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Abstract. We present new sharp embedding theorems for mixed-norm analytic spaces
in pseudoconvex domains with smooth boundary. New related sharp results in minimal
bounded homogeneous domains in higher dimension are also provided. Last domains we
consider are domains which are direct generalizations of the well-studied so-called bounded
symmetric domains in C™. Our results were known before only in the very particular case
of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily
based on nice properties of the r-lattice. Some results of this paper can be also obtained in
some unbounded domains, namely tubular domains over symmetric cones.
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1. INTRODUCTION

The theory of analytic spaces on general admissible domains has been well-
developed by various authors during last decades (see [3], [6], [8], [10], [12], [14],
[15], [16], [20], [23], [26], [29], [30] and various references there). In this partially
expository paper we will turn to the study of certain new embedding theorems for
some new mixed norm analytic classes in strictly pseudoconvex domains in C" with
smooth boundary. We add such type sharp theorems also in other domains based on
same ideas (bounded symmetric domains and their direct generalizations). In this
paper also we extend some theorems from [17] and [18] where they can be seen in
context of less general unit ball. Proving estimates and embedding theorems in pseu-
doconvex domains with smooth boundary we heavily use the technique which was
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developed recently in [2], [1]. For similar results in bounded symmetric domains and
their direct generalizations we are based on a series of recent subtle results of Yamaji
(see [32], [33] and various references there). Note that pseudoconvex domains with
smooth boundary are not symmetric, tubular domains are not bounded. Minimal
bounded homogeneous domains serve as direct extensions of bounded symmetric
domains (see [32], [33] and references there).

The motivation of this paper was to provide some sharp embedding theorems
from [30] in more general form and also add new results and discussions on embedding
theorems in pseudoconvex domains making the picture more complete. New related
results on sharp embeddings on other domains will be also presented in this paper.
Untill now there are only several sharp embedding theorems in analytic function
spaces in domains with complex structure in higher dimension.

Proofs of the last theorems in minimal domains repeat the proofs of Theo-
rems 3.1-3.3 and they will be omitted.

In our embeddings theorems for analytic function spaces in pseudoconvex domains
with smooth boundary and minimal bounded homogeneous domains the so-called
Carleson type measures constantly appear. We turn to some history related to
this problem. Carleson measures were introduced by Carleson [5] in his solution of
the corona problem in the unit disk of the complex plane, and, since then, have
become an important tool in analysis, and an interesting object of study per se. Let
A be a Banach space of analytic functions on a domain D C C". Given p > 1,
a finite positive Borel measure p on D is a Carleson measure of A (for p) if there is
a continuous inclusion A — LP(u), that is there exists a constant C' > 0 such that

/DIf(z)I”du(z)schw;,, f e A

A finite positive Borel measure p is a Carleson measure of H?(A) Hardy space if and
only if there exists a constant C' > 0 such that u(Sg, n) < Ch for all sets

Soon={re? €cA: 1-h<r<1,|0—6<h}

(see, also, [5], [22]). The set of Carleson measures of H?(A) does not depend on p.
In [11] (see also [21] and [22] for a result of such type) the author obtained a similar
description for the Carleson measures of the Bergman spaces AP(A). It was obtained
in terms of the special sets Sg, 5. In [7] the authors characterized Carleson mea-
sures for Bergman spaces in the unit ball B™ C C", and Cima and Mercer [6] found
description of Carleson measures of Bergman spaces in strongly pseudoconvex do-
mains with smooth boundary, showing in particular that the set of Carleson measures
of AP(D) is independent of p > 1. We turn to more details. In [7] a characterization
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of Carleson measures of Bergman spaces is formulated in terms of more general sets
than Sy, . We will use the one expressed via the intrinsic Kobayashi geometry of
the domain. Let 2o € D and 0 < r < 1, let Bp(20,r) denote the ball of center zp and
radius 1 log((1+7)/(1 —r)) for the Kobayashi distance kp of D (that is, of radius r
with respect to the pseudohyperbolic distance ¢ = tanh(kp); see Section 2 for the
necessary definitions). It is known (see [19] for D = A, [34] for D = B", and [2], [1]
for D strongly pseudoconvex) that a finite positive measure p is a Carleson measure
of AP(D) for p if and only if for some (and hence all) 0 < r < 1 there is a constant
C, > 0 such that
w(Bp(zo,7)) < Crv(Bp(20,7))

for all zy € D. The proof of this we see in [2] relied on Cima and Mercer’s charac-
terization (see also [6]).

We say that a finite positive Borel measure p is a (geometric) 8- Carleson measure
if for some (and hence all) 0 < r < 1 there is a constant C, > 0 such that

w(Bp(z0,7)) < ¢;v(Bp(20,7))°

for all zp € D. Note a 1-Carleson measures are the usual Carleson measures of AP(D),
and we know in pseudoconvex domains (see [2], [1]) that #-Carleson measures are
exactly the Carleson measures of weighted Bergman spaces. Note also that when
D = B™, a ¢-Carleson measure in the sense of [34] is a (1 4+ ¢/(n + 1))-Carleson
measure in our sense. We refer the reader to [9] and various references there for
various (not only sharp) embedding theorems and related results in case of polydisk
for analytic Bergman type and Besov type spaces in higher dimension and for various
related mixed norm spaces of harmonic functions of several variables.

In this paper we are however more interested in Carleson type measures for some
new analytic Bergman type mixed norm spaces in strongly pseudoconvex domains
with smooth boundary. Note the literature concerning various one dimensional em-
beddings is very large. In recent papers of Yamayji (see [32], [33] and references there)
new subtle estimates from below for the Bergman kernel and weighted Bergman ker-
nel (see definitions below) on balls forming r-lattices (and some other nice properties
of r-lattices) were provided in context of bounded minimal homogeneous domains.
We will use them to get complete analogues of some of our theorems formulated be-
low, in context of pseudoconvex domains with smooth boundary in minimal bounded
homogeneous domains. Similarly to pseudoconvex domains with smooth boundary
in minimal bounded homogeneous domains some sharp Carleson type embeddings
for Bergman type spaces and mixed norm spaces will be also fully characterized in
terms of Carleson type measures of minimal bounded homogeneous domains (see def-
initions of Carleson type measures for these domains below). Note these two scales of

529



complicated domains in higher dimension are different. The minimal bounded homo-
geneous domains can be viewed as direct extensions of bounded symmetric domains,
while bounded pseudoconvex domains with smooth boundary generally speaking are
not even symmetric (see [32], [33] and various references there).

Throughout this paper constants are denoted by C and C;, i € N or by C with
other indexes. They are positive and need not be the same at each occurrence.

2. PRELIMINARIES ON GEOMETRY OF STRONGLY PSEUDOCONVEX DOMAINS WITH
SMOOTH BOUNDARY AND MINIMAL BOOUNDED HOMOGENEOUS DOMAINS

In this section we provide a chain of facts, properties and estimates on the geometry
of strongly convex domains which we will use heavily in all our proofs below. Prac-
tically all of them are taken from recent interesting papers of Abate and coauthors
(see [2], [1]). In particular, following these papers we provide several results on the
boundary behavior of Kobayashi balls, and formulate a vital submean property for
nonnegative plurisubharmonic functions in Kobayashi balls. Then at the end of this
section we will also add some basic notation taken from recent papers of S. Yamayji to
formulate our sharp embedding theorems for analytic mixed norm spaces in minimal
bounded homogeneous domains in higher dimension. These assertions are complete
analogues of our lemmas below in context of bounded pseudoconvex domains with
smooth boundary. Some related results, lemmas will be also given in this section to
make the picture more complete. We now first recall the standard definition and the
main properties of the Kobayashi distance which can be seen in various books and
papers (we refer, for example, to [2], [1], [13], [14] for details). Let ka denote the
Poincaré distance on the unit disk A C C". If X is a complex manifold, the Lempert
function dx: X x X — R of X is defined by

dx(z,w) =inf{ka(¢,n): there exists a holomorphic p: A — X
with ¢(¢) = z and ¢(n) = w}

for all 2, w € X. The Kobayashi pseudodistance kx: X x X — RT of X is the
smallest pseudodistance on X bounded below by §X. We say that X is (Kobayashi)
hyperbolic if kx is a true distance and in that case it is known that the metric topol-
ogy induced by kx coincides with the manifold topology of X (see, e.g., [2], [1]). For
instance, all bounded domains are hyperbolic (see, e.g., [2], [1]). The following prop-
erties are well-known in literature. The Kobayashi (pseudo)distance is contracted by
holomorphic maps: if f: X — Y is a holomorphic map then

by (f(2), f(0)) < kx(z,w), 2 we X.
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Next, the Kobayashi distance is invariant under biholomorphisms and decreases
under inclusions: if Dy C Dy CC C™ are two bounded domains we have kp, (z,w) <
kp, (z,w) for all z, w € D;. Further, the Kobayashi distance of the unit disk coincides
with the Poincare distance. Also, the Kobayashi distance of the unit ball B™ C C"
coincides with the well-known in many applications the so-called Bergman distance
(see [2], [1], [18], [34)).

If X is a hyperbolic manifold, zg € X and r € (0, 1) we shall denote by Bx(zo,7)
the Kobayashi ball of center zo and radius §log((1+7)/(1—7)) :

Bx(z9,7) = {2z € X: tanh kx (20, 2) < r}.

We can see that px = tanh kx is still a distance on X, because tanh is a strictly
convex function on RT. In particular, og~ is the pseudohyperbolic distance of B".

The Kobayashi distance of bounded strongly pseudoconvex domains with smooth
boundary has several important properties. First of all, it is complete (see [2], [1]),
and hence closed Kobayashi balls are compact. It is vital that we can describe the
boundary behavior of the Kobayashi distance: if D CC C™ is a strongly pseudocon-
vex bounded domain and zy € D, there exist ¢g, Cp > 0 such that

1 1
0~ 5 logd(z,0D) < kp(z0,2) < Co — 3 logd(z,0D), ze€D

where d(-,0D) denotes the Euclidean distance from the boundary of D (see [2], [1]).
We provide some facts on Kobayashi balls of B™ (for proofs see [2], [1] and [34]).
The ball Bgn(z9,7) is given by

_ . (L= J20l) @ — [2]*)
BBn(zo,r)—{zeB : |1i<z,z0>|2 >1_7n2}.

Geometrically, it is an ellipsoid of (Euclidean) center

1—r?

= ——=—5%
=2z

its intersection with the complex line C,, is an Euclidean disk of radius

1— ||zo]*
Ik B

and its intersection with the affine subspace through zy orthogonal to zy is a Eu-

1 — ||zol
r .
1—72[]z|?

clidean ball of the larger radius
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Let v denote the Lebesgue volume measure of R?", normalized so that v(B") = 1.
We denote by the same letter the Lebesgue measure on the pseudoconvex domain D.
Then the volume of a Kobayashi ball Bgn (zo,7) is given by (see [34])

1 — [zl )”“

Brpn _ 2”(7
VB Co ) =T T g

A similar estimate is valid for the volume of Kobayashi balls in strongly pseudo-
convex bounded domains:

Lemma A ([2], [1]). Let D CC C™ be a strongly pseudoconvex bounded domain
with smooth boundary. Then there exist ¢; > 0 and C, > 0 for each r € (0,1),
depending on r such that

c17*™d(20,0D)" ™ < v(Bp(z0,7)) < C1pd(20,0D)"

for every zo € D and r € (0,1).

Let D CC C" be a bounded strongly pseudoconvex domain with smooth boundary

in C”. We shall use the following notation:

> §: D — RT will denote the Euclidean distance from the boundary, that is §(z) =
d(z,0D);

> given two nonnegative functions f, g: D — RT we shall write f < g to say that
there is C' > 0 such that f(z) < Cg(z) for all z € D. The constant C'is independent
of z € D, but it might depend on other parameters (r, 6, etc.);

> given two strictly positive functions f, g: D — R we shall write f ~ gif f < g
and g =< f, that is if there is C' > 1 such that C~1g(2) < f(z) < Cg(z) for all
z € D;

> H(D) will denote the space of holomorphic functions on D, endowed with the
topology of uniform convergence on compact subsets;

> given 1 < p < oo, the Bergman space AP(D) is the Banach space LP(D) N H(D),
endowed with the LP-norm;

> more generally, given S € R we introduce the weighted Bergman space
A%(D) = AP(D, B) = L (6°v) N H(D)

endowed with the norm

1/p

/1

o= | [ QP8 © o)
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if 1 < p < oo, and with the norm

1£lloe.8 = 167 1o

if p = o0;
> K: Dx D — C will be the Bergman kernel of D. Further, K, is a kernel of

type t defined in a standard manner with help of the well-known Henkin-Ramirez

function, see [4]. Note we have K = K,, 11 (see [1], [4]);
> given r € (0,1) and z9 € D, we shall denote by Bp(zo,r) the Kobayashi ball of

center zo and radius 1 log((1+7)/(1—7)).

See, e.g., [2], [1], [13], [14] for definitions, basic properties and applications to the
geometric function theory of the Kobayashi distance and [13], [14], [24] for definitions
and basic properties of the Bergman kernel. Let us now recall a number of results
proved in [2]. The first one gives information about the shape of Kobayashi balls.

Let further dvy(z) = (6(2)) dv(z), t > —1.

Lemma B ([2], Lemma 2.2). Let D CC C" be a bounded strongly pseudoconvex
domain. Then there is C' > 0 such that
C 1—r

m(s(zo) >0(z) > c

d(z0)

for all 7 € (0,1), 29 € D and z € Bp(z0,7).

Definition 2.1. Let D CC C" be a bounded domain, and r > 0. An r-lattice
in D is a sequence {ax} C D such that D = |JBp(ag,r) and there exists m > 0
k

such that any point in D belongs to at most m balls of the form Bp(a, R), where
R=(1+7)/2.

The existence of r-lattices in bounded strongly pseudoconvex domains is ensured
by the following.

Lemma C ([2], Lemma 2.5). Let D CC C" be a bounded strongly pseudoconvex
domain. Then for every r € (0,1) there exists an r-lattice in D, that is there exist

o)
m € N and a sequence {ar} C D of points such that D = |J Bp(ag,r) and no
k=0
point of D belongs to more than m of the balls Bp(ay, R), where R = (1+1)/2,
Vo(Bp(ak, R)) = (0%(ar))v(Bp(ak, R)), a > —1; this equality follows directly from
the properties of r-lattices on Kobayashi balls we listed above and the definition of
the weighted Lebegues measure.

We will sometimes call r-lattice the family of balls Bp (ay, ). Let K(z,&) be a mea-
surable function on D x D and let ¢t be a positive number. We say that K = K,
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(or K;) is a kernel of Bergman type ¢ for all z € D, if |K(z,£)] < C(|®(z,&)|)
where ® is the Henkin-Ramirez function. So, if K is a kernel of Bergman type ¢
then K* is a kernel of type st, s > 0.

Dealing with an unweighted Bergman kernel K, K = K, 1, we always assume
|K(z,ar)| < |K(ag,ar)| for any z € Bp(ag,r), r € (0,1) (see [2], [1]). Based on the
definition of the Bergman kernel via the Henkin-Ramirez function (see [4]), it is easy
to see this assertion is valid also for all K; kernels, t = m(n + 1), m € N.

The key ingredient of proofs in embeddings in analytic Herz type spaces below is
the assumption that a little bit stronger condition holds, namely, |K(z, ar)| is equiv-
alent to |K (w,ay)| for any Bergman kernel of type ¢ for any w and z in Bp(am, )
and any ay, k € N, where m is any natural number. This is valid in the unit ball
(see [34]) and also plays a key role in the main theorems (see [34]).

This condition, the additonal condition on the Bergman kernel we need in the
proofs on Herz type spaces (Theorem 3.2) below, can probably be dropped.

We shall use a submean estimate for nonnegative plurisubharmonic functions on
Kobayashi balls:

Lemma D ([2], Corollary 2.8). Let D CC C" be a bounded strongly pseudocon-
vex domain. Given r € (0,1), set R = (1+1r)/2 € (0,1). Then there exists a C, > 0
depending on r such that

C:
X Z)g 7/ Xdy7 Z ED’ ZEBD(Z 7T
( I/(BD(ZOaT)) Bp(z0,R) ’ i )

for every nonnegative plurisubharmonic function y: D — R™T.

We will use this lemma for x = |f(2)|?, f € H(D), q € (0, 0).
Using properties of Kobayashi balls {Bp(ax,r)} we will have the following esti-
mates for the Bergman space AP (D):

||f||ig:/ | f(w)[P 6% (w) dv(w X;[zegﬁfm (Z)I”}VaBD(ak,T)
- )P6% () d , 0 , —1.
Z/B 2)[P6%(2) dv(z), 0<p<oo, a>
Let now
o (I/p
p s v
A(p.g.) = {feH ;(LDW)WM 5(2) <z>) <oo},
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where 0 < p,q < 0o, @ > —1. These are Banach spaces if min(p, ¢) > 1 and complete
metric spaces for other values of parameters.

These A(p, g, @) spaces (or their multifunctional generalizations) can be viewed as
natural extensions of classical Bergman spaces in strictly pseudoconvex domains with
smooth boundary for which the family {Bp(ax,r)} related to the r-lattice {(ax)}
exists (see [2], [1]). It is natural to consider the problem of extension of classical
results on A2 (D) Bergman spaces to these A(p, q, @) spaces. Some of our results are
motivated by this problem.

The next result is the main result of this section and contains the weighted LP-
estimates we shall need. Sometimes we denote the unweighted Bergman kernel K, 11
by K.

Theorem A ([1], [10]). Let D CC C™ be a bounded strongly pseudoconvex
domain, and let zo € D and 1 < p < co. Then

S0+ DP=D (25), for —1 < B < (n+1)(p—1);
/D K (¢, 20)P67(C) du(¢) < { [log(z0)], for f = (n+1)(p - 1);
1, for 6> (n+1)(p—1).

In particular:
() 1K, 20)llp,s < 69/P=(D/4(20) and ||kzlp,s < 60 H1/2H0/p=(140/4(50) when
-1 < 8 < (n+1)(p—1), where ¢ > 1 is the conjugate exponent of p (and
(n+1)/qg=0 whenp=1);

(i) 1K (- 20)llps <1 and [[kzllp,s < 60 TD/%(20) when 8> (n+1)(p - 1);

(i) K, 20)llp,n+1)p-1) = 67%(20) and [[kz [lp,(n+1)(p-1) = (/272 (2) for all
e>0.

Furthermore,

(v) 1K (-, 20)[loo,s = 68~ (20) and ||k, ||eo,s & 65~ HD/2(20) for all 0 < B <
n+1; and || K (-, 20)||eos = 1 and ||k, ||lco.s = 6 FD/2(2) for all B> n + 1.

A complete analogue of this theorem is valid also for general K; type kernels, t > 0
(see [4], [10]).

We add now shortly some basic facts on minimal bounded homogeneous domains
which we will use partially in our paper (see [32], [33]).

We say the bounded &/ domain in C" is a minimal domain with a center t € U
if the following condition is satisfied: for every biholomorphism v¢: U — U’ with
det J(¢,t) = 1 we have Vol(U/') > Vol(U) where J(1),t) denotes the complex Jacobi
matrix of ¢ at ¢ (see [33]). We fix a minimal bounded homogeneous domain U/ with
center .
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Let dV3(2) = Kyu(2,2)"?dV(z), B € R and let dV denote the Lebesgue measure
on U, (see [33]). Let L ,(U,dVs) = LP(U,dVz) N HU), 0 < p < oo, where H(U)
is the class of all analytic functions on /. These spaces are nontrivial if and only
if 8 > Bmin for some fixed Bumin (see [33]). Note we will always assume this below.
These are Banach spaces for p > 1.

We below denote by Ké,ﬂ ) the reproducing kernel of L2 (U,dVj). Further L2 is the
Bergman space on U (unweighted) and L2(U,dV) = L?*(U,dV) N H(U). It is known
that Kg = K&B)(z, w) = CsK,(z,w) P for some positive constant Cj, (see [33]).

The Bergman kernel K, (z,w) of U is playing a very important role in our theorems
below. Let dy(-,-) be the Bergman distance on U. For any z € U, r > 0, let
B(z,r) = {w € U: dy(z,w) < r} be the Bergman metric disk with center z and
radius 7.

The existence of the so-called Bergman sampling sequence can be seen in [33] (see
also Lemma G). This sequence and estimates of the Bergman kernel on {B(zx, 0)}
balls are very vital for this paper. We denote below the Lebesgue measure of the
ball B(z, p) by Vol. We denote by Vol(E) the volume of the set E.

We supply three lemmas from [33] which are crucial for the proofs of theorems
relating to the minimal domains (Theorems 3.4 and 3.5). Analogues in tube and
pseudoconvex domains can bee seen in [3], [18], [29], [30].

Lemma E ([33]). Take ¢ > 0. Then there exists C, > 0 such that

K,
1< M‘\CQ7 z,aEU, /BU(Z;G)SQa

(2'1) CQ_ = KL{(aaa)

N

where By means the Bergman distance on U.

Lemma F ([33]). There exists a positive constant C' such that

re ¢ 2)P z
(22) F@OF < GBaa) Sy TPV E)

feHU),p>=1,acl.

Lemma G ([33]). There exists a sequence {w;} € U satisfying the conditions

U=\ Bw o), B(wi,g)ﬁB(wj,i):@, i .

3

j=1

There exists a positive integer n such that each point z € U belongs to at most n
sets B(wj, 20).
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3. ON SOME NEW SHARP EMBEDDING THEOREMS FOR MIXED NORM SPACES
IN STRICTLY PSEUDOCONVEX DOMAIN WITH SMOOTH BOUNDARY
AND IN MINIMAL BOUNDED HOMOGENEOUS DOMAIN

This main part of our work contains formulations of all main results of this work
and also the proofs of our main results in bounded strongly pseudoconvex domains
with smooth boundary and in minimal bounded homogeneous domains. The theory
of analytic spaces in bounded strictly pseudoconvex domains has developed rapidly
during the last decades (see [6], [8], [14], [15], [20], [23]). Several Carleson type sharp
embedding theorems for such spaces are known today (see [1], [6] and references
there). The goal of this paper is to add to this list several new sharp assertions. We
alert the reader that we extend our previous results in the unit ball of C™ from [18].
And the proofs are rather similar. Hovewer, we found our general results interesting
enough to put them in a separate paper. We need for all our proofs as previously
in the unit ball case various properties of r-lattices of D domain, which we listed in
the previous section, and various properties of analytic functions on Kobayashi balls
from recent papers [2] and [1] which we also listed above.

During the past decades the theory of Bergman spaces in strictly pseudoconvex
domains with smooth boundary was developed in many papers by various authors.
Here we consider direct generalizations of such spaces. For the Bergman space theory
in the unit disk and in the unit ball we refer the reader to [9], [34]. One of the goals
of this paper is to extend some results of standard weighted Bergman spaces in the
strictly pseudoconvex domains in C” to the case of more general A(p, q, «) classes of
Bergman type classes.

Definition 3.1. Let D be a bounded domain with an r-lattice. Let u be a pos-
itive Borel measure in D, 0 < p,q < o0, s > —1. Fix r € (0;00) and an r-lattice
{ar}32,. The analytic space A(p,q,dp) is the space of all holomorphic functions f
such that

o0

q/p
i = 2 [, - FEPIE) <

k=1

If dp = 0°(z)dr(z) then we will denote by A(p,q,s) the space A(p,q,du). This is
a Banach space for min(p, ¢) > 1. It is clear that A(p,p,s) = AP.

Remark 3.1. It is clear now from the discussion above and the definition of
A(p,p,s) spaces that these classes are independent of {ar} and r. But in the
general case of A(p,q, s) spaces the answer is unknown. For simplicity we denote

HfHA(p,q,s,ak,r) by ”f”A(IL(IvS)'
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We also have the following estimates using the r-lattice:

e}

q/p
|ﬂA@%@=g;(éX&ﬂmm<mﬂn%«adwa)

q/p
c{/uuw&aw@> Ol azp s> -1
D

So, finally, we have

HfHA(pq,s) qgzp, s>-—1L
Motivated by this estimate we pose the following very natural and more general
problem (as in the case of the unit ball).

Problem. Let p be a positive Borel measure in D and let {ay }ren be a sequence
such that Bp(ag,r) is an r-lattice for a strictly pseudoconvex domain D with smooth
boundary in C™. Let X be a quasinormed subspace of H(D) and p,q € (0,00).
Describe all positive Borel measures such that

1l ap.q.am) < CllSfIlx-

The following theorem gives a solution for Bergman spaces. It is known (see [30]),
but we put it here with vital remarks after it to complete the picture.

Theorem 3.1. Let 0 < g, p < 00, 0 < s < p < oo, B> —1. Let u be a positive
Borel measure on D. Then we have

11l agg,p.ap) < cllf] Ag

if and only if
(3.1) 1(Bp(ag,)) < ca(d(ay))1m+i+h)/s

for some constants c1,co > 0, k € N.

Remark 3.2. It is interesting that Theorem 3.1 can be extended even to more
general mixed norm spaces (see [23]) if we replace the Bergman space norm on the
right hand side of the estimate by the mixed norm space norm. This procedure was
done for some other embedding theorems recently in a paper [25]. The ideas are
similar to those used in the paper [25].
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The following theorem gives a solution of the above mentioned problem for Herz
type spaces. In the particular case of ¢ = ¢; our Theorem 3.2 was shown in a recent
paper [30].

Theorem 3.2. Let 0 < ¢, s < 00, ¢ > s, ¢ > q1, o > —1. Let {ax}>, be
a sequence forming an r-lattice in D. Let pu be a positive Borel measure in D. Then

if and only if
(3.2 (B (ar, 7)) < cald(a) 1 H st/

for some constants ci,co > 0, k € N,
Remark 3.3. The unit ball case of Theorem 3.2 was considered before in [28], [31].

Remark 3.4. We denote the right hand side of the estimate in Theorem 3.2
by D(f,s,«,q) and by D(f,s, u,q) replacing the Lebegues measure by any positive
Borel measure. The problem of finding conditions on the positive Borel measure
such that D(f, s, j1, q) is less than the Ag norm of f also appears naturally and some
sufficient and necessary conditions can be found using the methods of this paper. In
analytic Herz type spaces this type of problems was considered in the unit ball by
the first author in [28], [31].

Finally we formulate a sharp result for multifunctional analytic function spaces in
bounded pseudoconvex domains with smooth boundary.

Theorem 3.3. Let u be a positive Borel measure on D and {air} a Kobayashi
sampling sequence forming an r-lattice. Let a; > «, for large enough oy, f; € H(D),
m
0<pi<g<oo,i=1,...,m,sothat >, 1/¢; =1. Let (n + 1+ o;)/(pi(n+ 1)) be
i=1
integer for all i. Then

/[)ﬁ|fi(z) Pidpu(z) < e f[l Li::l (/B(%R) |fs(2)|Pi5e (Z)dy(z))h}l/qi,
R— 1 —;— 7"’ r o0

if and only if
(3.3) 1(Bp(ag,r)) < e DT @i (g)
for some constants c1,c2 > 0, k € N.
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Remark 3.5. We wish to formulate also one more general functional case of
Theorem 3.3. Let ¢ > s and p > (¢, s), a > ayp, for large enough «y. Then

(f If(Z)I”du)l/p <ex([ ) du<z>)q

for a positive Borel measure p in D is valid if and only if u(Bp(ax, R)) < CO™ (ax)

/s

for some constant C' and 7y depending on p, g, s, a.

The proof of this assertion can be performed similarly in minimal bounded domains
as well. Using the fact that ¢ > s we embed the right hand side of this estimate into
the Bergman space norm and then continue as in [2] and [32].

Remark 3.6. The additional condition relating p; and «; in Theorem 3.3 as we
can see from the proof below can be dropped, but in this case the proof is simpler.

Remark 3.7. The assertion of Theorem 3.3 can be found in the paper [18] for
the case of the unit ball in C™. For ¢; = 1, p;, = p, m = 1, it can be seen in [34] in
the unit ball for o; = a, j = 1,...,m. Theorem 3.1 and Theorem 3.3 were given
in [30] without detailed proofs in a sketchy form.

As was mentioned above we intend to give in this paper much more general versions
of our earlier results proved before in the case of the unit ball in C™ in bounded strictly
pseudoconvex domains with smooth boundary. We heavily use for this purpose the
new vital technique which was developed in very recent vital papers [2], [1], where
the so-called r-lattice was introduced and studied for bounded strictly pseudoconvex
domains.

Note also that again here as before in the case of the unit ball all our proofs are
heavily based on nice properties of the r-lattice, which we listed in the previous
sections, mentioned above and which will not be mentioned again concretely below.

Proof of Theorem 3.1. Suppose (3.1) holds. Then we use the properties of the
r-lattice, which we listed in the previous sections (Lemmas A-D):

<k§; [/BD(%T) |f(2)]4 dM(z)} p/q>s/p

oo s/p
<O (Z max |f(z)|p5p(n+1+/3)/s (Wc))

o1 z€Bp (ak,r)

oo

< C 35(n+1+[3)
) ;;1 Jommax |f(2)] (ak)

<Gy /D |F(2)°67 () du(2) < Cuf]

184;;(D)7 6>—1, 0<s<o0.
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Conversely, using an appropriate test function f;(z) and estimates from below of
Bergman type kernel K1, |K(z,ax)| = Cs5(d(ax))" ™, from [2], [1] and using also
properties of an r-lattice which we listed in previous section, for the test function

t
s(n+1)’
t=2(n+1+7),

fu(z) = 5("+7+1)/S(ak)K;+1(z,ak), zeD, keN, r=

we can choose 7 such that r is a natural number large enough (we follow the proof
of the unit ball case) and noting that

s ([ o If(Z)quu(Z))l/q

<G [i(/ )1 du( )),,/T/p<c T
S z z S
° k—1 \Y Bp(ak,r) : ’

Aga

we get what we need.
Indeed, putting f; into (3.4) and using the fact that sup || fx|
k

Ay < C6P~7(ax)

which follows from Theorem A (see also [4]) we get what we need. The proof is
complete. (I

Proof of Theorem 3.2. Let (3.2) hold. We have for the same {ax} sequence
and using the properties of the r-lattice, which we listed in the previous sections
(Lemmas A-D)

/D @) duw) <3 sup  |Fw)|'u(Bplar, 1)

b—1 wE€BD(ak,r)

s q/s
<O Z ( sup |f(w)|5) 5q((n+1+a)/s+(n+1)/q1)(ak).
b—1 WEBD(ak,r)

Then we have é(w) < (=), z € Bp(w,r) (see [2], [1]) and hence

o e dv(e)
/ e <0 / o ( / st a<w>)75n+l+a(z)-

Hence we have now t = q((n+ 1+ a)/s+ (n+1)/q1),
[ 10 dute)
D

<Cs

(/BDW,R) 7= dy(z)ﬁ%(ak))%@(ak))t

(/BD(%R) /BD(M) | f(w)]* dvg (w) dy(z))q/s((sn-'rl(ak))q/ql.
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By Holder’s inequality we have, using the properties of the r-lattice (Lemmas A-D)

SV dy ~M>‘I/S
(@MM&L@MWJﬂdeQ@»MH@)
1+r

a/s
<[ ([ w@ra@) et ee. 1=
Bp(ak,R) Bp(z,r)

Combining all the above estimates we get the desired results. We show the reverse.
We have for {a;}, z € D, k=1,2,... and 8 which is big enough.

Fi(z) = 89— (1) /s= 0tV a1 () K, (2,a0)), B = o ;
n+1
n+1+a

T=5Q1—Q178 —(n+1)

(E can be chosen to be a large positive integer). Then by Theorem A and Lem-
mas A-D we have

/D(/BD(w,r) |fk(z)lsdua(z)>q1/s dv(w) < [C(&T(ak))(%)} < const.

Then we have, using the estimate from below of the Bergman kernel as we did above

/ |fe(2)|? da(2) = p(Bp (ag, r))[p~ 1 1Fe/st 0D/ (g )],
D

The rest is clear (see also [18]). O
Note that in all the proofs we repeat the arguments from the case of the unit ball
(see, for example, [18]).

Proof of Theorem 3.3. We assume (n+ 1+ «;)/(p;(n + 1)) is integer for all 4.
First suppose that (3.3) holds. Then using properties of r-lattices which we listed in
the previous sections and the Kobayashi balls we have (we put a; = « for all j and
the general case is the same here)

Lﬁmw

<Clzu(BD(ak,r))H sup | fi(z

i=1 z€Bp(ak,r)

B a/ )
< Oy Z 5m(nf1+:) ak H/BD akvR)
< H /B | fi(w)

k—1i=1" Bp(ar,R)

Prdp(z)

pL du

/Hm

)|P6% (w) dv(w)

Pig®(w) dv(w).
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Using the condition Z 1/q; = 1 and Hélder’s inequality for m functions we get what

we need. The reverse follows from the chain of equalities and estimates based again
on the properties of the r-lattice, which we listed in the previous section. Indeed we
have as above for the test function f;

2(7’L+ 1—|—0¢i)

() = §(nt1tai)/pi KT _
fl(Z) (Clk) n+1(ak7 Z)7 Ti (n i 1)pz

,1=1,...,m.
We choose «; such that 7; is a large enough positive integer.

By the properties of the r-lattice, which we listed in the previous sections (Lem-
mas A-D) we have

/Hm

)P duz) > ‘/" oIS (ag) K (ax, 2) dp(z)
Bp(ag,r)

w(Bp(ag,r))
= 6m(n+1)+23":1 aj (ak) .

Hence we get what we need. Indeed we have the estimates

ﬁ(gxébmﬁﬂ“”“”“@®@0>Wi
io:/ |fi(2)

1 k=17 Bp(ar,R)

::13

P67 (2)) dr(2)

<@ELM@

1+7r
5

Pi(§%(2))dv(z) < C5, R=

O

The careful analysis of proofs we provided above shows various similarities with
our previously mentioned work in the unit ball. Nevertheless, bounded strictly pseu-
doconvex domains are much more general as domains than the unit balls.

The goal of this subsection is to obtain also new sharp results on Bergman type
analytic spaces in minimal bounded homogeneous domains. Our results were known
before only in the very particular case of domains of such type in the unit ball. Our
results are heavily based on a series of subtle new estimates obtained recently in [33].
We note domains we consider here are direct generalizations of the well-studied so-
called bounded symmetric domains in C" (see [33]). Note, also, that all the above
mentioned domains and even the polydisk are examples of minimal domains.

Proofs of our last theorems are simply copies of our previous parallel theorems in
bounded pseudoconvex domains with smooth boundary (see above) and we omit the
details of these proofs for that reason.
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The following theorem is a new sharp result on embeddings in L2 (U, dVj) analytic
function spaces.

Theorem 3.4. Let 1 <p, ¢ < 00,1 <s<p <00, > Pmin, 0> 0. Let {2z} be
a sampling sequence in U, let p be a positive Borel measure on U. Then

e p/q
3.5 7d < .
& ;</B(2k,9) ) MZ)) S allfllzzenav
if and only if
(3.6) 1(B(zk, 0) < c2(Vol)(B(zx, 0))™

for all {z} € U, 0 > 0, for some fixed By, Bo = Po(B,q,s,n) and for some constants
c1,c0 >0, k€N,

Note it was shown in [33] that a condition similar to (3.6) holds if and only if

(3.7) / F)P du(z) < § /|f )P AV (2)

for all p > 0 and for all f € LP(U,dVp).

The proof of this result and those of Theorems 3.4, 3.5 are similar. Note the proofs
of theorems of this paper can be obtained after careful study of estimates of the proof
of the unit ball case and parallel estimates obtained recently in the case of bounded
minimal homogeneous domains in C" (see [18], [27], [26], [33]).

The following theorem is another new sharp result on embeddings in L2(U,dVj)
analytic function spaces in minimal bounded homogeneous domain in C™. The base
of proof are the Forelly-Rudin estimates and a lower estimate for the Bergman kernel.

Theorem 3.5. Let o be a positive Borel measure on U, and {z;} a Bergman
sampling sequence. Let o > apmin, fi € HU), 1 < pi,q; < 00, i = 1,...,m so that

m
>>1/qi =1. Then

i=1

o9 ] H e avi(2) }/

if and only if u(B(zk,r)) < c2(Vol(B(zg,r)))* for every k € N, r > 0, for some
fixed ap, ag(m, n, ) and for some constants c1, ca > 0.

<ol (), e

i=1" k=1
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Similar results with similar proofs were obtained by the first author in tubular

domains over symmetric cones (unbounded domains) and bounded strictly pseudo-

convex (nonsymmetric) domains (see [3], [29], [30] and references there).

1]
2]

3]

[4]
[5]
[6]
[7]
8]
[9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
18]
[19]
[20]

[21]

References

M. Abate, J. Raissy, A.Saracco: Toeplitz operators and Carleson measures in strongly
pseudoconvex domains. J. Funct. Anal. 263 (2012), 3449-3491. MR
M. Abate, A. Saracco: Carleson measures and uniformly discrete sequences in strongly
pseudoconvex domains. J. Lond. Math. Soc., Ser. (2) 83 (2011), 587—605. |zbl JMR]
M. Arsenovié, R.F.Shamoyan: On distance estimates and atomic decompositions in
spaces of analytic functions on strictly pseudoconvex domains. Bull. Korean Math. Soc.

52 (2015), 85-103. MR
F. Beatrous, Jr.: LP-estimates for extensions of holomorphic functions. Mich. Math. J.

32 (1985), 361-380. MR
L. Carleson: Interpolations by bounded analytic functions and the corona problem. Ann.

Math. (2) 76 (1962), 547-559. zbl MR
J. A. Cima, P.R. Mercer: Composition operators between Bergman spaces on convex
domains in C™. J. Oper. Theory 33 (1995), 363-369. MR
J. A. Cima, W. R. Wogen: A Carleson measure theorem for the Bergman space on the

ball. J. Oper. Theory 7 (1982), 157-163. zbl MR
W. S. Cohn: Tangential characterizations of BMOA on strictly pseudoconvex domains.

Math. Scand. 78 (1993), 259-273. MR]

A. E. Djrbashian, F. A. Shamoyan: Topics in the Theory of AL Spaces. Teubner-Texte

zur Mathematik 105, Teubner, Leipzig, 1988. MR
M. Englis, T.T. Hinninen, J. Taskinen: Minimal L°°-type spaces on strictly pseudo-

convex domains on which the Bergman projection is continuous. Houston J. Math. 32

(2006), 253-275. IMR]
W. W. Hastings: A Carleson measure theorem for Bergman spaces. Proc. Am. Math.

Soc. 52 (1975), 237-241. MR
T. Jimbo, A.Sakai: Interpolation manifolds for products of strictly pseudoconvex do-

mains. Complex Variables, Theory Appl. 8 (1987), 333-341. MR]
S. Kobayashi: Hyperbolic Complex Spaces. Grundlehren der Mathematischen Wis-
senschaften 318, Springer, Berlin, 1998. MR
S. G. Krantz: Function Theory of Several Complex Variables. Pure and Applied Math-
ematics, A Wiley-Interscience Publication. John Wiley & Sons, New York, 1982. MR]
H. Li: BMO, VMO and Hankel operators on the Bergman space of strongly pseudocon-

vex domains. J. Funct. Anal. 106 (1992), 375-408. MR
S.-Y. Li, W.Luo: Analysis on Besov spaces II: Embedding and duality theorems.

J. Math. Anal. Appl. 388 (2007), 1189-1202. zbl MR
S. Li, R. Shamoyan: On some estimates and Carleson type measure for multifunctional
holomorphic spaces in the unit ball. Bull. Sci. Math. 134 (2010), 144-154. IMR]
S. Li, R.Shamoyan: On some properties of analytic spaces connected with Bergman

metric ball. Bull. Iran. Math. Soc. 84 (2008), 121-139. zb] MR}
D. Luecking: A technique for characterizing Carleson measures on Bergman spaces. Proc.

Am. Math. Soc. 87 (1983), 656—660. zb] MR}
J.D. McNeal, E. M. Stein: Mapping properties of the Bergman projection on convex
domains of finite type. Duke Math. J. 73 (1994), 177-199. MR]
V. L. Oleinik: Embedding theorems for weighted classes of harmonic and analytic func-

tions. J. Sov. Math. 9 (1978), 228-243.

545


https://zbmath.org/?q=an:1269.32003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2984073
https://zbmath.org/?q=an:1227.32008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2802500
https://zbmath.org/?q=an:1308.32037
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3313426
https://zbmath.org/?q=an:0584.32024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0803838
https://zbmath.org/?q=an:0112.29702
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0141789
https://zbmath.org/?q=an:0840.47025
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1354986
https://zbmath.org/?q=an:0499.42011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0650200
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1269263
https://zbmath.org/?q=an:0667.30032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1021691
https://zbmath.org/?q=an:1113.46017
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2202364
https://zbmath.org/?q=an:03463975
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0374886
https://zbmath.org/?q=an:0587.32032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0898073
https://zbmath.org/?q=an:0917.32019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1635983
https://zbmath.org/?q=an:03738047
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0635928
https://zbmath.org/?q=an:0793.47025
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1165861
https://zbmath.org/?q=an:1135.32006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2331724
https://zbmath.org/?q=an:1187.32003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2592966
https://zbmath.org/?q=an:1182.32002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2477998
https://zbmath.org/?q=an:0521.32005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0687635
https://zbmath.org/?q=an:0801.32008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1257282
https://zbmath.org/?q=an:0396.31001

22]
23]
24]

[25]

[26]
[27]
28]
[29]

[30]

[31]
32]
33]

34]

V. L. Oleinik, B.S. Pavlov: Embedding theorems for weighted classes of harmonic and
analytic functions. J. Sov. Math. 2 (1974), 135-142.

J. M. Ortega, J. Fabrega: Mixed-norm spaces and interpolation. Stud. Math. 109 (1994),
233-254. MR
R. M. Range: Holomorphic Functions and Integral Representations in Several Complex
Variables. Graduate Texts in Mathematics 108, Springer, New York, 1986. IMR]
R. F. Shamoyan, S. M. Kurilenko, M. Sergey: On a new embedding theorem in analytic
Bergman type spaces in bounded strictly pseudoconvex domains of n-dimensional com-

plex space. Journal of Siberian Federal University 7 (2014), 383-388.

R. F. Shamoyan, O.R. Mihié: On distance function in some new analytic Bergman type

spaces in C". J. Funct. Spaces (2014), Article ID 275416, 10 pages. IMR]
R. F. Shamoyan, O. R. Mihié¢: On new estimates for distances in analytic function spaces
in higher dimension. Sib. Elektron. Mat. Izv. (electronic only) 6 (2009), 514-517. MR]

R. F. Shamoyan, O.R.Mihi¢: On some properties of holomorphic spaces based on
Bergman metric ball and Luzin area operator. J. Nonlinear Sci. Appl. 2 (2009), 183-194. IMR]
R. Shamoyan, E. Povprits: Sharp theorems on traces in analytic spaces in tube domains

over symmetric cones. Journal of Siberian Federal University 6 (2013), 527-538.

R. F. Shamoyan, E. V. Povprits: Multifunctional analytic spaces on products of bounded

strictly pseudoconvex domains and embedding theorems. Kragujevac J. Math. 87 (2013),

221-244. MR

R. Shamoyan, M. Radnia: On some new embedding theorems for some analytic classes
in the unit ball. J. Nonlinear Sci. Appl. 2 (2009), 243-250. IMR]
S. Yamagi: Composition operators on the Bergman spaces of a minimal bounded homo-
geneous domain. Hiroshima Math. J. 43 (2013), 107-127. MR
S. Yamagi: Positive Toeplitz operators on weighted Bergman spaces of a minimal
bounded homogeneous domain. J. Math. Soc. Japan 65 (2013), 1101-1115. zb] MR}
K. Zhu: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathe-
matics 226, Springer, New York, 2005. MR

Authors’ addresses: Romi F. Shamoyan, Bryansk, State University, Bezhit-

skaya 14, 241036 Bryansk, Russia, e-mail: rshamoyan@gmail.com; Olivera R. Mihi¢,
Faculty of Organizational Sciences, University of Belgrade, Jove Ili¢a 154, 11000 Belgrade,
Serbia, e-mail: oliveradj@fon.bg.ac.rs.

546


https://zbmath.org/?q=an:0278.46032
https://zbmath.org/?q=an:0826.32003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1274011
https://zbmath.org/?q=an:0591.32002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0847923
https://zbmath.org/?q=an:1305.46016
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3208648
https://zbmath.org/?q=an:1299.30106
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2586703
https://zbmath.org/?q=an:1181.32009
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2521196
https://zbmath.org/?q=an:06451382
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3150861
https://zbmath.org/?q=an:1181.32010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2562265
https://zbmath.org/?q=an:1304.47034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3066527
https://zbmath.org/?q=an:1284.47025
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3127818
https://zbmath.org/?q=an:1067.32005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2115155

