional assumptions on
𝐾

𝑡
kernel. These assumptions (which are valid in the unit

ball also) can be dropped using Lemma C and this is also
completely similar to the proof of the unit ball case.

LemmaD (see [4]). Let 𝐹 ∈ 𝐻(𝐷), 𝑝 ≤ 1, 𝛽 > −1, 𝛼 is a large
enough natural number, and 𝑧

𝑘
∈ 𝐷, 𝑘 = 1, . . . , 𝑚. One has the

following estimate:

(∫
𝐷

|𝐹 (𝑧)|

𝑚

∏

𝑘=1

󵄨󵄨󵄨󵄨𝐾𝛼
(𝑧, 𝑧

𝑘
)
󵄨󵄨󵄨󵄨 𝛿

𝛽

(𝑧)𝑑𝑚(𝑧))

𝑝

≤ 𝐶∫
𝐷

|𝐹 (𝑧)|
𝑝

𝛿 (𝑧)
𝛽𝑝+𝑝(𝑛+1)−(𝑛+1)

⋅

𝑚

∏

𝑘=1

󵄨󵄨󵄨󵄨𝐾𝛼
(𝑧, 𝑧

𝑘
)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑚 (𝑧)

(44)

for some positive constant 𝐶.

In unit disk this lemma can be seen in [8]. In unit ball
this lemma can be seen in [4]. This lemma is crucial for the
proof of trace theorems in unit disk and unit ball. Moreover,
for𝑚 = 1 case in pseudoconvex domains, we refer the reader
to [12].

Proof of Theorem 14. We start with the proof of the first part
of our theorem.As in proof of the previous theorem, for every
positive large enough 𝛽

𝑗
, 𝑗 = 1, . . . , 𝑛, we have 𝐹(𝑧, . . . , 𝑧) =

𝑓(𝑧), where

𝐹 (𝑧
1
, . . . , 𝑧

𝑚
)

= 𝐶 ̃
𝛽
∫
𝐷

𝑓 (𝑤) (𝛿 (𝑤))
̃
𝛽

𝑚

∏

𝑗=1

𝐾
𝑠/𝑚

(𝑤, 𝑧
𝑗
) 𝑑𝑚 (𝑤) ,

(45)

where 𝐶 ̃
𝛽
is a Bergman representation constant, for large

enough 𝛽, 𝑠 = 𝛽 + 𝑛 + 1.
Note first that it is obvious Trace(𝐴∞

⃗𝑟
) ⊂ 𝐴

∞

𝑟
(𝐷). Since

obviously we have

sup
𝑧∈𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑧, . . . , 𝑧)
󵄨󵄨󵄨󵄨 (𝛿 (𝑧))

∑
𝑚

𝑗=1
𝑟𝑗

≤ sup
𝑧1∈𝐷

.

.

.

𝑧𝑚∈𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑧
1
, . . . , 𝑧

𝑚
)
󵄨󵄨󵄨󵄨

𝑚

∏

𝑗=1

(𝛿 (𝑧
𝑗
))

𝑟𝑗

, (46)

to show the reverse we get by Hölder’s inequality from (45)
and preliminary estimates of Forelli-Rudin type which we
mentioned above

󵄨󵄨󵄨󵄨𝐹 (𝑧
1
, . . . , 𝑧

𝑚
)
󵄨󵄨󵄨󵄨

≤ 𝐶
1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐴∞
⃗𝑟

⋅ ∫
𝐷

(𝛿 (𝑤))
̃
𝛽−∑
𝑚

𝑗=1
𝑟𝑗

⋅

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐾

(
̃
𝛽+𝑛+1)/𝑚

󵄨󵄨󵄨󵄨󵄨
(𝑤, 𝑧

𝑗
) 𝑑𝑚 (𝑤)

≤ 𝐶
2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐴∞
𝑟

⋅

𝑚

∏

𝑗=1

(∫
𝐷

(𝛿 (𝑤))
−𝑟𝑗𝑚+

̃
𝛽

⋅
󵄨󵄨󵄨󵄨󵄨
𝐾

(
̃
𝛽+𝑛+1)/𝑚

󵄨󵄨󵄨󵄨󵄨
(𝑤, 𝑧

𝑗
) 𝑑𝑚 (𝑤))

1/𝑚

≤
𝐶
3

(𝛿 (𝑧
1
))

𝑟1 ⋅ ⋅ ⋅ (𝛿 (𝑧
𝑚
))

𝑟𝑚
, 𝑧

𝑗
∈ 𝐷, 𝑗 = 1, . . . , 𝑚,

(47)

by Corollary 3.9 from [12] for large enough 𝛽 and the first
part of Theorem 14 is proved.

We turn now to the proof of the second part of
Theorem 14, the case of 𝐴𝑝

𝛼⃗
spaces for 𝑝 ≤ 1.

The proof follows directly fromTheorem 1 (the proof was
provided above) and from the third part of Theorem 15. We
turn to the proof of the third part of Theorem 15 completing
the proof at the same time again using properties of 𝑟-lattices
of Kobayashi ball and we have the following inequalities.

Here we need

∫
𝐵𝐷(𝑎𝑘 ,𝑟)

(𝛿 (𝑤))
𝑠

𝑑𝑚 (𝑤) ≍ (𝛿 (𝑎
𝑘
))

𝑛+1+𝑠

,

𝑎
𝑘
∈ 𝐷, 𝑠 > −1.

(48)

These facts and Propositions 3–7 above lead us to the
following chain of estimates which finish the proof of the
inequality we wished to show.

We put additional condition on Bergman kernel below,
but with the help of LemmaD it can be removed. Note similar
arguments we used in the case of unit ball.We have nowusing
(35)

󵄨󵄨󵄨󵄨󵄨
(𝑆

⃗𝑎,
⃗
𝑏
𝑓) (𝜉

1
, . . . , 𝜉

𝑚
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
1

∞

∑

𝑘=1

𝑚

∏

𝑗=1

(𝛿(𝜉
𝑖
))

𝑎𝑖

⋅

∞

∑

𝑘=1

∫
𝐵𝐷(𝑎𝑘 ,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑧⃗)
󵄨󵄨󵄨󵄨 (𝛿 (𝑧))

−𝑛−1+∑
𝑚

𝑗=1
𝑏𝑗
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⋅

𝑚

∏

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝐾

𝜏𝑖
(𝜉

𝑖
, 𝑧)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑚 (𝑧)

≤ 𝐶
2

∞

∑

𝑘=1

𝑚

∏

𝑗=1

(𝛿(𝜉
𝑖
))

𝑎𝑖

⋅ ∫
𝐵𝐷(𝑎𝑘 ,𝑟)

(𝛿 (𝑧))
−𝑛−1+∑

𝑚

𝑗=1
𝑏𝑗

⋅

𝑚

∏

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝐾

𝜏𝑖
(𝜉

𝑖
, 𝑧)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑚 (𝑧)

⋅ max
𝑧∈𝐵𝐷(𝑎𝑘 ,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

≤ 𝐶
3

∞

∑

𝑘=1

𝑚

∏

𝑗=1

(𝛿 (𝜉
𝑖
))

𝑎𝑖 max
𝑧∈𝐵𝐷(𝑎𝑘 ,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

⋅ (𝛿 (𝑎
𝑘
))

−𝑛−1+∑
𝑚

𝑗=1
𝑏𝑗 (𝛿 (𝑎

𝑘
))

𝑛+1

⋅

𝑚

∏

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝐾

𝜏𝑖
(𝜉

𝑖
, 𝑎

𝑘
)
󵄨󵄨󵄨󵄨󵄨
,

(49)

where 𝜏
𝑖
= 𝑎

𝑖
+ 𝑏

𝑖
, 𝑖 = 1, . . . , 𝑚, and 𝜉

𝑖
∈ 𝐷, 𝑖 = 1, . . . , 𝑚.

Consider
󵄩󵄩󵄩󵄩󵄩
(𝑆

⃗𝑎,
⃗
𝑏
) (𝑓)

󵄩󵄩󵄩󵄩󵄩𝐴𝑝𝑠1,...,𝑠𝑚

≤ 𝐶
4

∞

∑

𝑘=1

sup
𝑤∈𝐵𝐷(𝑎𝑘 ,𝑟)

|𝑓(𝑤)|
𝑝

(𝛿 (𝑤))
𝑚(𝑛+1)+∑

𝑚

𝑗=1
𝑠𝑗

≤ 𝐶
5

∞

∑

𝑘=1

∫
𝐵𝐷(𝑎𝑘 ,𝑟)

|𝑓(𝑤)|
𝑝

(𝛿 (𝑤))
(𝑚−1)(𝑛+1)+∑

𝑚

𝑗=1
𝑠𝑗 𝑑𝑚

≤ 𝐶
6
∫
𝐷

|𝑓(𝑤)|
𝑝

(𝛿 (𝑤))
(𝑚−1)(𝑛+1)+∑

𝑚

𝑗=1
𝑠𝑗 𝑑𝑚 (𝑤) .

(50)

The proof of Theorem 14 is finished.

Remark 20. Some results of this paper can be extended to
the so-called analytic Herz type spaces in product domains.
To define the Herz space based on Kobayashi balls, we
remind the reader that there exists a family of Kobayashi balls
𝐵
Ω
(𝑎

𝑘
, 𝑟) which forms an 𝑟-lattice in bounded strictly pseu-

doconvex domainΩ (see [5, 6, 12]).Wedenote by𝐵𝑚

Ω
(𝑧, 𝑟) 𝑚-

products of suchKobayashi𝐵
Ω
(𝑧, 𝑟) balls inC𝑚, where 𝑧 ∈ Ω.

By𝑀𝑝

],𝜏(Ω
𝑚

), we denote all𝑓 analytic functions inΩ𝑚 so that

∫
𝐵
𝑚

Ω
(𝑍,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑧
1
, . . . , 𝑧

𝑚
)
󵄨󵄨󵄨󵄨
𝑝

𝑚

∏

𝑗=1

𝛿
𝑠𝑗 (𝑧

𝑗
) 𝑑𝑧

𝑗 (51)

belongs to 𝐿
1

𝜏1 ,...,𝜏𝑚

(Ω
𝑚

), where 𝑠
𝑗
> −1, 𝜏

𝑗
> −1 for all 𝑗 =

1, . . . , 𝑚, 1 ≤ 𝑝 < ∞.

It will be interesting to extend our results to 𝐴
𝑝,𝑞

𝛿,𝑘
spaces;

some ideas from this paper can be used probably.

Remark 21. Some results of this paper can be also obtained
by similar technique in bounded symmetric domains and
bounded minimal homogeneous domains in higher dimen-
sion.
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holomorphic spaces on polyballs,” Journal of Function Spaces
and Applications, vol. 8, no. 3, pp. 271–285, 2010.

[4] R. F. Shamoyan and O. R. Mihić, “On traces of Qp type spaces
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