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New sharp estimates of traces of Bergman type spaces of analytic functions in bounded strictly pseudoconvex domains are obtained.
These are, as far as we know, the first results of this type which are valid for any bounded strictly pseudoconvex domains with smooth

boundary.

1. Introduction and Formulation of Problem

In this note we obtain new sharp estimates for traces in
Bergman type spaces of analytic spaces in strictly pseudocon-
vex domains with smooth boundary. This line of investigation
can be considered as a continuation of our previous papers
on traces in analytic function spaces [1-4] where similar
results were obtained but only in simpler bounded domains
in higher dimension. We remark that in this note for the first
time in the literature we consider this known problem related
with trace estimates in spaces of analytic functions in more
general pseudoconvex domains in C”, namely, in strictly
pseudoconvex domains with smooth boundary. The next sec-
tion contains required preliminaries on analysis on bounded
strictly pseudoconvex domains with smooth boundary. Our
new sharp results are contained in the last section of this note.
Related estimates for Bergman type projections will be also
provided. All our main results in context of unit ball can be
seen in [2-4]. All preliminary assertions of this paper have
their direct analogues in context of unit ball and this can
be seen in [2-4] and references therein. It is known that the
geometry of pseudoconvex domains is more complicated and
extra arguments were needed to get technical lemmas which
are used to prove main results of this paper. These subtle
lemmas can be seen in particular in recent papers [5, 6].

Now we will shortly present the history of the diagonal
map (or traces) problem. After the appearance of [7], various
papers appeared where arguments which can be seen in [7]
were extended, changed, and modified in various directions
in one and higher dimension (see, e.g., [1, 3, 8, 9] and also
various references therein). In particular in mentioned papers
various new sharp results on traces for analytic function
spaces in higher dimension (unit polyball) were obtained.
New results for large scales of analytic Q, type spaces in
polyball were proved (see [4]). Later several new sharp
results for harmonic functions of several variables in the
unit ball and upper half-plane of Euclidean space were also
obtained (see, e.g., [1] and references therein). For the first
time in the literature, these types of problems connected with
diagonal map in analytic spaces appeared before in [7]. In
[7], this problem was formulated and certain concrete cases
connected with spaces of analytic functions in the unit disk
were considered.

Some interesting applications of diagonal map can be
seen in [8, 10] where other problems around this topic can
be found also. The goal of this note is to develop further
some ideas from our recent mentioned papers and present
new sharp theorems in strictly pseudoconvex domains with
smooth boundary.



Extension problems were studied mainly by two different
methods. The one is the extension using integral formula in
the case where D is bounded pseudoconvex domains with
a support function (domains with smooth boundary). The
other is the L? extension using the Hilbert space theory in the
case when D is general bounded pseudoconvex domain (see
[11-14]).

For formulation of our results, we will need various
standard definitions from the theory of strictly pseudoconvex
domains with smooth boundary. In this and next section, we
mention some vital facts which will be heavily used in proofs
of our assertions (see, e.g., also for parallel assertion in other
domains [2-4]).

Let D = {z : p(z) < 0} be a bounded strictly pseudo-
convex domain of C" with C* boundary. We assume that
the strictly plurisubharmonic function p is of class C* in a
neighborhood of D; that is, -1 < p(z) < 0,z € D, |op| =
C, > 0 for |p| < r,. Let further H(D) be the space of all
analytic functions on D.

Let (see [15])

Agﬁ (D) = ‘{f € H(D): ||f||P)q’5)k < oo}, )
where
o ap 1/q
NNMM=(g%L<LamqVMJ prig)"
()

where D, = {z € C" : p(z) < —r}, 0D, is boundary, do, is the
normalized surface measure on 0D, and by dr normalized
volume element on (0,7),0 < p < 00,0 < g £ 00,8 > 0,
k=0,1,2,...,and

1 o0

)
= sup r J

)

1/p
|D“f|pdo,> :0<r<ryp,

(3)

where D* is a differential operator acting from H(D) to H(D)
(see [15] and references therein for this operator and it is
properties). For p,q < 1, it is quasinorm (see [15]). For p = g,

1/p
W= (5 [P o ame)

|| <k

where dm is the Lebesgue measure on the D domain. We
listed some properties of these classes below in Lemma C.

For p = g, k = 0, we get Bergman spaces Ag(D) (see
[5, 6]).

Let Bp(z, 1) be Kobayashi ball in bounded pseudoconvex
domain (see [5, 6]), 8(w) : D — R*, and §(w) = d(w, dD).

One of the intentions of this paper is to consider new
trace problem and trace map for this case of bounded strictly
pseudoconvex domains with smooth boundary. It is a map
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Tr f(z) = f(z,...,2),z € D,if f € X ¢ H(D™) for
certain quasinormed space X on m products of D domains
D™, where H(D'™) is a space of analytic functions in products
domains D"

Note these type maps were previously considered by
various authors in particular cases when Q) = D (unit disc),
when Q = B (unit ball). Applications of this map to various
problems in function theory are also known (see, e.g., [2, 4,
10] and references therein).

Note in addition that we use heavily the same machinery
which was recently developed in [5, 6].

The trace problem in particular is in short the following.
Let f € H(D™), D™ = D x --- x D and f satisfies certain
growth condition f € X, X ¢ H(D™) and then get as much
information as possible about growth of f(z,...,z),z € D,
where X can be certain fixed functional class of analytic
functions f(z,...,2,), 2; € D,i = 1,...,m (analytic by
each variable). We also will look at the same time at estimates
of various multifunctional operators and expressions closely
related with restriction map.

The technique we use is based also on a work of Beatrous
(see [12]) and Ortega-Fabrega (see [15]) and some informa-
tion from [5, 6] on pseudoconvex domains (namely, some
subtle estimates from very recent papers [5, 6]) will be also
used. Note that various similar extension theorems were
previously studied by many authors (Henkin, Adachi, and
Cumenge); see [11-13, 15] and various references therein.

Actually in this paper we continue (partially) the investi-
gation of Jimbo and Sakai (see [16]) related to function spaces
on products of pseudoconvex domains in C".

To define new Bergman type analytic spaces on products
of pseudoconvex domains we have to replace one integral
by multiple integrals in spaces above. For example, the
mentioned quasinorms will take this form:

”f " J TP, .

=£1,5x

|oc1|sk1
|zxm|skm

JD . JD D% £ (20,2, - (=p)™*

1/p

...(_p)a'”f1 dm(&)---dm(E,,) )

(5)

where f € H(D™)and§; >0, j=1,...,m.

We formulate in the next section some new results related
to restriction maps in products of pseudoconvex domains
and multifunctional spaces generalizing previous estimates
for polydisk (when D is a unit disk). Note now our goal
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in this paper to study only particular case of general A%,Z
classes and integral operators (Bergman type) on them. Note
also that Bergman type projection from various points of
view in pseudoconvex domains was studied before via various
authors (see, e.g., [12, 15, 17-19] and references therein).

The study of traces of general A . spaces (including limit
case) is a separate problem which w111 be addressed by authors
in a separate paper.

The study of analytic spaces in products of pseudoconvex
domains was started probably in [16, 20]. This paper is heavily
based on arguments that appeared in proofs of results from
[2, 4]. Using them, we here extend various assertions which
can be found in unit ball in [2, 4] to the case of general strictly
pseudoconvex bounded domains D with smooth boundary.

Throughout the paper C, sometimes with indexes, stands
for various positive constants which can be different even in
a chain of inequalities and are independent of the discussed
functions or variables.

The notation A = B means that there is a positive constant
C, such that B/C < A < CB. We will write for two expressions
A < Bif there is a positive constant C such that A < CB.

2. Preliminaries and Formulations of
Main Theorems

In this section, we collect preliminaries and formulations of
all main results of this paper.

We define Bergman spaces on polypseudoconvex
domains as

A% (D™)
-2 (o)

:{feH(Dx---xD):

[l e

s x 8 (w,, )" dm (w,) -~ dm

oo},

where dm is the Lebesgue measure on the D domain, 0 < p <
00, and ﬂj > -1, j = 1,...,m. These are Banach spaces for
1 < p < 0o and complete metric spaces for 0 < p < 1. We put
dmy(z) = 8°(z)dm(z), s > 1.

Let Trace(X) = {f(z,...,2) : f € X c H(D™)}, where X
is quasinormed space in product domains. Theorem 1 is one
of the main results of this paper.

(6)
wm) |P 8 (wl )ﬁl

(W)

Theorem 1. Let p € (0,00), and ; > -1,i=1,...,m. Then,

TraceA? (Dm,ﬁ) c AP <D, iﬁl +m-1)(n+ 1)) . ()

i=1

The proof of this theorem is based only on Propositions
3 and 4. It is completely parallel to the case of unit ball,
which was considered before as in [2, 4]. We omit it now. We
start with covering lemma (then other four lemmas) for D by
using Kobayashi balls Bj,(z, 1) (see [5, 6]), but first we need
Definition 2.

Definition 2 (see [5, 6]). Let D ¢ C”" be a bounded domain
and r > 0. An r-lattice in D is a sequence {a;} C D such that
D = |J; Bp(ay, r) and there exists m > 0 such that any point
in D belongs to at most m balls of the form Bj,(a, R), where
R=(1/2)1 +71).

Proposition 3 (see [5, 6]). Let D ¢ C" be a bounded strictly
pseudoconvex domain with smooth boundary. Then for every
r € (0,1) there exists an r-lattice in D; that is, there exists
m € N and a sequence {a,} C D of points such that D =
Uk Bolag, ) and no point of D belongs to more than m of
the balls B (a, R), where R = (1/2)(1 + ).

Proposition 4 (see [5, 6]). Let D ¢ C" be a bounded strictly
pseudoconvex domain with smooth boundary. Givenr € (0, 1),
set R = (1/2)(1 + r) € (0,1). Then, there exists a k, > 0
depending on r such that for allz, € D and for allz € Bp(z, 1)

@) f(2) < (k,/m(Bp(zy,1))) IBD(ZO,,)(f (w))dm(w),
(2) m(Bp(, 1) = 8",

for every f-nonnegative plurisubharmonic function f : D —
R*.

Let now D be a C*™-bounded strongly pseudoconvex
domain with defining function p. We need some results for
our proofs. We let g(z, y) be the associated Levi polynomial
(see [21]). Consider

00 =25 L 0)((-2)
j=la(j

(8)

n

" 2 aC aCk

jik=1

@ (&-2;) G- 20)-

It follows from Taylor’s formula and the strict plurisub-
harmonicity of p that there are positive constants C; and r
and a neighborhood D' of D such that

Reg(z.0)2p()-p@) +C |z- [ )
for z,{ € D' and |z - {| < r. Setting §(z,{) = g(z,{) - 2p((),
it follows that

Re g (z,{) =Reg(z,() - 2p ()
(10)

Q) -p@)+Clz-¢



forz,{ € D" and |z - {| < r and §(2,{) = g(z,{) for { € aD.
Also we have

H§(2.0)=0(]z-), (11)

where ./ is the complex r_10rma1 vector field of type (1,0)
defined by " = ¥, (9p/9(;)(0/0()).

Lemma A (see [21]). Let g, D', r, and C, be as above. There is
a neighborhood D of D with D > D, a C™ function ® on DxD,
and a positive constant C, such that

(1) for any { € D the function ®(-, () is holomorphic on D;

(2) ©(,8) = ~2p() for § € D and |B(2,0)| 2 C, for
z,{ € Dwith|z (| >r/2;

(3) there is a nonvanishing C* function Q(z,{) on

Ar/zz{(z,()eﬁx5:|z—5|sg} (12)
such that

6(2) C) = g(z’ C)Q(z) C) on Ar/z- (13)

Lemma B (see [21]). For each s > —1, there is a smooth form
1, € C°(D x D) such that

(1) n,(2,) is holomorphic in z on D for any fixed { € D
and

(2) for f € AIS(D) and z € D one has

f@-| ro -t (.0)

o (P @) dm(@).  (14)

Definition 5 (see [12]). Let K(z,&) be a measurable function
on Dx D and let t be a positive number. One says that K = K,
(or K,) is a kernel of Bergman typet forallz € D,if|K(z,&)| <

C (|®(z, &)|™") where @ is Henkin-Ramirez function. So, if K
is a kernel of Bergman type t, then K* is a kernel of type st.

In this paper we deal with the following kernel K, ,,,(2,
w) of n+t + 1 type which is the reproducing Bergman kernel
for weighted Bergman spaces in pseudoconvex domains with
smooth boundary (see [12, 22]).

We need also estimates for Bergman type kernel, the so-
called Forelli-Rudin type estimates. The following assertion is
valid if we change the index of kernel n+ 1 ton + ¢ + 1 (and
(n+1)(p—-1)to(n+1+t)p—(n+1)in other places; see [22]).

Proposition 6 (see [5, 6]). Let D ¢ C" be a bounded strictly
pseudoconvex domain with smooth boundary and let z, € D
and 1 < p < oo. Then, one has the following estimate for
Bergman type kernel K, (2, z):

[, 1Ko G 20) 6@ dm @

8(2,) "IV —1< B+ (p-1),
< 1|logd (z,)] » B=m+1)(p-1),

1 B>mn+1)(p-1).
(15)
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Estimate (15) is valid for all K, kernels (see [12, 22]).
Let

D)= {f e L' @): £}, = | If @ dm, ) < oo},

s> —1.
(16)

p>1,

Let us further define Bergman type integral operators. If
F e HID)N Li(D), then we have Bergman type representa-
tion

F(2) =P (F)(2),

P, F(z) = JD F ) [ | Koty (2 w)) drmn, (w),
i=1
(17)

forallz € D,s > —-1.If f € LY(D), we define the operator
(Bergman type operator) forallz; € D, j = 1,...,m:

Pon (1) @) = [ £ OT] Kismsrym €2 drm, ©.
(18)

Lemma C (see [12]). Let f € Alt(D) for sufficiently large t.
Then,

fo) = JDf(E)K(z, H© dmE), (1)

where K(z,&) is a certain fixed kernel of n +t + 1 type, z € D.

Proposition 7 (see [12]). Let f € AP(D),0 < p < 0o, & > —1.
Then, (19) integral representation holds with large enough t.

Proof. If f € AZ(D), then for large enough t we have f ¢
Alt(D). The proof of these facts follows from the well-known
proof in the unit disk case. Then, use Lemma C.

We now also note that the following is true. Let

D(z1,..52,)
= JD f (5) K(t+n+1)/m (Zl’ 5) e K(t+n+l)/m (20)
(2, )8(8) dm (¥),
z;€D,j=1,...,m. Wehave

®(z....2) = jD F & Kootz 0)" 8 ) dm ()

= jD FO R (58 dm(® = (2),
2

where t > t, t, is large enough, and z € D, f € A2, p > 0,
a>-1. O
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The study of ® = T, ,f operator (expanded Bergman
projection) is of special interest. This operator was considered
by many authors before in various situations (polydisk, unit
ball, and spaces of harmonic functions in R”*' and B) and
used in relation to traces problems (see [2, 4] and references
therein).

We provide some new estimates here for expanded
Bergman projection based on our fully previous work in
unit ball extending known estimates for ordinary Bergman
projection in strictly pseudoconvex domains in weighted
Bergman A? spaces. Our results again are heavily based on
lemmas from [5, 6].

Theorem 8. Let1 < p < coandleta; > =1, j = 1,...,m,
and

TS (215005 2,0)

_ S m(n+t+1)—(n+1)
|, r@se -

m

MK (zj,s)]dm ®.

i=1

wherezj €D, j=1,..

Then, we have

.m, and t > t, for large enough t,,.

"Tm,tf

ar, <ClflLag, (23)

wherea; = ' aj+(n+1)(m-1) and hence

JD...JD T, f (21 s 2) P 8% (21)

e §%m (zm) dm (Zl) ~-dm (Zm)

= CJDIf(E)I"S(E)“ dm (©), @4

T, =io¢j+(n+1)(m—1).
=1

Remark 9. It will be interesting for reader to compare this
result with Theorem 4.1 from [12] where similar integral oper-
ator with K, kernel was considered and used in proof of main
results.

Remark 10. A variant of Theorem 8 is true also for p < 1. We
will suggest comparing our proofs with Corollary 5.3 of [12]

where m = 1 case was considered.

Remark 11. From Proposition 7 we have, for large enough
t, f € AP, and if we define

as(zl""’zm) = JDf(E) Ktsne1yjm (21)5)

e K(t+n+1)/m (zm’ f) g (E)t dm (E) >
(25)

then ®(z,...,z) = f(2); since the integral representation
(19) is valid for large enough t, f ¢ :41 This together
with assertion concerning the action of ®(z,,...,z,,) from
Theorem 8 gives another theorem on traces (see proof below).

Theorem 12. Let f € AP(D™, ff) and Bj>-11<p<oo
j=1,...,m. Then,

TraceA? (Dm,ﬁ) = AP (D, iﬁ, +m-1)(n+ 1)).
=1

(26)

Remark 13. Note that a trace theorem can be extended to
some mixed norm classes defined like this

AP (D™, )

:{feH(D'"):

[, (0, J, @ a0 am )" oo}

(27)

where 0 < p; < 00, ; > =1, j = 1,...,m (see [2, 4] for unit
ball case).

We formulate now new two trace theorems concerning

p = oo case and AP(D™, f), p < 1 spaces. Then, we will also
below look at following operators following our papers [2, 4].
Let f € L'(D™) and

Ges (N@ = [ | Flenz) ()"0 (z)™

m

1K (z8) dm (z)) - dm (z,,),
j=1
(28)
where K; is akernel of x; +n+1 type,i = 1,...,m,and & € D.
Let also
A2 (D)
=4 feH(D"):
sup |f (210---120)]

z,€D
: (29)

z,,€D

m

8(z)" 8 ()" <o,

AT (D) = 1f€H(D):squ|f(z)|8(z)r<oo}.



Theorem 14. Letr; >0, j=1,...,m,r = Z] , 7j Then,

(1) Trace(AY’(D™)) = A?(D),
(2) Trace(A%(D™)) = A{(D),

where p < 1, ﬁj ,m, andt =(m-1)(n+1) +

ST B

The second part of the following theorem generalizes
partially Theorem 8.

>-1,j=1,...

Theorem 15 (on expanded Bergman projections). (1) Let 1 <
p <00 > -1, j = 1,...,m. Let also Xj > ay y; > by,
ay = ag(p,s;n,m), and by = by(p,s;,n,m), where ay and b,
are large enough, j = 1,...,m. Then there is a constant C so

that we have

Ge s f B (8 (&)™ VIS gy (£)
D 4
SCID---JD|f(zl,...,zm)|p (30)

1 ()" dm(z,).

=1

.

(2) Let
Sa5 () (i 8)

m

=[TeE)"

i=1

J fw) @ )" MK (6, w)

K,y (G w) dm (),

(31)
where f] is a kernel of type a; + bj, j = 1,...,m. Then, for
l<p<oo,s;>-1L

P
[ Jsaa () e ,,,>| [(006))" am ()
C J |f @)|? Bw) ™ DTS i (w)
’ (32)

where a; > ay and b; > by for some large enough a, and by,

j=L....,m

(B Letp<ls;>-1j=1,...,m Then,

< C|fI% )

(m— 1)(n+1)+):j"1 I

(33)

where a; > ay and b; > b, for some large enough a, and by,

j=L....,m
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Exact values of a;, = ay(p,s,n,m) and b, = by(p, s, n,m)
can be calculated as in unit ball case (see [3]).

Remark 16. Exact values of x; and y, in Theorem 15 can be
calculated by readers. We refer the reader to unit ball case
where details can be seen (see [2-4]).

Remark 17. The proof of Theorem 15 will be omitted by us. In
the unit ball it can be seen in [2, 3, 16]. Moreover, the proof is
based on same ideas as the proof of Theorems 1-14 with small
modifications.

3. Proofs of Theorems 1-15 and
Final Comment

In this section we provide proofs of all our main assertions
which we formulated in this paper in the previous section.

Proof of Theorem 1. We have the following chain of estimates
using properties of Kobayashi balls and Propositions 3—4:

J JD |f @, w)]P (8(w)) ™ DI i (w)

<C ZJ

k>0 ° Bp(a.r)

|f (w,...

,w)f
. (8 (u)))(m—l)(n-*—l)+z;.":1 s dm (w)

< sz < sup

k>0 \wEBp(ar)

| @@ i w)
Bp(ay,r)

:C3Z< sup If(wv--’w)|P>
k=0 \ weBp(ap.r)

(8 (@) - Cr)- (& ()™,

wheret = (m - 1)(n + 1) + Z;il S; and C(r) is constant
(depending on r). These estimates follow from Lemmas 2.1
and 2.2 of [5] which say

m(Bp (1) = 8™, re(0,1),

a(zo),li_r ()|, 69

r

1_
é —
(z) € =

r€(0,1), z,€D, z€Bp(zr).

From (34) we have using Propositions 3-4 finally

recy Y| s i)l
k>0  k,>0 w, €Bp(ay, »r)
wmeBD:(akm,r)
T, /m T, /m
(8(a))"" - (3 )" < O,

(36)
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where
IIZJ.“J|f@mp“,uﬁflq(8@%»%dm(wﬂ,
D D i
(37)
where T = (n+1)m+ sim, j=1,....,m We used at the last

step the fact that {B(ay, R)}, R = (1/2)(1 +r) family is a finite
covering of D, and so

y.. ¥

k>0 JBD(“kl »R)

k>0
”JBDmk o |f (wys ..., w,,)|” (38)
(6w aom(an) <1,
j=1

A very careful analysis of the proof of Theorem 1 shows
that we replaced properties of D(ay, r) r-lattices of the unit
ball of C" (see [2, 4] and references therein) with similar
properties of r-lattice invented recently in strictly pseudo-
convex domains in important papers [5, 6]. This direction
of arguments (replacement of r-lattices) can be applied prac-
tically to all assertions from [2, 4]; we partially formulated
some parallel assertions above. In view of the mentioned
similarities, we give now complete proofs of Theorems 12 and
14 leaving proofs of other assertions to readers and referring
to arguments from [2, 4]. O

Proof of Theorems 8 and 12. Remark 11 shows that, for any f €
AP 0<p<oot=3" B+ (m-1)(n+1),there is analytic
function F(z,...,z) = f(z),z € D:

F(zp... 2 jf@ﬂom()w@%ma

(39)

where s, = f8, + n + 1, for sufficiently large 8 (by Lemma C
and Proposition 7). All we need to show now is that [|F|| ,» <

f
Cllf 42> p = 1, using Proposition 6 and remark after it.

Note that for p = 1 the assertion is easy to see and
follows from Fubini’s theorem directly. For p > 1, we have
the following chain of estimates:

p

1/m
JDIf(E)IP 6 ©)F gle,m(zj,f)jl dm(E)

<J If(E)I"(a(E)ﬁ) Ky (2, 8)|"" dm (E))

rlq
Y29 dm (6) )

j=1

s/m ( E)

. ATk
(Lw@)g

7
q(LU@W@@MFﬁ@A@OP%m@>
j=1
~ m p/ m
([ @@F [ (2 8) " amee))
(40)

where 1/p+1/g = 1,1 < p<oo,y,+y, =1, z; € D,

j
j=1,...,m,ands = f+n+1. Hence, we have by preliminaries

of the previous section

IIFIIA%

<C [ [ F Gz 6
(8 ()" dm (21) - dm (z,,)

<C, JD ... JD (& (zl))ﬁl (5 (Zm))ﬁm

[ rer-eor
D

(8 (zy)) " dm (&) dm (z,)---dm(z,,),

(41)

where x; = (E+n+ 1)(p/qm)—(ﬁ+n+ D(y,p/m),i=1,....,m
since f3 is large enough.

An application of Fubini’s theorem and the same estimate
we just used above lead finally to the estimate that is

1Pl < ClfLg

m (42)
where p € (1,00), t=) B+ (m-1)(n+1).
i=1

At the final step we used the following inequality in particu-
lar:

ﬁ j (6 (Z‘))ﬁi+(ﬁ+n+1)(p/qm)—(ﬁ+n+1)(y2p/m)
1
i=1 7D

Ky (2 )" dim (2,) (43)

<C@® (E))(—E)Jrz;zl Bi(m-1)(n+1) EeD,
for certain fixed y;, y,, ¥, + ¥, = 1 and large enough j,
1/p+1/qg = 1,1 < p < o0o. Note that an easy technical
computation shows that such y, and y, can be found. We leave
this inspection to readers.

The theorem is proved. O



Remark 18. Note the assertion we just proved is in a little
bit general form and can be found in Theorem 15. We omit
details referring the readers to [2, 4] where unit ball case was
considered.

Remark 19. Note it is easy to see the same arguments are valid
if we replace in formulations of our theorems kernels K, ,,, by

IK,,|'™ to get the same results.

The next lemma, Lemma D, as in unit ball case is playing
the crucial role in the proof of Theorem 14 (p < 1 case). We
however show Theorem 14 using additional assumptions on
K, kernel. These assumptions (which are valid in the unit
ball also) can be dropped using Lemma C and this is also
completely similar to the proof of the unit ball case.

LemmaD (see [4]). LetF € H(D), p< 1, > -1, «wisalarge

enough natural number, and z, € D, k = 1,...,m. One has the
following estimate:

m P
(jD F@I] ] Kq (22)] aﬁ<z)dm<z)>
k=1

<C J |F (Z)|P 5 (Z)ﬁPJrP(ﬂH)*(ﬂH) (44)
D

. H |K,(z, z)|” dm (2)
k=1

for some positive constant C.

In unit disk this lemma can be seen in [8]. In unit ball
this lemma can be seen in [4]. This lemma is crucial for the
proof of trace theorems in unit disk and unit ball. Moreover,
for m = 1 case in pseudoconvex domains, we refer the reader
to [12].

Proof of Theorem 14. We start with the proof of the first part
of our theorem. As in proof of the previous theorem, for every

positive large enough ;, j = 1,...,n, we have F(z,...,2) =
f(z), where
F(z),....2,)
(45)

=G F @ @@ K (w02, dm(w),

-1

where CE is a Bergman representation constant, for large
enough B,s = f+n+1.

Note first that it is obvious Trace(A’) ¢ AY°(D). Since
obviously we have

sug If =....,2)| (6 (2))Z i

< sup |f (zl,...,zm)|l_!(8 (zj))rj, (46)
1 j=

zméD
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to show the reverse we get by Holder’s inequality from (45)
and preliminary estimates of Forelli-Rudin type which we
mentioned above

|F (215 2)|

<C/IflLs

| @y
D

m

' 1_! K Gonsiym| (w1 27) dm (w)
i

<G, “f”Af;o

m

T1([ @wy=?

j=1

1/m
’ |K(ﬁ+n+1)/m| (w’ Zj) dm (w)>

Cs

=) 0@

» zjeD, j=1,....m,

(47)

by Corollary 3.9 from [12] for large enough f3 and the first
part of Theorem 14 is proved.

We turn now to the proof of the second part of
Theorem 14, the case of A% spaces for p < 1.

The proof follows directly from Theorem 1 (the proof was
provided above) and from the third part of Theorem 15. We
turn to the proof of the third part of Theorem 15 completing
the proof at the same time again using properties of r-lattices
of Kobayashi ball and we have the following inequalities.

Here we need

j (6 (w))* dm (w) = (8 (a))"™™
Bp(ay,r) (48)

a. €D, s>-1

These facts and Propositions 3-7 above lead us to the
following chain of estimates which finish the proof of the
inequality we wished to show.

We put additional condition on Bergman kernel below,
but with the help of Lemma D it can be removed. Note similar

arguments we used in the case of unit ball. We have now using
(35)

(S5/) EurenE)|
< le [T6E)"
k=1 j=1

(o)

'ZJ

k=1 Y Pplag.r

) |f(2)] (& (2)) " T
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) H 'Kr,- (& z)| dm (2)
i=1

a(f,-)f"

u’:ls

- j (6 @) TR
Bp (1)

TTIK, 602)]dm 2

i=1

max |f (z)|

z€Bp(ay,r)

<3 1166
(8 (@)™ (8 (@)
111K, G,

% max |f (2)]

z€Bp(ag,r)

(49)
where 7, = g, + b,i = 1,...,m,and &, € D,i = 1,...,m
Consider
[(s22) (Dl

,,,,,,

(9]

= C4Z sup | f(w)I? (8 (w))"HOE s

k=1 WEBp(ay,r)

(9]

SCSZJ

k=1 ¥Bp(a.1)

|F)I” (8 )™ dm

<C, j @I (6 (@)™ DT o (1)
D
(50)

The proof of Theorem 14 is finished. O

Remark 20. Some results of this paper can be extended to
the so-called analytic Herz type spaces in product domains.
To define the Herz space based on Kobayashi balls, we
remind the reader that there exists a family of Kobayashi balls
Bq(ag, r) which forms an r-lattice in bounded strictly pseu-
doconvex domain Q (see 5, 6,12]). We denote by B} (z, 1) m-
products of such Kobayashi B, (z, r) ballsin C™, where z € Q.
By M?_(Q™), we denoteall f analytic functions in Q™ so that

J |f (215 .
BI(Zr)

belongs to LITI’ o, ("), where s; >

L....m 1< p<oo.

sz Hésf (zj)dzj (51)
-1, T > —1forall j =

It will be interesting to extend our results to A2 sk Spaces;
some ideas from this paper can be used probably.

Remark 21. Some results of this paper can be also obtained
by similar technique in bounded symmetric domains and
bounded minimal homogeneous domains in higher dimen-
sion.
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