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Since the ancient times, it has been assumed that categorization has the basic form of classical sets. This implies that the
categorization process rests on the Boolean laws. In the second half of the twentieth century, the classical theory has been challenged
in cognitive science. According to the prototype theory, objects belong to categories with intensities, while humans categorize
objects by comparing them to prototypes of relevant categories. Such categorization process is governed by the principles of
perceived world structure and cognitive economy. Approaching the prototype theory by using truth-functional fuzzy logic has
been harshly criticized due to not satisfying the complementation laws. In this paper, the prototype theory is approached by
using structure-functional fuzzy logic, the interpolative Boolean algebra. The proposed formalism is within the Boolean frame.
Categories are represented as fuzzy sets of objects, while comparisons between objects and prototypes are formalized by using
Boolean consistent fuzzy relations. Such relations are directly constructed from a Boolean consistent fuzzy partial order relation,
which is treated by Boolean implication. The introduced formalism secures the principles of categorization showing that Boolean
laws are fundamental in the categorization process. For illustration purposes, the artificial cognitive system which mimics human
categorization activity is proposed.

1. Introduction

Categorization is the process in which ideas and objects are
recognized, differentiated, and understood [1]. Humans and
other organisms consider objects and events as members of
categories. Such cognitive activity is automatic and effortless.
Categories structure our knowledge about the world. The
ability to categorize is fundamental to any natural or artificial
cognitive system. Since the time of ancient Greece, it has been
assumed that an object can belong or cannot belong to a
category and that humans categorize by identifying necessary
and sufficient conditions for an object to belong to the
category. All objects satisfying such conditions are equivalent
with respect to that category.This can be formalized by using
classical set theory. The meanings of the categories can be
explained by the operations of classical logic. Such formal-
ization implies that the categorization process is governed by

the laws of Boolean algebra, amongwhich the laws of thought
are fundamental.This view on the categorization is called the
classical view [2–4].

In the second half of the twentieth century, the classical
theory has been challenged in cognitive science. From this
point of view, the categorization is based on gradation. This
means that objects can belong to categories with intensities.
Two fundamental principles of categorization have been
proposed in [5]. According to the principle of perceived
world structure, the perceived world comes as structured
information. In accordance with the principle of cognitive
economy, the task of the categorization is to provide maxi-
mum information about the world with the least cognitive
effort. This is possible thanks to gradation. In the classical
case, two objects can be differentiated if one belongs, while
the other one does not belong, to the relevant category.
Whenmore objects have to be differentiated from each other,
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more categories have to be considered in the process of
cognition, which requiresmore cognitive effort. In the case of
gradation, an infinite number of objects can be differentiated
inside one category.This implies that the categorization based
on gradation can provide maximum information about the
world with the least cognitive effort.

According to the gradation (prototype) theory, humans
categorize objects by comparing them to prototypes of rele-
vant categories [5–7]. As in [8], we use the term prototype in
the most general sense. Under this term, we assume either an
abstract summary of a category, or a set of exemplars—actual
category members pulled from memory. Since the classical
theory has been approached by using classical logic/set
theory, the prototype theory should be approached by using
fuzzy logic/set theory. In the conventional fuzzy logic [9],
the laws of complements are not taken as axioms. This has
been harshly criticized in cognitive science [10], as such laws
have been considered fundamental from the time of Aristotle.
According to [11], the laws of complements cannot be satisfied
in the conventional fuzzy logic because it follows the principle
of truth functionality. According to this principle, the value of
any logical expression can be calculated by using the values
of its components. The principle is valid in classical Boolean
algebra, but it breaks the Boolean frame in the case of grada-
tion. Fuzzy logic, which secures the laws of thought and the
Boolean frame, has been proposed in [12]. In opposition to
conventional fuzzy logics, this approach is based on the
fundamental principle of structure functionality.

In this paper, the Boolean consistent approach to
gradation—interpolative Boolean algebra—is used in an
attempt at the formalization of human categorization activity.
It is assumed that this innate human activity follows the
prototype theory. The proposed formalism is within the
Boolean frame, securing the principles of categorization.This
shows that Boolean laws are universal in categorization—
valid in the classical and the prototype theory. Such laws can
be considered as the fundamental laws governing the cate-
gorization process. For illustration purposes, the simple arti-
ficial cognitive system which mimics human categorization
ability is proposed.

2. Interpolative Boolean Algebra

Interpolative Boolean algebra is the Boolean consistent fuzzy
logic [11, 12]. From themathematical point of view, fuzzy logic
rests on the principle of incompatibility [13]. According to
this principle, increase in problem complexity diminishes our
ability to solve the problem by using classical mathematical
approaches (based on classical logic/set theory). According
to [14], fuzzy logic brings a drastic reduction of complexity
immanent to classical approaches when dealing with real-
world problems, and fuzzy approaches offer more expressive
power with less complexity in comparison to the classical
ones. From the cognitive science point of view, fuzzy logic
is an attempt at the formalization of remarkable human
capabilities [15]. According to [15–17], fuzzy logic is inspired
by the brain’s crucial ability to manipulate perceptions and
is essential for complex problems in artificial intelligence,

such as the pattern recognition problem. This is the problem
approached in this paper.

Fuzzy logic has been challenged in mathematics and
cognitive science since its introduction. The main drawback
of conventional fuzzy logics, based on the truth functionality
principle, is the fact that they are not in the Boolean frame
[14]. From the point of view of mathematics, this implies
that the classical results cannot be directly generalized. For
example, a basic concept of preference modeling is a pref-
erence structure. In the classical case, a preference structure
can be constructed from a reflexive preference relation. In the
case of gradation, this result is not possible in conventional
fuzzy logics [18]. In cognitive science, fuzzy logic has been
harshly criticized due to not satisfying the laws of com-
plements [19–21]. Such laws have been considered as the
fundamental laws of rational thinking since the ancient times.
The laws of thought must apply without exception to any
subject matter of thought. Boolean laws cannot be secured
in conventional fuzzy logics as they are based on the truth
functionality principle. In contrast to these fuzzy logics,
interpolative Boolean algebra is based on the principle of
structure functionality [12, 22]. According to this principle,
logical expressions have vector nature.The truth functionality
is valid in the classical case as attention is reduced to only one
vector component. In the fuzzy case, all vector components
have to be used for Boolean consistent calculations. The
structure vector of any logical expression can be calculated
by using the structures of expression’s components. The
structure functionality is the fundamental Boolean principle
as it secures the Boolean frame in any value realization of the
algebra (binary, multivalued, or fuzzy).

Formally, the finite or atomic Boolean algebra BA(Ω) =
𝑃(𝑃(Ω)) is generated by a set of free variables Ω =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
}. Set 𝑃(Ω) is the power set of Ω. For any

𝑥
𝑖
, 𝑥
𝑗
, 𝑥
𝑘
∈ Ω, Boolean laws are given by the following

expressions.
Associativity:

𝑥
𝑖
∨ (𝑥
𝑗
∨ 𝑥
𝑘
) = (𝑥

𝑖
∨ 𝑥
𝑗
) ∨ 𝑥
𝑘
,

𝑥
𝑖
∧ (𝑥
𝑗
∧ 𝑥
𝑘
) = (𝑥

𝑖
∧ 𝑥
𝑗
) ∧ 𝑥
𝑘
.

(1)

Commutativity:

𝑥
𝑖
∨ 𝑥
𝑗
= 𝑥
𝑗
∨ 𝑥
𝑖
,

𝑥
𝑖
∧ 𝑥
𝑗
= 𝑥
𝑗
∧ 𝑥
𝑖
.

(2)

Distributivity:

𝑥
𝑖
∧ (𝑥
𝑗
∨ 𝑥
𝑘
) = (𝑥

𝑖
∧ 𝑥
𝑗
) ∨ (𝑥

𝑖
∧ 𝑥
𝑘
) ,

𝑥
𝑖
∨ (𝑥
𝑗
∧ 𝑥
𝑘
) = (𝑥

𝑖
∨ 𝑥
𝑗
) ∧ (𝑥

𝑖
∨ 𝑥
𝑘
) .

(3)

Identity:

𝑥
𝑖
∨ 0 = 𝑥

𝑖
, 𝑥

𝑖
∧ 1 = 𝑥

𝑖
,

𝑥
𝑖
∧ 0 = 0, 𝑥

𝑖
∨ 1 = 1.

(4)
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Idempotence:

𝑥
𝑖
∨ 𝑥
𝑖
= 𝑥
𝑖
, 𝑥

𝑖
∧ 𝑥
𝑖
= 𝑥
𝑖
. (5)

Absorption:

𝑥
𝑖
∧ (𝑥
𝑖
∨ 𝑥
𝑗
) = 𝑥
𝑖
,

𝑥
𝑖
∨ (𝑥
𝑖
∧ 𝑥
𝑗
) = 𝑥
𝑖
.

(6)

Complementation:

𝑥
𝑖
∧ ¬𝑥
𝑖
= 0, 𝑥

𝑖
∨ ¬𝑥
𝑖
= 1. (7)

De Morgan laws:

¬ (𝑥
𝑖
∧ 𝑥
𝑗
) = ¬𝑥

𝑖
∨ ¬𝑥
𝑗
,

¬ (𝑥
𝑖
∨ 𝑥
𝑗
) = ¬𝑥

𝑖
∧ ¬𝑥
𝑗
.

(8)

Here 0 and 1 are the smallest and the biggest elements of
BA(Ω).

Atomic elements 𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) of BA(Ω) are defined

by the following expression:

𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) = ∧
𝑥𝑖∈𝑆

𝑥
𝑖

∧
𝑥𝑗∈Ω\𝑆

¬𝑥
𝑗
. (9)

Here 𝑆 ∈ 𝑃(Ω).
Atomic elements have the following properties:

𝛼
𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∩ 𝛼
𝑗
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

= {
0, 𝑖 ̸= 𝑗

𝛼
𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) , 𝑖 = 𝑗

⋃
𝑆∈𝑃(Ω)

𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) = 1.

(10)

Any element of Boolean algebra can be defined as union of
relevant atoms. Which atoms are relevant for (included in)
𝜑(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∈ BA(Ω) is defined by element’s structure

function 𝜎
𝜑
(𝛼
𝑆
). Structure function is defined by the follow-

ing expression:

𝜎
𝜑
(𝛼
𝑆
) =

{{

{{

{

1, 𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∩ 𝜑 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)

= 𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

0, 𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∩ 𝜑 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) = 0.

(11)

Here 𝑆 ∈ 𝑃(Ω).
Any element 𝜑(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∈ BA(Ω) can be defined

by the following expression:

𝜑 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) = ⋃
𝑆∈𝑃(Ω)|𝜎𝜑(𝛼𝑆)=1

𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) . (12)

Information on which atoms are relevant for 𝜑(𝑥
1
, 𝑥
2
,

. . . , 𝑥
𝑚
) ∈ BA(Ω) is stored in structure vector defined by the

following expression:

𝜎⃗
𝜑
= [𝜎
𝜑
(𝛼
𝑆
) | 𝑆 ∈ 𝑃 (Ω)]

𝑇

. (13)

The structure of any combined element of BA(Ω) can be
directly calculated from the structures of its component:

𝜎⃗
𝜙∧𝜓

= 𝜎⃗
𝜙
∧ 𝜎⃗
𝜓
,

𝜎⃗
𝜙∨𝜓

= 𝜎⃗
𝜙
∨ 𝜎⃗
𝜓
,

𝜎⃗
¬𝜙
= ¬𝜎⃗
𝜙
= 1⃗ − 𝜎⃗

𝜙
.

(14)

The value V(𝜑(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)) ∈ [0, 1] of any 𝜑(𝑥

1
, 𝑥
2
,

. . . , 𝑥
𝑚
) ∈ BA(Ω) is given by corresponding Boolean

polynomial, which is the sum of values of relevant atomic
elements:

V (𝜑 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)) = ∑
𝑆∈𝑃(Ω)|𝜎𝜑(𝑆)=1

V (𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)) .

(15)

The value V(𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)) ∈ [0, 1] of atomic element

𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∈ BA(Ω) is given by corresponding atomic

Boolean polynomial:

V (𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)) = ⊗
𝑥𝑖∈𝑆

V (𝑥
𝑖
) ⊗
𝑥𝑗∈Ω\𝑆

(1 − V (𝑥
𝑗
)) . (16)

Here V(𝑥
𝑖
) ∈ [0, 1] is the fuzzy value of 𝑥

𝑖
∈ Ω, 𝑆 ∈ 𝑃(Ω) and

⊗ : [0, 1] × [0, 1] → [0, 1] is a generalized product operator
which can be any 𝑇-norm.

For example, for Ω = {𝑥
𝑖
, 𝑥
𝑗
} the generalized product

operator has the following property:

max (V (𝑥
𝑖
) + V (𝑥

𝑗
) − 1, 0) ≤ V (𝑥

𝑖
) ⊗ V (𝑥

𝑗
)

≤ min (V (𝑥
𝑖
) , V (𝑥

𝑗
)) .

(17)

The value of any 𝜑(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∈ BA(Ω) can be repre-

sented as the scalar product of two vectors:

V (𝜑 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)) = 𝜎⃗

𝜑
𝛼⃗. (18)

Here 𝜎⃗
𝜑
is the structure vector of 𝜑(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∈ BA(Ω)

and 𝛼⃗ is the vector of atomic Boolean polynomials.
Vector of atomic Boolean polynomials 𝛼⃗ is defined by the

following expression:

𝛼⃗ = [V (𝛼
𝑆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)) | 𝑆 ∈ 𝑃 (Ω)]

𝑇

. (19)
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According to the principle of structure functionality, Boolean
consistent fuzzy value of any element of BA(Ω) can be
calculated by the following rules [22]:

V (𝜑
𝑖
(𝑥
1
, . . . , 𝑥

𝑚
) ∧ 𝜑
𝑗
(𝑥
1
, . . . , 𝑥

𝑚
))

=def V (𝜑𝑖 (𝑥1, . . . , 𝑥𝑚)) ⊗ V (𝜑
𝑗
(𝑥
1
, . . . , 𝑥

𝑚
)) ,

V (𝜑
𝑖
(𝑥
1
, . . . , 𝑥

𝑚
) ∨ 𝜑
𝑗
(𝑥
1
, . . . , 𝑥

𝑚
))

=def V (𝜑𝑖 (𝑥1, . . . , 𝑥𝑚)) + V (𝜑
𝑗
(𝑥
1
, . . . , 𝑥

𝑚
))

− V (𝜑
𝑖
(𝑥
1
, . . . , 𝑥

𝑚
)) ⊗ V (𝜑

𝑗
(𝑥
1
, . . . , 𝑥

𝑚
)) ,

V (¬𝜑
𝑖
(𝑥
1
, . . . , 𝑥

𝑚
)) =def 1 − V (𝜑

𝑖
(𝑥
1
, . . . , 𝑥

𝑚
)) ,

V (𝑥
𝑖
∧ 𝑥
𝑗
) =def {

V (𝑥
𝑖
) ⊗ V (𝑥

𝑗
) 𝑖 ̸= 𝑗,

V (𝑥
𝑖
) , 𝑖 = 𝑗,

V (𝑥
𝑖
∨ 𝑥
𝑗
) =def V (𝑥𝑖) + V (𝑥

𝑗
) − V (𝑥

𝑖
) ⊗ V (𝑥

𝑗
) ,

V (¬𝑥
𝑖
) =def1 − V (𝑥

𝑖
) .

(20)

Here 𝜑
𝑖
(𝑥
1
, . . . , 𝑥

𝑚
), 𝜑
𝑗
(𝑥
1
, . . . , 𝑥

𝑚
) ∈ BA(Ω), V(𝜑

𝑖
(𝑥
1
,

. . . , 𝑥
𝑚
)), V(𝜑

𝑗
(𝑥
1
, . . . , 𝑥

𝑚
)) ∈ [0, 1], 𝑥

1
, . . . , 𝑥

𝑚
∈ Ω,

V(𝑥
1
), . . . , V(𝑥

𝑚
) ∈ [0, 1].

Software tool for calculations of Boolean consistent fuzzy
values of elements of BA(Ω) is proposed in [23].

Generalized product ⊗ : [0, 1] × [0, 1] → [0, 1] can be
any operator that satisfies the following properties.

Commutativity:

V (𝑥
𝑖
) ⊗ V (𝑥

𝑗
) = V (𝑥

𝑖
) ⊗ V (𝑥

𝑗
) . (21)

Associativity:

(V (𝑥
𝑖
) ⊗ V (𝑥

𝑗
)) ⊗ V (𝑥

𝑘
) = V (𝑥

𝑖
) ⊗ (V (𝑥

𝑗
) ⊗ V (𝑥

𝑘
)) .

(22)

Monotonicity:

V (𝑥
𝑖
) ≤ V (𝑥

𝑗
) 󳨐⇒ V (𝑥

𝑖
) ⊗ V (𝑥

𝑘
) ≤ V (𝑥

𝑗
) ⊗ V (𝑥

𝑘
) . (23)

Boundary:

V (𝑥
𝑖
) ⊗ 1 = V (𝑥

𝑖
) . (24)

Nonnegativity:

⊗
𝑥𝑖∈𝑆

V (𝑥
𝑖
) ⊗
𝑥𝑗∈Ω\𝑆

(1 − V (𝑥
𝑗
)) ≥ 0. (25)

Here Ω = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
}, 𝑆 ∈ 𝑃(Ω).

In the following section, the prototype theory will be
formalized by using interpolative Boolean algebra.

3. Formalization of Human
Categorization Process

According to the prototype theory, humans categorize objects
by comparing them to prototypes of relevant categories.

Prototypes or cognitive reference points are formed in the
process of cognition by considering observed (actual) mem-
bers of the categories. The prototype theory is based on the
principle of perceived world structure and the principle of
cognitive economy. According to these principles, categories
with graded structure “spring” to mind whenever objects or
events are considered in the process of cognition. This pro-
vides maximum information about the world with the least
cognitive effort. It is assumed in this paper that the categoriza-
tion rests on cognitive acts of ordering of perceived objects
and prototypes of relevant categories. The ordering must
be relevant to a cognitive task at hand, requiring the least
cognitive effort. From the information provided by such
ordering, maximum information about the world can be
acquired in the process of cognition. This way, the principles
of categorization are secured.

Formally, an object considered in the process of cognition
will be represented by using vector [𝐴

1
(𝑥), . . . , 𝐴

𝑛
(𝑥)], where

𝐴
𝑖
(𝑥) ∈ [0, 1], 𝑖 = 1, . . . , 𝑛, are the properties of object 𝑥. Set

𝑋 is the set of objects for categorization. Set 𝑌 is the set of
prototypes of relevant categories. The prototype of a category
is an object or a set of objects, statistically derived or selected
from the observed category members. For example, the
prototype of category “𝐶” can be represented as an object
𝑦
𝐶
∈ 𝑌, whose properties are the averages of properties of

all category members:

𝑦
𝐶
=

1

|𝐶|
∑
𝑧∈𝐶

𝑧 = [
1

|𝐶|
∑
𝑧∈𝐶

𝐴
1
(𝑧) , . . . ,

1

|𝐶|
∑
𝑧∈𝐶

𝐴
𝑛
(𝑧)]

= [𝐴
1
(𝑦
𝐶
) , . . . , 𝐴

𝑛
(𝑦
𝐶
)] .

(26)

Here 𝑦
𝐶
∈ [0, 1]𝑛 is the prototype of category 𝐶, 𝑧 ∈ [0, 1]𝑛 is

the member of 𝐶, and |𝐶| is the cardinality of 𝐶.
Alternatively, the prototype of a category can be defined

as the set of the most representative objects of the category
(according to some criteria), or as the set which contains
all members of the category. Approach to categorization,
according to which humans categorize objects by comparing
them to actual category members, is called the exemplar
approach [24, 25]. The categorization based on exemplars is
more flexible but less economical, in comparison to the first
approach. Considering exemplars in the process of cognition
secures better categorization of “atypical” objects but requires
more cognitive effort.

The ordering of objects and prototypes will be formalized
by using a Boolean consistent fuzzy partial order relation
defined over 𝑋 ∪ 𝑌. This reflexive, antisymmetric and
transitive binary (two-place) fuzzy relation will be called
the primitive relation and will be treated by using Boolean
implication. The fuzzy partial order relation can be defined
by the following expression:

(𝑥 ≤ 𝑦)

= V (𝜙
𝑖
(𝐴
1
(𝑥) , . . . , 𝐴

𝑛
(𝑥)) 󳨐⇒ 𝜙

𝑖
(𝐴
1
(𝑦) , . . . , 𝐴

𝑛
(𝑦)))

= V (¬𝜙
𝑖
(𝐴
1
(𝑥) , . . . , 𝐴

𝑛
(𝑥)) ∨ 𝜙

𝑖
(𝐴
1
(𝑦) , . . . , 𝐴

𝑛
(𝑦)))
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= 1 − V (𝜙
𝑖
(𝐴
1
(𝑥) , . . . , 𝐴

𝑛
(𝑥)))

+min (V (𝜙
𝑖
(𝐴
1
(𝑥) , . . . , 𝐴

𝑛
(𝑥))) ,

V (𝜙
𝑖
(𝐴
1
(𝑦) , . . . , 𝐴

𝑛
(𝑦)))) .

(27)

Here (𝑥 ≤ 𝑦) ∈ [0, 1] is a fuzzy partial order relation
(the proof is straightforward), 𝑥, 𝑦 ∈ [0, 1]

𝑛, 𝑥 ∈ 𝑋,
𝑦 ∈ 𝑌, 𝜙

𝑖
(𝐴
1
(𝑥), . . . , 𝐴

𝑛
(𝑥)) can be any Boolean function,

V(𝜙
𝑖
(𝐴
1
(𝑥), . . . , 𝐴

𝑛
(𝑥))) ∈ [0, 1] is the function’s value, and

1 − V(𝜙
𝑖
(𝐴
1
(𝑥), . . . , 𝐴

𝑛
(𝑥))) + min(V(𝜙

𝑖
(𝐴
1
(𝑥), . . . , 𝐴

𝑛
(𝑥))),

V(𝜙
𝑖
(𝐴
1
(𝑦), . . . , 𝐴

𝑛
(𝑦)))) is the Boolean polynomial which

corresponds to Boolean implication 𝜙
𝑖
(𝐴
1
(𝑥), . . . , 𝐴

𝑛
(𝑥)) ⇒

𝜙
𝑖
(𝐴
1
(𝑦), . . . , 𝐴

𝑛
(𝑦)).

Less complex primitive relations can be defined by the
following expressions:

(𝑥 ≤ 𝑦) = ∑
𝑖=1,...,𝑛

𝑤
𝑖
V (𝐴
𝑖
(𝑥) 󳨐⇒ 𝐴

𝑖
(𝑦))

= ∑
𝑖=1,...,𝑛

𝑤
𝑖
V (¬𝐴

𝑖
(𝑥) ∨ 𝐴

𝑖
(𝑦))

= ∑
𝑖=1,...,𝑛

𝑤
𝑖
(1 − 𝐴

𝑖
(𝑥) + (min𝐴

𝑖
(𝑥) , 𝐴

𝑖
(𝑦))) ,

(𝑥 ≤ 𝑦) = V ( ∧
𝑖=1,...,𝑛

(𝐴
𝑖
(𝑥) 󳨐⇒ 𝐴

𝑖
(𝑦)))

= V ( ∧
𝑖=1,...,𝑛

(¬𝐴
𝑖
(𝑥) ∨ 𝐴

𝑖
(𝑦)))

= ⊗
𝑖=1,...,𝑛

V (¬𝐴
𝑖
(𝑥) ∨ 𝐴

𝑖
(𝑦))

= ⊗
𝑖=1,...,𝑛

(1 − 𝐴
𝑖
(𝑥) +min (𝐴

𝑖
(𝑥) , 𝐴

𝑖
(𝑦))) .

(28)

Here 𝑤
𝑖
∈ [0, 1], ∑

𝑖=1,...,𝑛
𝑤
𝑖
= 1, the generalized product

operator (⊗) can be any 𝑡-norm, and V(𝐴
𝑖
(𝑥) ⇒ 𝐴

𝑖
(𝑦)) = 1−

𝐴
𝑖
(𝑥) +min(𝐴

𝑖
(𝑥), 𝐴

𝑖
(𝑦)) is the Boolean polynomial which

corresponds (gives value) to Boolean implication 𝐴
𝑖
(𝑥) ⇒

𝐴
𝑖
(𝑦) = ¬𝐴

𝑖
(𝑥) ∨ 𝐴

𝑖
(𝑦).

Pseudological expressions, such as the first expression in
(28), are introduced in [26].

Comparisons between object 𝑥 ∈ 𝑋 and prototype 𝑦 ∈ 𝑌
will be formalized on the basis of primitive relation (𝑥 ≤

𝑦) ∈ [0, 1] and its inverse (𝑥 ≥ 𝑦) ∈ [0, 1], 𝑥, 𝑦 ∈ [0, 1]
𝑛,

(𝑥 ≥ 𝑦) = (𝑥 ≤ 𝑦)
−1. By using the information provided by

these relations, Boolean algebra of fuzzy relations BA(Ω) =
𝑃(𝑃(Ω)) can be generated, where 𝑃(Ω) is the power set of
Ω = {(𝑥 ≤ 𝑦), (𝑥 ≥ 𝑦)}. Elements of this algebra have
semantics (meanings) thanks to the principle of structure
functionality. Such elements formalize the cognitive acts of
comparisons between objects and prototypes, on the basis
of which the objects are categorized. Proposed formalization
of prototype theory secures the principles of categorization.
The cognitive effort (in this case computational effort) is
minimized as the artificial process of categorization is only
based on the primitive relation. At the same time, maximum
information about the world can be directly derived from

the information provided by the primitive relation. This
implies that an artificial cognitive system based on the pro-
posed formalism can acquire maximum information about
the world with the least computational effort. In the rest of
this section, elements of the Boolean algebra of fuzzy relations
are defined. Detailed information on Boolean consistent
fuzzy relations can be found in [27].

Atomic elements (atomic relations) of BA(Ω) are the
following.

Reflexive, symmetric and transitive fuzzy equivalence (or
similarity) relation:

(𝑥 = 𝑦) = (𝑥 ≤ 𝑦) ∧ (𝑥 ≥ 𝑦) = (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) . (29)

Irreflexive, asymmetric and transitive fuzzy strict order rela-
tions:

(𝑥 > 𝑦) = ¬ (𝑥 ≤ 𝑦) ∧ (𝑥 ≥ 𝑦) = (1 − (𝑥 ≤ 𝑦)) ⊗ (𝑥 ≥ 𝑦)

= (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) ,

(𝑥 < 𝑦) = (𝑥 ≤ 𝑦) ∧ ¬ (𝑥 ≥ 𝑦) = (𝑥 ≤ 𝑦) ⊗ (1 − (𝑥 ≥ 𝑦))

= (𝑥 ≤ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) .

(30)

Irreflexive, symmetric and transitive fuzzy incomparability
relation:

(𝑥 <> 𝑦) = ¬ (𝑥 ≤ 𝑦) ∧ ¬ (𝑥 ≥ 𝑦)

= (1 − (𝑥 ≤ 𝑦)) ⊗ (1 − (𝑥 ≥ 𝑦))

= 1 − (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) .

(31)

In these equations, operator of generalized product ⊗ can
be any 𝑇-norm. According to the structure functionality
principle, other Boolean consistent fuzzy relations/elements
of BA(Ω) can be defined as unions (sums) of relevant atomic
relations. Fuzzy partial order relations are defined by the
following expressions:

(𝑥 ≤ 𝑦) = (𝑥 < 𝑦) ∨ (𝑥 = 𝑦) = (𝑥 < 𝑦) + (𝑥 = 𝑦)

= (𝑥 ≤ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

(𝑥 ≥ 𝑦) = (𝑥 > 𝑦) ∨ (𝑥 = 𝑦) = (𝑥 > 𝑦) + (𝑥 = 𝑦)

= (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) .

(32)

Complements of fuzzy partial order relations are defined by
the following expressions:

¬ (𝑥 ≤ 𝑦) = (𝑥 <> 𝑦) ∨ (𝑥 > 𝑦) = (𝑥 <> 𝑦) + (𝑥 > 𝑦)

= 1 − (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

+ (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) = 1 − (𝑥 ≤ 𝑦) ,
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¬ (𝑥 ≥ 𝑦) = (𝑥 <> 𝑦) ∨ (𝑥 < 𝑦) = (𝑥 <> 𝑦) + (𝑥 < 𝑦)

= 1 − (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

+ (𝑥 ≤ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) = 1 − (𝑥 ≥ 𝑦) .

(33)

Another reflexive, symmetric and transitive fuzzy similarity
relation is defined by the following expression:

(𝑥 ⇐⇒ 𝑦) = (𝑥 = 𝑦) ∨ (𝑥 <> 𝑦) = (𝑥 = 𝑦) + (𝑥 <> 𝑦)

= (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) + 1 − (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦)

+ (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

= 1 − (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) + 2 (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) .

(34)

The complement of this relation is the fuzzy dissimilarity
relation, defined by the following expression:

(𝑥 ∨ 𝑦) = ¬ (𝑥 ⇐⇒ 𝑦) = (𝑥 < 𝑦) ∨ (𝑥 > 𝑦)

= (𝑥 < 𝑦) + (𝑥 > 𝑦)

= (𝑥 ≤ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) + (𝑥 ≥ 𝑦)

− (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

= (𝑥 ≤ 𝑦) + (𝑥 ≥ 𝑦) − 2 (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) .

(35)

Complements of fuzzy strict order relations are defined by the
following expression:

¬ (𝑥 < 𝑦) = (𝑥 <> 𝑦) ∨ (𝑥 > 𝑦) ∨ (𝑥 = 𝑦)

= (𝑥 <> 𝑦) + (𝑥 > 𝑦) + (𝑥 = 𝑦)

= 1 − (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

+ (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

+ (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

= 1 − (𝑥 ≤ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) = 1 − (𝑥 < 𝑦) ,

¬ (𝑥 > 𝑦) = (𝑥 <> 𝑦) ∨ (𝑥 < 𝑦) ∨ (𝑥 = 𝑦)

= (𝑥 <> 𝑦) + (𝑥 < 𝑦) + (𝑥 = 𝑦)

= 1 − (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

+ (𝑥 ≤ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

+ (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

= 1 − (𝑥 ≥ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) = 1 − (𝑥 > 𝑦) .

(36)

The complement of a fuzzy incomparability relation (related-
ness or comparability relation) is defined by the following
expression:

¬ (𝑥 <> 𝑦) = (𝑥 < 𝑦) ∨ (𝑥 > 𝑦) ∨ (𝑥 = 𝑦)

= (𝑥 < 𝑦) + (𝑥 > 𝑦) + (𝑥 = 𝑦)

= (𝑥 ≤ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) + (𝑥 ≥ 𝑦)

− (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) + (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

= (𝑥 ≤ 𝑦) + (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

= 1 − (𝑥 <> 𝑦) .

(37)

Another fuzzy dissimilarity relation, complement of equiv-
alence relation given in (29), is defined by the following
expression:

(𝑥 ̸= 𝑦) = ¬ (𝑥 = 𝑦) = (𝑥 < 𝑦) ∨ (𝑥 > 𝑦) ∨ (𝑥 <> 𝑦)

= (𝑥 < 𝑦) + (𝑥 > 𝑦) + (𝑥 <> 𝑦)

= (𝑥 ≤ 𝑦) − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) + (𝑥 ≥ 𝑦)

− (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) + 1 − (𝑥 ≥ 𝑦) − (𝑥 ≤ 𝑦)

+ (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦)

= 1 − (𝑥 ≤ 𝑦) ⊗ (𝑥 ≥ 𝑦) = 1 − (𝑥 = 𝑦) .

(38)

On the basis of information provided by the Boolean algebra
of fuzzy relations, objects can be easily categorized in the
artificial process of cognition. For example, the categorization
process in which objects are recognized on the basis of their
resemblance to prototypes can be formalized by using any of
aforementioned similarity (or dissimilarity) relations. This is
demonstrated in the following section.

4. Illustrative Example

In this section, the simple artificial cognitive system which
mimics human categorization activity is constructed. The
system categorizes objects on the basis of their similarities to
prototypes of relevant categories. This will be demonstrated
by using iris flower data set taken from [28]. The data set
contains information on 150 four-dimensional objects, which
belong to one of the three categories: 𝐼Se, 𝐼Ve, and 𝐼Vi—Iris
setosa, Iris versicolor and Iris virginica, respectively.There are
50 objects in each category. Such objects can be defined by the
following expression:

𝑜 = [𝑠𝑙 (𝑜) , 𝑠𝑤 (𝑜) , 𝑝𝑙 (𝑜) , 𝑝𝑤 (𝑜)] . (39)

Here 𝑜 ∈ 𝑅4 is a physical object; 𝑠𝑙(𝑜), 𝑠𝑤(𝑜), 𝑝𝑙(𝑜), and 𝑝𝑤(𝑜)
are the physical properties of object 𝑜—sepal length, sepal
width, petal length, and petal width, respectively.
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The artificial cognitive system maps the physical object
𝑜 ∈ 𝑂 into “mental object” 𝑥 by using the following
expression:

𝑥 = [
𝑠𝑙 (𝑜)

max
𝑜𝑖∈𝑂

(𝑠𝑙 (𝑜
𝑖
))
,

𝑠𝑤 (𝑜)

max
𝑜𝑖∈𝑂

(𝑠𝑤 (𝑜
𝑖
))
,

𝑝𝑙 (𝑜)

max
𝑜𝑖∈𝑂

(𝑝𝑙 (𝑜
𝑖
))
,

𝑝𝑤 (𝑜)

max
𝑜𝑖∈𝑂

(𝑝𝑤 (𝑜
𝑖
))
]

= [𝑆𝐿 (𝑥) , 𝑆𝑊 (𝑥) , 𝑃𝐿 (𝑥) , 𝑃𝑊 (𝑥)] .

(40)

Here 𝑥 ∈ [0, 1]4 is an object considered in the process of
cognition, 𝑆𝐿(𝑥), 𝑆𝑊(𝑥), 𝑃𝐿(𝑥), 𝑃𝑊(𝑥) ∈ [0, 1] are the prop-
erties of object 𝑥, and 𝑂 is the set of objects or the domain of
cognition.

Information on category membership is provided to the
artificial cognitive system for 105 randomly selected objects.
Set 𝑋 is the set of the remaining 45 objects (for categoriza-
tion); set 𝑌 is the set of prototypes for the three relevant
categories. The task of the system is to categorize objects,
based on their similarities to prototypes. The system builds
prototypes on the basis of observed category members, that
is, by using 105 randomly selected objects. For illustration
purposes, prototypes are defined in twoways. In the first case,
the prototype of category 𝐶 is the object 𝑦

𝐶
∈ 𝑌, whose

properties are the averages of properties of all category
members:

𝑦
𝐶
=

1

|𝐶|
∑
𝑧∈𝐶

𝑧

= [
1

|𝐶|
∑
𝑧∈𝐶

𝑆𝐿 (𝑧) ,
1

|𝐶|
∑
𝑧∈𝐶

𝑆𝑊 (𝑧) ,
1

|𝐶|
∑
𝑧∈𝐶

𝑃𝐿 (𝑧) ,

1

|𝐶|
∑
𝑧∈𝐶

𝑃𝑊(𝑧)]

= [𝑆𝐿 (𝑦
𝐶
) , 𝑆𝑊 (𝑦

𝐶
) , 𝑃𝐿 (𝑦

𝐶
) , 𝑃𝑊 (𝑦

𝐶
)] .

(41)

Here 𝑦
𝐶
∈ [0, 1]

4 is the prototype of category 𝐶, 𝑧 ∈ [0, 1]4 is
the member of 𝐶, and |𝐶| is the cardinality of 𝐶.

In the second case, all observed members of a category
are used as the prototype of that category.This is the exemplar
approach. In both approaches, similarity between object 𝑥 ∈
𝑋 and prototype (or exemplar) 𝑦

𝐶
∈ 𝑌 of category 𝐶 is

defined by the following expression:

(𝑥 ⇐⇒ 𝑦
𝐶
) = 1 − (𝑥 ≤ 𝑦

𝐶
) − (𝑥 ≥ 𝑦

𝐶
)

+ 2 (𝑥 ≤ 𝑦
𝐶
) ∗ (𝑥 ≥ 𝑦

𝐶
) .

(42)

Here (𝑥 ⇔ 𝑦
𝐶
) ∈ [0, 1] is the Boolean consistent fuzzy

similarity relation defined in (34); (𝑥 ≤ 𝑦
𝐶
) ∈ [0, 1] and

(𝑥 ≥ 𝑦
𝐶
) ∈ [0, 1] are Boolean consistent fuzzy partial order

relations defined in (28).

Boolean consistent fuzzy partial order relations are
defined by the following expressions:

(𝑥 ≤ 𝑦
𝐶
) = (1 − 𝑆𝐿 (𝑥) +min (𝑆𝐿 (𝑥) , 𝑆𝐿 (𝑦

𝐶
)))

∗ (1 − 𝑆𝑊 (𝑥) +min (𝑆𝑊 (𝑥) , 𝑆𝑊 (𝑦
𝐶
)))

∗ (1 − 𝑃𝐿 (𝑥) +min (𝑃𝐿 (𝑥) , 𝑃𝐿 (𝑦
𝐶
)))

∗ (1 − 𝑃𝑊(𝑥) +min (𝑃𝑊 (𝑥) , 𝑃𝑊 (𝑦
𝐶
))) ,

(𝑥 ≥ 𝑦
𝐶
) = (𝑥 ≤ 𝑦

𝐶
)
−1

= (1 − 𝑆𝐿 (𝑦
𝐶
) +min (𝑆𝐿 (𝑦

𝐶
) , 𝑆𝐿 (𝑥)))

∗ (1 − 𝑆𝑊(𝑦
𝐶
) +min (𝑆𝑊 (𝑦

𝐶
) , 𝑆𝑊 (𝑥)))

∗ (1 − 𝑃𝐿 (𝑦
𝐶
) +min (𝑃𝐿 (𝑦

𝐶
) , 𝑃𝐿 (𝑥)))

∗ (1 − 𝑃𝑊(𝑦
𝐶
) +min (𝑃𝑊(𝑦

𝐶
) , 𝑃𝑊 (𝑥))) .

(43)

In the first case, the artificial cognitive system assigns an
object to a category whose prototype is the most similar to
the object. This is defined by the following expression:

𝐶 = arg max
𝐶∈{𝐼Se,𝐼Ve,𝐼Vi}

(𝑥 ⇐⇒ 𝑦
𝐶
) . (44)

Here 𝑥 ∈ 𝑋, 𝑦
𝐶
∈ 𝑌 is the prototype of category 𝐶 ∈

{𝐼Se, 𝐼Ve, 𝐼Vi}, and 𝑥, 𝑦𝐶 ∈ [0, 1]
4.

In the second case, an object is assigned to a category
with the highest average similarity between the object and
all category members (exemplars). This is defined by the
following expression:

𝐶 = arg max
𝐶∈{𝐼Se,𝐼Ve,𝐼Vi}

(
1

|𝐶|
∑
𝑦𝐶∈𝐶

(𝑥 ⇐⇒ 𝑦
𝐶
)) . (45)

Here 𝑦
𝐶
∈ [0, 1]4 is the exemplar of 𝐶 ∈ {𝐼Se, 𝐼Ve, 𝐼Vi}, and |𝐶|

is the cardinality of category 𝐶.
The categorization process was executed 50 times. In each

execution, 70 percent of randomly selected objects are used
by the system for prototype formation. The remaining 30
percent of objects are then categorized. The accuracy of the
categorization is measured as the average of the percentages
of successfully categorized objects in each execution. In the
first case, 95.56 percent of objects are successfully categorized.
In the second case, 96.67 percent of objects are successfully
categorized. As we can see, the artificial cognitive system
based on the exemplar approach achieves slightly better
results. The same results would have been obtained if the
system had been constructed by using the Boolean consistent
fuzzy dissimilarity relation defined in (35).

5. Conclusion

Categorization is a fundamental activity for any natural or
artificial cognitive system. Formalization of this activity in
accordance with the prototype theory of categorization is
proposed. This is accomplished by using Boolean consistent
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fuzzy logic—the interpolative Boolean algebra. The pro-
posed formalism is within the Boolean frame, securing the
principles of categorization—perceived world structure and
cognitive economy.Accordingly, an artificial cognitive system
based on the proposed formalism can acquire maximum
information about the world with the least computational
effort. The universality of Boolean laws in the classical and
the prototype theory shows that such laws are fundamental in
the categorization process. The proposed artificial cognitive
system achieves notable results in the considered example.
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