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Artificial neural networks (ANNs) are machine learning technique, inspired by the principles found in biological neurons. This
technique has been used for prediction and classification problems inmany areas ofmedical signal processing.The aim of this paper
was to identify individuals with high risk of death after acutemyocardial infarction usingANN.A training dataset for ANNwas 1705
consecutive patients who underwent 24-hour ECGmonitoring, short ECG analysis, noninvasive beat-to-beat heart-rate variability,
and baroreflex sensitivity that were followed for 3 years. The proposed neural network classifier showed good performance for
survival prediction: 88% accuracy, 81% sensitivity, 93% specificity, 0.85 𝐹-measure, and area under the curve value of 0.77. These
findings support the theory that patients with high sympathetic activity (reduced baroreflex sensitivity) have an increased risk of
mortality independent of other risk factors and that artificial neural networks can indicate the individuals with a higher risk.

1. Introduction

Many studies have been published on the subject of cardiac
risk assessment, with the goal to identify the subgroup of
patients who are at high risk of death after myocardial
infarction (MI) [1]. The identification of those individuals
which are in higher risk of developing the second cardio-
vascular event is very important so that they can be prop-
erly followed and treated. Contemporary cardiac rehabilita-
tion/secondary prevention (CR/SP) programs are designed
to reduce cardiovascular risk and event rates, foster healthy
behaviors, and promote active lifestyles [2]. The exceed-
ingly difficult challenge for cardiologists is determining
which patients are at sufficiently high risk of an arrhythmic
death. Therefore it is essential to identify individuals with
arrhythmogenic background who will derive benefit from
an implantable cardioverter-defibrillators (ICD), in terms of
primary prevention of sudden cardiac death (SCD) based on

heart-rate variability analysis [3]. In previous studies heart-
rate variability parameters are proved to be independent risk
predictors of SCD after MI [4]. Despite all this knowledge
risk stratification models have limited predictive accuracy.
Recently published studies suggest that more than half of
all implanted primary prevention devices have not delivered
any shocks before battery replacement is required [5]. Precise
classification and accurate predictivemodel can improve clin-
ical pathways of the most vulnerable patients. The predictive
power of used statistical models is limited, so the alternative
models have arisen, and artificial neural networks (ANNs)
become more popular [6].

The ANN presents a machine learning technique that
could potentially improve performance of predicting clinical
outcomes. Artificial neural networks are excellent solution
for classifiers with multiple input parameters and pattern
recognition problems [7]. The ANN can predict a specific
category of a set of input variables which can be further
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used for detailed analysis. The previous studies failed to
detect the particular prognostic accuracy in risk assessment
after uncomplicated myocardial infarction [8]. To limit the
emphasis on incidental associations between input variables,
it might be beneficial to guide artificial neural network
development by presenting a subset of input variables that
are more likely to predict an outcome. This paper deals with
the classification and risk assessment of different autonomic
nervous system groups based on certain parameters of heart-
rate variability using an artificial neural network (ANN).
The main motivation in our study for using ANN was their
ability to solve the highly nonlinear problems and discover
unknown relationships between input parameters. The first
aim of the study was to improve the prediction of death
using different prediction techniques, like ANN and addition
to standard statistical models in early phase after acute
myocardial infarction. The second goal was identification
of those individuals with higher cardiovascular risk from
all-cause mortality. Last but not least, the problem which
should be pointed out is the methodology of preparing
data, variable selection, determination of cutoff values for
suggested variables, and making an accurate model for pre-
diction.Themethodology and early results of this study were
presented and discussed atThe 7th International Symposium
on Noninvasive Electrocardiology [9].

Determination of individuals with high cardiovascular
risk in the acute phase after myocardial infarction using
autonomic nervous system patterns and previously well-
established independent risk predictors was improved using
ANN [10, 11].

The recognition of variable patterns correlating with an
adverse outcome contributed to the understanding of the
autonomic background and ability of ANN to “learn” com-
plex relationships between a series of input (predictor) vari-
ables and the corresponding output (outcome) variables [12].
Based on relationships identified between input and output
variables, trained dataset can be used for pattern recognition
or classification tasks in a separate test dataset. Commonly
used statistical models use linear combinations of variables
and, therefore, are not adept at modeling grossly nonlinear
complex interactions as has been demonstrated in complex
cardiovascular system [13]. In previously conducted studies
some of the advantages of ANN over standard statistical
methods have been suggested: neural networkmodels require
less formal statistical training to develop, can implicitly detect
complex nonlinear relationships between independent and
dependent variables, have the ability to detect all possible
interactions between predictor variables, and can be devel-
oped using multiple different training algorithms [12]. ANN
has been successfully applied to a broad range of biomedical
problems, and previous studies have demonstrated that vari-
ous ANN approaches can accurately predict an outcome [14–
17].

2. Material and Methods

2.1. Study Population. The patient population used for ANN
training consisted of 1705 patients admitted between 2003
and 2013 to Coronary Care Unit of Clinical Hospital Center

BežanijskaKosa, Belgrade, Serbia.The admitted patientswere
recorded the first day after acute myocardial infarction using
the electrocardiogram (ECG) and short-term HRV analysis,
while Holter ECG was recorded after two weeks. Date of
the first visit was taken as the start date, and survival status
was determined by contacting the patient. Survival data were
used to assess their hazard ratio and to determine all-cause
mortality.

All experimental protocols were approved by the local
Scientific Ethical Committee of University Clinical Center
“Bežanijska Kosa,” license number 1039/3. All the partici-
pants were fully informed about the study and gave their writ-
ten consent in agreement with the Declaration of Helsinki.

Inclusion criteria were man > 40 years old or post-
menopausal women, acute ischemic heart disease verified
by cardiac biochemical markers, ST-segment depression, or
T-wave inversion ≥ 0.1mV in at least two contiguous leads
without the presence of concomitant Q-waves in these leads.

Exclusion criteria were left ventricular hypertrophy, right
ventricular hypertrophy, right and left bundle branch block,
atrial flutter and fibrillation, anterior and posterior hemi-
block, paced rhythm,Wolff-Parkinson-White syndrome, and
ventricular tachycardia or incomplete or erroneous data.

2.2. Database. Data were obtained using short ECG analysis
(Shiller AT-10), noninvasive beat-to-beat heart-rate variabil-
ity, and baroreflex sensitivity (Task Force Monitor) and 24-
hour ambulatory ECG monitoring with long-term HRV
analysis. ECG parameters were obtained from a 12-channel
recording over the past 5 minutes using the commercial
software (Schiller AT-10, Austria). The Task Force Monitor
(CNSystems, Graz, Austria) was used to monitor beat-to-
beat heart rate by ECG and beat-to-beat blood pressure by
the vascular unloading technique [18], which was corrected
automatically to the oscillometric blood pressure measured
on the contralateral arm. The Task Force Monitor automati-
cally provides the beat-to-beat spectral analysis of heart rate
and systolic and diastolic blood pressure variability, applying
an autoregressive methodology. Baroreceptor reflex sensi-
tivity (BRS) was automatically assessed using the sequence
technique according to Parati et al. [19]. Intervention marks
can be set using the Task Force Monitor; it helps define
periods for automated statistical analysis [20]. The mean
value and standard deviation (SD) of the measured param-
eters were computed automatically for defined steady-state
period. Twenty-four-hour ambulatory ECG recordings were
obtained by a 12-lead electrocardiogram, sampling rate of
1000Hz per each lead (Cardioscan, DMS, USA), and ana-
lyzed by an experienced analyst. The records were screened,
corrected, and readied for further analysis. Analysis of
the frequency (spectral) domain parameters was performed
using Fast Fourier Transformation (FFT) and Hanning
window.

2.3. Preprocessing. During the analysis of the gathered data,
several problems were identified: extreme values, missing
values, and unbalanced data. Extreme values are result of
the errors during recording (patient movement, poor con-
nection, etc.) and they were removed manually to be sure
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Table 1: Detailed description of input variables used in this study.

Methods Parameters Units Description

ECG parameters

QT interval ms Measure of the time between the start of the Q wave and the end of
the T wave

QTc interval ms Heart rate corrected QT interval

PR interval ms Measure of time from the beginning of the upslope of the P wave to
the beginning of the QRS wave

QRS complex ms Complex of Q wave, R wave, and S wave
P wave ms The P wave is the first positive deflection on the ECG

Time domain analysis

Average HR bpm Average heart rate during 24 hours
SDNN ms Standard deviation of NN intervals

RMSSD ms Square root of the mean squared differences of successive NN
intervals

pNN50 % Proportion of interval differences of successive NN intervals greater
than 50ms

HRV statistics

LFnu-RRI % LF power in normalized units
HFnu-RRI % HF power in normalized units
VLF-RRI ms2 Power in very low frequency range
PSD-RRI ms2 Total power
LF/HF-RRI Ratio LF [ms2]/HF [ms2]

BRS ms/mmHg Change in interbeat interval (IBI) in milliseconds per unit change in
BP

that we do not cut off some real data that are not errors.
Extreme values were easy to identify since they were usually
ten times larger than the expected range. Missing values were
replaced with mean value of the corresponding attribute of
all instances in the corresponding class. Although this is
the simplest technique, it guarantees that it will not disturb
dataset statistics. Unbalanced data is the biggest problem for
training neural network classifier and classifier performance
evaluation. Balanced datasets were created by randomly
selecting the same number of patients (200) fromboth classes
of patients (survived and died). These are not the only
techniques (and probably not the best) that could be used, but
they represent common practice and they gave good results.
A detailed description of all fifteen parameters used in this
study is provided in Table 1.

Some of these parameters were selected as mortality
risk predictors based on the statistical analysis of previously
conducted studies [21, 22]. Based on these studies, these
parameters have been chosen for ANN training in this
study, in order to further investigate their predictive power.
Statistical analysis was used to assess the predictive power of
the selected parameters.

2.4. Statistical Analysis. Survival curve (Figure 1) was created
using theKaplan-Meiermethod.The primary endpoint of the
study was all-cause mortality. Associations between variables
and mortality were assessed using stepwise multivariate Cox
regression. The proportional hazard for mortality over time
was assessed with Cox regression. The regression model was
built by initially including factors with significant (𝑃 < 0.05)
univariate associations. Multivariate Cox regression (SPSS

software, version 19; SPSS Inc.) was used to determine a
hazard ratio (HR) that was corrected for possible confound-
ing variables. HRs and 95% confidence intervals (CIs) are
presented; a 𝑃 value ≤ 0.05 was considered to be statistically
significant. These results show that selected parameters have
significant predictive power for predicting all-cause mortal-
ity.

2.5. Neural Network Training. To train a neural network clas-
sifier, the neural network software Neuroph (http://neuroph
.sourceforge.net/) was used (Figure 2). Neuroph is free, open
source software and provides a graphical user interface
and visual tools (Figure 3), which enable experimentation
with different settings for neural network architectures and
training.

The multilayer perceptron neural network architecture
with back propagation learning algorithm was used to train
a neural network. This architecture is well known for its
application for classification problems. Randomly selected
70%of the datasetwas used to train neural network classifiers,
while the rest of it (30%) was used for testing. This kind of
dataset split is common practice in neural network training
that is used to avoid overfitting the network and achieve good
classification performance with data that has not been used
for training [23]. The exact split ratio depends mostly on the
amount of data, and the optimal ratio can be determined
heuristically. The same technique has been used in other
related studies [7].

Training and testing procedures were repeated multiple
times to determine optimal neural network settings (number
of hidden layers and neurons) and learning rule parameters.

http://neuroph.sourceforge.net/
http://neuroph.sourceforge.net/
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Figure 1: Neuroph software used for neural network training.
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Figure 2: Kaplan-Meier survival curves for cardiac death in patients
with reduced BRS at or below 5.33ms/mmHg in early phase after
acute myocardial infarction.

3. Results

During a median follow-up of 3 years (range, 1.2–4.8 y), 286
(16.77%) of the 1705 patients died from all cardiac causes.
Unadjusted Kaplan-Meier survival showed worse survival for
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Figure 3: ROC curve for the neural network classifier to predict a
survival status.

reduced BRS under 5,33ms/mmHg (𝑃 = 0,005) (Figure 2).
Univariable Cox proportional-hazards model showed statis-
tically significant hazard ratio for the following covariates
presented in Table 2, with suggested cutoff values and inter-
vals whichwere used for further classification and prediction.
Multivariable regression revealed significant associations of
reduced BRS under 5,33ms/mmHg (HR: 5.58, 95% CI:
1.25–24.95, 𝑃 = 0.047) with survival. There were no statis-
tically significant differences between the hazard ratios of
either all-cause or cardiovascular mortality for LFnu-RRI,
HFnu-RRI, and LF/HF-RRI.



Complexity 5

Table 2: Association of risk variables with cardiac mortality in univariable analysis.

Method Variable (values) Hazard ratio, 95% CI (univariable) 𝑃

ECG parameters

QT interval (≤378) 1.38 (1.08–1.76) 0.009
QTc interval (>434) 1.28 (1.00–1.67) 0.050
PR interval (151–184) 0.69 (0.52–0.91) 0.008
QRS complex (≤87) 0.56 (0.42–0.75) 0.001
P wave (64.19–72.36) 2.14 (1.06–4.34) 0.034

Time domain analysis

Average HR (>84.7) 1.73 (1.05–2.86) 0.032
SDNN (≤120.0) 9.33 (1.31–66.7) 0.026
RMSSD (>53.7) 1.58 (1.04–2.40) 0.030
pNN50 (≤2.7) 8.84 (1.14–68.56) 0.037

HRV statistics VLF-RRI (351.4–406.2) 3.68 (1.06–12.84) 0.041
PSD-RRI (≤276.5) 2.55 (1.02–6.35) 0.044

SDNN: standard deviation of all the RR intervals; RMSSD: square root of the mean of squared differences of two consecutive RR intervals; pNN50: percent
of beats with consecutive RR interval difference of more than 50 milliseconds; VLF: very low frequency component of HRV; PSD: total power of HRV; HRV:
heart rate variability; ECG: electrocardiogram.

Table 3: Classifier performance for different neural network architectures.

Number Neural network architecture Learning Rate Accuracy Sensitivity Specificity 𝐹-measure
(1) 11-13-1 0.2 0.73 0.6 0.8 0.6
(2) 11-15-1 0.2 0.8 0.6 0.9 0.6
(3) 11-30-1 0.3 0.8 0.6 0.9 0.6
(4) 11-15-7-1 0.1 0.73 0.6 0.8 0.6
(5) 11-25-30-1 0.2 0.88 0.81 0.93 0.85
(6) 11-25-40-1 0.25 0.73 0.8 0.7 0.6

During the neural network training, a number of different
settings for neural network architecture were tested. For each
trained model a set of standard classification performance
measures were calculated using a test set. The most critical
parameters for successful training and classifier performance
turned out to be a number of hidden layers, a number of
hidden neurons, and error threshold. The results are shown
in Table 3.

All architectures had 11 input neurons which correspond
to 11 input parameters and one output neuron which cor-
responds to a single binary output. The neural network
architecture with 25 neurons in the first hidden layer and
30 neurons in the second hidden layer (number (5)) showed
the best classification performance: 88% accuracy, 81% sen-
sitivity, 93% specificity, and 0.85 𝐹-measure. The Receiver
Operating Characteristics (ROC) curve for the best neural
network classifier (architecture number (5)) is shown in
Figure 3. The area under the curve value is as follows: AUC
= 0.77.

Another critical parameter for getting good generaliza-
tion ability of the network and testing results was the error
threshold. The value of 0.03 for error threshold showed the
best results.

4. Discussion

Theelectrocardiogram and blood pressuremonitoring can be
used in evaluation of patients in early phase after myocar-
dial infarction. Over the last several years, computer-based

learning models significantly improved the ability to predict
adverse cardiac events [24].The current understanding of the
clinically relevant predictors in patients after AMI is reviewed
in this article. Impaired baroreflex sensitivity following MI
has been extensively documented in previous studies [25, 26].
In humans, depressed BRS after myocardial infarction is
a clinical predictor of increased mortality [27–29]. In our
study, multivariate analysis showed that reduced value of
baroreflex sensitivity below 5.33ms/mmHg in the observed
group of patients is the only independent risk predictor of all
investigated parameters.

The prediction model was built on initially included
factors which were statistically significant in univariate anal-
ysis. The main disadvantage of univariate analysis is that
it describes the survival with respect to the factor under
investigation but necessarily ignores the impact of any others
[30]. Nevertheless, it is likely that the assumptions required
by the Cox model may not be satisfied because the model
assumes that the underlying hazard rate is a function of
independent variables, instead of the survival time [31].
Survival analysis using the Cox regression model generally
shows the results based on the whole population, but it is
insufficient to predict on individual level. In predictions of
survival for individual patients, neural networks constitute
good alternatives for classical statistical methods [32].

Although some previous studies have shown the asso-
ciation between prolonged QTc interval and cardiovascular
mortality or all-cause mortality in the general population,
other studies suggest that the relationship is not consistent
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and the risk is likely to be small [33, 34]. In our study,
univariate Cox regression analysis of individual risk predic-
tors using ECG parameters, short-term heart-rate variability
parameters, and 24-hour Holter monitoring parameters did
not show statistical significance for survival in patients after
myocardial infarction using fundamental analysis. Making
the autonomic nervous system patterns for each parameter
and its analysis for the particular value interval gave statistical
significance which pointed to the advantage of using this
method in statistics. One study had performed serial ECG
follow-up after AMI and showed that QTc interval > 440ms
at hospital discharge had independent value for predicting
major cardiac events [35]; another group suggested that QTc
interval > 445ms independently predicts all-cause death
and heart failure in patients with STEMI [36]. Our study
showed statistical significance for all-cause cardiac mortality
in a group with QTc interval > 434ms. The ATRAMI study
showed that low values of either heart-rate variability (SDNN
< 70ms) or BRS (<3.0ms/mmHg) are a significantmultivari-
ate risk of cardiacmortality [37] compared to our studywhere
reduced SDNN< 120ms suggested higher risk.Thepredictive
value of a variety of parameters has been assessed using
ANN. Adding the artificial neural networks in data analysis
in patients with acute myocardial infarction, the survival
methodology was significantly improved, confirming that
this model is fully applied and accurate in risk stratification
and follow-up. Using standard statistical models we have
concluded that the group with higher cardiovascular risk
has sympathetic hyperactivity. In accordance with the results,
therapy which includes adrenergic blockade should be pro-
posed (beta blockers, ACE inhibitors, etc.). Similar results
have been published in other studies [38, 39]. The ANN
showed significantly better results in predicting survival of
patients than the other models commonly used in different
studies [40–42].

The proposed neural network classifier showed good
performance for survival prediction, although the sample
size was insufficient to ensure the statistical satisfaction. Part
of the problem in preparing the data is incomplete and
erroneous data, which were manually resolved by calculating
corresponding values or removing samples.

The neural network training required a lot of experiment-
ing to figure out the best architecture (number of hidden
layers and neurons) and achieve the optimal classification
performance. The good results were already obtained with
one hidden layer with 15 hidden neurons; however increasing
that number to 30 hidden neurons did not give any improve-
ment in classification performance. So the conclusion was
that using a single hidden layer with more than 15 neurons
increases computational requirements, without increasing
classifier performance, and probably leads to overfitting the
model.

Adding another hidden layer and using the architecture
with 11-15-7-1 neurons in layers, respectively, also did not give
any improvements. So the conclusion was that adding one
more layer on top of the first hidden layer also does not lead
to classifier performance improvement.

Using architecture number 5, with 11-25-30-1 neurons
in layers, gave the best classification performance. It is also

interesting to note that adding more hidden neurons to
second hidden layer (architecture (6)) gave worse results than
architecture (5) (almost as architecture (1)). These results
show that using more hidden neurons and layers does not
bring improvement in classifier performance and that it is one
of the critical parameters that needs to be further investigated
for this type of applications. The optimal architecture and
classification performance largely depends on which input
parameters are used. The results showed that the statistical
analysis can indicate a reliable choice of input parameters.

5. Limitations

Thepresent study has some limitations.One of the limitations
in this study considers the signal required for heart-rate
variability analysis. In order to obtain clear signal, the
samples with any noise or arrhythmias were eliminated,
which reduced a group of patients with higher cardiovascular
risk after myocardial infarction. To overcome the limitations,
it is necessary to conduct research on a larger group of
patients. ECG parameters like QTc intervals at discharge
and after discharge are not measured or analyzed, and it
is unknown whether they will have better predictive value.
During post-MI period, assessment of cardiovascular risk
parameters should be repeated multiple times. Another
limitation is related to black-box nature of algorithm. At
this point, it is hard to explain and debug results, as well
as to understand possible different results. Making bigger
dataset with more input variables during longer time of
follow-up would provide more precise conclusion especially
about very complex mechanisms involved in pathogenesis of
cardiovascular diseases. The selection of risk factors which
will be used as inputs for the neural network should be
derived through a feature selection procedure on the training
set, within the ANN cross-validation procedure. Further
investigation needs to be established, but a good survival
predictor must be able to deal with these obstacles.

6. Conclusion

This study proposed a survival status predictor based on
ANNclassifier trainedwith data obtained fromHRVanalysis.
The trained ANNs achieved satisfying contribution in the
prediction of outcome in patients with higher risk after MI.
The study outlined the procedure for building neural network
based clinical decision-making algorithm, including data
preprocessing, attribute selection, neural network tuning,
and performance evaluation. Classification based on the
autonomic nervous system patterns can reliably indicate the
individuals with a higher risk. This knowledge is crucial for
making decisions about further observation and treatment.

Classifier performance largely depends on the input
parameters which are used for training the ANN and number
of hidden layers and neurons. Good candidates for input
parameters for ANN training can be determined using statis-
tical analyses and Kaplan-Meier survival curves for cardiac
death. The optimal neural network architecture (number of
hidden layers and neurons) can be determined experimen-
tally by systematically adding hidden neurons and layers
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and observing the classifier performance for each setting.
The performance of the proposed method should be further
investigated using databases from other sources.
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