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2-TOROIDS AND THEIR 3-TRIANGULATION

MILICA STOJANOVIĆ1

Abstract. It is known that we can always 3-triangulate (i.e. divide into tetrahedra)
convex polyhedra but not always non-convex polyhedra. Here we discuss possibilities
and properties of 3-triangulation of 2-toroids, i.e. polyhedra topologically equivalent
to sphere with 2 handles, and develop the concepts of piecewise convex polyhedra
and graph of connection.

1. Introduction

It is known that there is a possibility to divide any polygon with n vertices by
n− 3 diagonals into n− 2 triangles without gaps and overlaps. This division is called
triangulation. To do the triangulation, many different practical applications are done
by using computer programs. Examples of such algorithms are given by Seidel [13],
Edelsbrunner [8] and Chazelle [4]. The most interesting aspect of the problem is to
design algorithms so that they are as optimal as possible.

Generalization of this process to higher dimensions is also called triangulation. It
consists of dividing polyhedra (polytop) into tetrahedra (simplices) with the origi-
nal vertices. Within higher dimensions, new problems arise besides the fastness of
algorithm. It is proved that there is no possibility to triangulate some of non-convex
polyhedra [11], [12] in a three-dimensional space, and it is also proved that different tri-
angulations of the same polyhedron may have different numbers of tetrahedra [1,9,14].
Considering the smallest and the largest number of tetrahedra in triangulation (the
minimal and the maximal triangulation), the authors obtained values, which linearly,
resp. squarely, depend on the number of vertices. Interesting triangulations are descri-
bed in the papers of Edelsbrunner, Preparata, West [9] and Sleator, Tarjan, Thurston
[14]. Some characteristics of triangulation in a three-dimensional space are given by
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Chin, Fung, Wang [6], Develin [7] and Stojanović [20–22], and in n-dimensional space
by Lee [10]. Algorithms for investigating triangulation in three-dimensional space are
given in [23, 24]. This problem is also related to the problems of triangulation of a
set of points in a three-dimensional space [1, 9] and the problem of rotation distance
between pair of trees [14].

By the term “polyhedron” we usually mean a simple polyhedron, topologically
equivalent to sphere. But there are classes of polyhedra topologically equivalent to
torus or p-torus (sphere with p handles). Torus-like polyhedra are considered e.g.
in [2, 3, 5, 17–19]. By the definition of Szilassi [18], torus-like polyhedra are called
toroids. Generalizing that definition, we will use the term p-toroids (p ∈ N is a given
natural number) for p-torus-like polyhedra, and term toroids as a common name for
all p-toroids (the Szilassi’s toroids would be called 1-toroids). Since toroids are not
convex, it is questionable if it is possible to 3-triangulate them. The 1-toroid with
the smallest number of vertices is Császár polyhedron [2,3,5,17–19]. It has 7 vertices
and is known to be triangulable with 7 tetrahedra. It is obtained as an example of
polyhedron without diagonals [5, 15,16]. Some properties of 3-triangulation for other
1-toroids are given in [22].

In this paper, 3-triangulations of 2-toroids will be considered. Some characteristic
polyhedra will be described in Section 2. In Section 3 are given some necessary
definitions and properties of 3-triangulation of 1-toroids, while in Section 4, we will
prove the following 3 theorems:

Theorem 1.1. For each n ≥ 10 there exists a 2-toroid which is possible to 3-
triangulate.

Theorem 1.2. If it is possible to 3-triangulate 2-toroid with n ≥ 10 vertices then, the
minimal number of tetrahedra necessary for triangulation is Tmin ≥ n+ 3.

Theorem 1.3. For each n ≥ 10 there exist 2-toroid P with n vertices and Tmin = n+3.

2. Some Characteristic Examples of Polyhedra and their

3-Triangulation

2.1. It is possible to triangulate all convex polyhedra, but this is not the case with
non-convex ones. The first example of a non-convex polyhedron, which is impossible
to triangulate, was given by Schönhardt [12] and referred to in [11]. This polyhedron
is obtained in the following way: triangulate the lateral faces of a trigonal prism
A1B1C1A2B2C2 by the diagonals A1B2, B1C2 and C1A2 (Fig. 1). Then “twist” the
top face A2B2C2 by a small amount in the positive direction. In such a polyhedron,
none of tetrahedra with vertices in the set {A1, B1, C1, A2, B2, C2} is inner, so the
triangulation is not possible.

2.2. Let us now consider triangulations of a bipyramid with a triangular basis ABC,
and apices V1 and V2 (Fig. 2). There are two different triangulations of this kind.
The first is into two tetrahedra V1ABC and V2ABC, and the second is into three:
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Figure 1. Schönhardt polyhedron.

V1V2AB, V1V2BC and V1V2CA. So, it is obvious that some 3-triangulable polyhedra
is possible to triangulate with different numbers of tetrahedra. That is the reason to
introduce terms of minimal and maximal triangulation of a given polyhedron.

Figure 2. Triangulations of a trigonal bipyramid.

2.3. It is proved that the smallest possible number of tetrahedra in the triangulation
of a polyhedron with n vertices is n − 3. But, it is not possible to triangulate each
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polyhedron into n − 3 tetrahedra; for example, all triangulations of an octahedron
(6 vertices) give 4 tetrahedra. Here, we will mention some examples of polyhedra
triangulable with n− 3 tetrahedra.

The pyramids with n − 1 vertices in the basis (i.e., a total of n vertices) are
triangulable by doing any 2-triangulation of the basis into (n−1)−2 = n−3 triangles.
Each of these triangles makes with the apex one of tetrahedra in 3-triangulation. If the
basis of a “pyramid” is a space polygon, then it is possible to triangulate it in a similar
way without taking care about convexity. For example, if we 2-triangulate lateral sides
of trigonal prism A1B1C1A2B2C2 by the diagonals B1A2, C1A2 and C1B2 (Fig. 3) then,
it is obvious that 3-triangulation is possible with 3 tetrahedra: A1B1C1A2, B1C1A2B2

and A2B2C1C2. Here, we may assume that the basis of the trigonal pyramid is space
pentagon A1B1B2C2C1.

Figure 3. Triangulation of a trigonal prism with 3 tetrahedra.

2.4. Let us return to the two methods of triangulating a bipyramid, but this time with
n−2 vertices in the basis (which can also be a space polygon). If we divide it into two
pyramids and triangulate each of them with taking care of a common 2-triangulation
of the basis, then we will obtain 2(n − 4) tetrahedra. In the second method, each
of n − 2 tetrahedra has a common edge joining the apices of the bipyramid, and
moreover, each of them contains a pair of the neighbour vertices of the basis (i.e.,
one of the edges of the basis). For n = 5 (a bipyramid with a triangle basis), it
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has been found that the first method is “better”, i.e., it gives a smaller number of
tetrahedra. For n = 6 (the octahedron), both methods give 4 tetrahedra, and for
n ≥ 7, the second method is “better”. In figure Fig. 4 triangulations of a bipyramid
with a pentagonal basis (i.e. n = 7) are given. Dividing bipyramid into two pyramids
leads to triangulation with 6 tetrahedra, and dividing it around the axis V1V2 gives
triangulation with 5 tetrahedra.

Figure 4. Triangulations of a pentagonal bipyramid.
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2.5. In [18] Szilassi introduced term toroid. Here we will used term 1-toroid instead
of toroid.

Definition 2.1. (Szilassi) An ordinary polyhedron is called 1-toroid if it is topologi-
cally torus-like (i.e. it can be converted to a torus by continuous deformation) and its
faces are simply polygons.

A 1-toroid with the smallest number of vertices is the Császár polyhedron (Fig. 5).
It has 7 vertices and no diagonals, i.e. each vertex is connected to the other six by
edges. In [2] Bokowski and Eggert proved that Császár polyhedron has four essentially
different versions. It is to be noted that in topological terms the various versions of
Császár polyhedron are isomorphic – there is only one way to draw the full graph
with seven vertices on the torus. Császár polyhedron is possible to 3-triangulate with
7 tetrahedra, as it is shown by Szilassi from Wolfram Demonstrations Project [19].

Figure 5. Császár polyhedron.

3. Preliminaries

In accordance with definition 2.1 there will be introduced terms 2-toroid and p-toroid
(p ∈ N).

Definition 3.1.

• An ordinary polyhedron is called 2-toroid if it is topologically equivalent to
sphere with 2 handles (double-torus, 2-torus) and its faces are simply polygons.

• An ordinary polyhedron is called p-toroid, p ∈ N is a given number, if it is
topologically equivalent to sphere with p handles (p-torus) and its faces are
simply polygons.

Let us use term toroid as a common name for all p-toroids. In our consideration of
3-triangulability of toroids, we will also use the following definitions.
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Definition 3.2. Polyhedron is piecewise convex if it is possible to divide it into
convex polyhedra Pi, i = 1, . . . ,m, with disjunct interiors. A pair of polyhedra Pi, Pj

is said to be neighbour if they have common face called contact face. If polyhedra Pi

and Pj are not neighbours, they may have a common edge e or a common vertex v

only if there is a sequence of neighbours polyhedra Pi, Pi+1, . . . , Pi+k ≡ Pj such that
the edge e, or the vertex v belongs to each contact face fl common to Pl and Pl+1,
l ∈ {i, . . . , i+ k − 1}. Otherwise, polyhedra Pi and Pj have not common points.

One example of piecewise convex polyhedron is given in Fig. 6. The figure shows
a 1-toroid with n = 19 vertices, whose pieces are of two types A and B, shown in
Fig. 7. Polyhedron of type A is topologically triangular prisms, while polyhedron of
type B is built by “gluing” a tetrahedron onto the polyhedron A. These two types of
polyhedra with 6, resp. 7, vertices will be called “elemental polyhedra” in following
constructions.

Figure 6. Piecewise convex polyhedron (1-toroid) T19 with 19 vertices.

Figure 7. Elemental polyhedra of type A and B.
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Definition 3.3. 1-toroid is cyclically piecewise convex if it is possible to divide it into
cycle of convex polyhedra Pi, i = 1, . . . , n, such that Pi and Pi+1, i = 1, . . . , n− 1 and
Pn and P1 are neighbours.

An example of cyclically piecewise convex polyhedron with n = 9 vertices composed
of three pieces of type A is given in Fig. 8.

Figure 8. Cyclically piecewise convex polyhedron (1-toroid) T9 with 9 vertices.

Remark 3.1. Division of polyhedra to convex pieces is not always unique.

For example in 1-toroid T19, two pieces of type A on the right side of the 1-toroid
together build a new convex polyhedron. So, we can replace that two pieces with the
new one.

Remark 3.2. Since it is always possible to 3-triangulate convex polyhedra, the same
property holds for piecewise convex polyhedra, especially for piecewise convex toroids.

Remark 3.3. Each 3-triangulable polyhedron can be considered as a collection of
connected tetrahedra, so it is piecewise convex.

If polyhedron P is piecewise convex, let us form graph of connection of it, in such
a way that nodes represent convex polyhedra Pi, i = 1, . . . ,m, the pieces of P , while
edges represent contact faces between them.

Graphs of connection for the 1-toroids T9 and T19 (Fig. 8 and Fig. 6) are shown
in figures Fig. 9 and Fig. 10. The first graph for the 1-toroid T19 has cyclical part
and two branches, while the second one has cyclical part with only one branch, in
accordance to the Remark 3.1. Since “left” branch is composed of elements A and B in
such a way that polyhedron is not convex, making cyclical graph for T19 is impossible.

In [22] are proved the next theorems for 1-toroids.

Theorem 3.1. For each n ≥ 7, there exists a 1-toroid which is possible to 3-triangu-
late.

Theorem 3.2. If it is possible to 3-triangulate 1-toroid with n ≥ 7 vertices, then the
minimal number of tetrahedra necessary for that triangulation is Tmin ≥ n.
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Figure 9. Graph of connection for the 1-toroid T9.

Figure 10. Two graphs of connection for the 1-toroid T19.

Remark 3.4. In Theorem 3.2 the number Tmin for 1-toroid P is obtained as a sum
of timin, i = 1, . . . ,m, the minimal numbers of tetrahedra in 3-triangulatins of convex
components Pi of P . The estimation of Tmin was made by substituting timin with ni−3
(ni is number of vertices of Pi), since timin ≥ ni − 3. If we know that tjmin = nj − 3 + t

(t > 0), for some component Pj, j = 1, . . . ,m, then it is easy to conclude that
Tmin ≥ n+ t.

4. 3-Triangulation of 2-Toroids

If 2-toroid P is 3-triangulable, then it is piecewise convex and its graph of connection
G has two cycles. Examples of 2-toroids are given in Fig. 11 and Fig. 12. In the first
example P14 has n = 14 vertices and it is composed of six pieces of type A or of two
1-toroids given in Fig. 8, each with n = 9 vertices. In the second, P20 has n = 20
vertices and it is composed of two 1-toroids with n = 10 vertices connected by the
elemental polyhedron of type A. Their graphs of connection are given in Fig. 13 and
Fig. 14. For P14 there are two possible graphs, since two A-parts in the middle form
together convex polyhedron noted with 2 · A.
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Figure 11. Piecewise convex 2-toroid P14.

Figure 12. Piecewise convex 2-toroid P20.

Figure 13. Two graphs of connection for the 2-toroid P14.

Three graph examples represent three possible kinds of graphs of connection for
2-toroids. If two cycles in the graph G have a common node, it means that P can
be decomposed into two 1-toroids with a common convex polyhedron (as it is shown
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Figure 14. Graph of connection for the 2-toroid P20.

in the second graph in Fig. 13). If two cycles of G are connected with an edge, then
decomposition of the 2-toroid gives two 1-toroids with a common contact face (as it
is shown in the first graph in Fig. 13). Although for P14 it is possible to form graphs
G of both kinds, that is not always the situation, so we will consider that kinds of
graphs separately. Finally, if two cycles of G are separated with a subgraph with
nodes not belonging to the cycles, then we can decompose the 2-toroid P into two
1-toroids and one simple piecewise convex polyhedron, which have a common contact
face with each of 1-toroids (as it is shown in Fig. 14).

It holds the next theorem.

Theorem 4.1. For each n ≥ 10 there exists a 2-toroid which is possible to 3-
triangulate.

Proof. (Description of piecewise 2-toroids with n ≥ 10 vertices).
1. Considering graphs of connection, we conclude that the 3-triangulable 2-toroid P

with the smallest number of vertices has to be composed of two Császár polyhedra
with the common convex polyhedron. Since Császár polyhedron has no diagonals,
the same property has to be fulfilled to its part, which would be used as the common
convex polyhedron. But the only simple convex polyhedron without diagonals is
tetrahedron [16]. It means that such a 2-toroid, let us call it double-Császár, has
n = 2 ·7−4 = 10 vertices, and that it is triangulable with t = 2 ·7−1 = 13 tetrahedra.

“Gluing” tetrahedra, one by one, to double-Császár polyhedron, we can form a
2-toroid P for each n > 10. Graphs of such 2-toroids P would have two 1-cycles
connected by the common node and the additional tree/trees connected to some of
the other nodes.

2. Other possibility to form piecewise 2-toroids P with n ≥ 14 vertices is to “glue”
two of 1-toroids with n ≥ 9 vertices from the series S described below, in such a way
to get a common quadrangular face.

We can obtain 1-toroids from S with n = 3k, k ≥ 3 vertices by cyclically connecting
k polyhedra of type A. Starting 1-toroid T9 from this series is given in Fig. 8. If
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instead of one or two polyhedra A we put in the cycle polyhedron/polyhedra B, then
1-toroid from S would have n = 3k + 1 or n = 3k + 2 vertices.

We note with n1 and n2 (n1, n2 ≥ 9) numbers of vertices of 1-toroids T1 and T2 from
S used to form 2-toroid P . Then, number of vertices of P would be n = n1 + n2 − 4,
since T1 and T2 have four common vertices. 2-toroid made in this way with the
smallest number of vertices is P14, shown in Fig. 11.

In [22] was proved that minimal triangulation of 1-toroid from series S with n

vertices have n tetrahedra. It follows that for described 2-toroid P , Tmin = n1 + n2 =
n+ 4.

3. If each of two 1-toroids, T1 and T2, from series S would have two triangular faces
forming space quadrangle, instead of one face with a flat quadrangle, than we can form
2-toroid P by gluing T1 and T2 through their common triangular face, a half of previous
quadrangular. Such P would have n = n1+n2−3 vertices and Tmin = n1+n2 = n+3.
The smallest number of vertices of P obtained in this way can be 15. �

For the minimal number of tetrahedra in triangulation, the next theorem holds.

Theorem 4.2. If it is possible to 3-triangulate 2-toroid with n ≥ 10 vertices then, the
minimal number of tetrahedra necessary for triangulation is Tmin ≥ n+ 3.

Proof. Each of the three mentioned situations of the graph G will be considered
separately.
1. If the graph G of the 2-toroid P is with a common node for two cycles, then let us
note with n1, n2 the numbers of vertices of two 1-toroids and with n3 of common convex
polyhedron. The numbers of tetrahedra in the minimal triangulation of 1-toroids will
be noted with t1, t2, and with t3 of their common convex polyhedron.

If t3 = n3 − 3, then by theorem 3.2, t1 ≥ n1 and t2 ≥ n2. When t3 = n3 − 3 + t,
t > 0, since the convex polyhedron is a part of both 1-toroids, by the theorem 3.2 and
remark 3.4, it follows that t1 ≥ n1 + t and t2 ≥ n2 + t.

We may assume that t1 ≥ n1 + t, t2 ≥ n2 + t with t ≥ 0. Number of vertices of the
2-toroid P is

n = n1 + n2 − n3,

while the number of tetrahedra in the minimal triangulation is

Tmin = t1 + t2 − t3 ≥

≥ n1 + t+ n2 + t− (n3 − 3 + t)

= n1 + n2 − n3 + 3 + t

= n+ 3 + t, t ≥ 0.

So, it holds Tmin ≥ n+ 3.

2. When the cycles of G are connected by an edge, then two constitutive 1-toroids
T1 and T2 in composition have n1 and n2, and the contact face has m ≥ 3 vertices.
If numbers of tetrahedra in the minimal triangulations of 1-toroids are noted by t1



2-TOROIDS AND THEIR 3-TRIANGULATION 215

and t2, then by theorem 3.2, t1 ≥ n1 and t2 ≥ n2. In the minimal triangulation of
2-toroid, P , the number of tetrahedra is Tmin ≤ t1 + t2. If m = 3 or m = 4, then

Tmin = t1 + t2 ≥ n1 + n2 = n+m ≥ n+ 3

always holds. But, when m > 4, it may happen that Tmin < t1 + t2. We have such a
situation if it is possible to form a convex (or piecewise convex) polyhedron S, which
is 3-triangulable with smaller number of tetrahedra around the contact face, then in
its 3-triangulation is induced by those used to separate 1-toroids T1 and T2. Such a
polyhedron S, can be bipyramid with 5 or more vertices in the basis, shown in section
2.4. Here, the basis of bipyramid would be used as the contact face.

Using new, alternative 3-triangulation of S, we can induce different decompositions
of P with graph G′, having a common node of cycles. It means, as in the previous
case, that in both situations Tmin ≥ n+ 3.

3. In the third case of the graph G, the number of vertices of P is n = n1 + n2 + n3 −
m1 − m2, where n1, n2 are numbers of vertices for the 1-toroids, n3 for the simple
polyhedron between them, while m1 ≥ 3, m2 ≥ 3 are numbers of vertices of the
contact faces of the 1-toroids and the simple polyhedron.

Since, hold t1 ≥ n1, t2 ≥ n2 for the numbers of tetrahedra in the minimal triangu-
lations of the 1-toroids, and t3 ≥ n3 − 3 for the simple polyhedron, then

Tmin = t1 + t2 + t3 ≥ n1 + n2 + n3 − 3 ≥ n+ 3.

Here is again assumed that simplifications like those in case 2. are not possible. Else,
when Tmin < t1 + t2 + t3 alternative “simpler” decomposition of P is possibly, with
simplified graph G′, possible belonging to case 1. or 2.

So, again Tmin ≥ n+ 3 holds.

4. For 1-toroids in [22] was proved that existence of additional branches in its graph
of connection would not change estimated value Tmin. Here, we may assume that if
any additional branch appears in graph G of P , it belongs either to 1-toroid T1 or to
T2. It means that even than, for P holds Tmin ≥ n+ 3. �

Remark 4.1. In considering different decompositions of polyhedron P into convex
pieces, we may concentrate only to these by tetrahedra in the minimal triangulation.
Then collections of tetrahedra corresponding to nodes in the cycles of such graph G

form two 1-toroids P1, P2, which are cyclically piecewise convex, while other tetrahedra
form simple piecewise convex polyhedra Pi, i ≥ 3, one for each branch of G. In such a
decomposition, Tmin is equal to sum of timin, the numbers of tetrahedra in the minimal
triangulations of pieces Pi, i ≥ 1.

Theorem 4.3. For each n ≥ 10 there exist 2-toroid P with n vertices and Tmin = n+3.

Proof. As it is mentioned in part 3. of proof of theorem 4.1, for all there constructed
2-toroids with n ≥ 15 vertices, it holds Tmin = n+ 3. In part 1. of the same proof the
double-Császár 2-toroid with n = 10 vertices and Tmin = 13 is introduced.
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For some of others 2-toroids described in 1. also hold Tmin = n+3. The mentioned
property holds whenever added branches in graph of connection are joined to (simple)
convex polyhedra Pi with timin = ni − 3, if contact faces are triangular. So, we can
introduce 2-toroids with desired property for n = 11, 12, 13, 14 if we glue one or two
tetrahedra or bipyramids with a triangular basis to the double-Császár 2-toroid. Note
that gluing each tetrahedron brings one new vertex, while gluing a bipyramid with a
triangular basis brings two new vertices. More precise, we can form 2-toroids with the
mentioned property by gluing: for n = 11 one tetrahedron, for n = 12 two tetrahedra
or one bipyramid, for n = 13 one tetrahedron and one bipyramid and for n = 14 two
bipyramids.

We can also obtain 2-toroids with property Tmin = n+ 3 if instead of the double-
Császár 2-toroid we use other basic 2-toroid. For example, we can glue two Császár
1-toroids. Then common face is triangular, so the new 2-toroid would have 11 vertices.
If elemental polyhedron A would be inserted between two Császár 1-toroids (glued
to 1-toroids by its triangular faces), then the number of vertices would be 14. With
inserted elemental polyhedron B, the number of vertices would be 15. Further gluing
simple convex polyhedra Pi with timin = ni − 3 to the basic 2-toroid with 11 (14, 15)
vertices will give new 2-toroids with property Tmin = n + 3 and n ≥ 12 (n ≥ 15,
n ≥ 16) vertices. �

5. Summary

The concept of the piecewise convex polyhedron is useful in considering 3-trian-
gulation of non-convex polyhedra, especially of toroids. We can do 3-triangulation
by using graph of connection of these polyhedra. In this paper, we discussed the
problems of existence of 3-triangulable 2-toroids, and of the minimal number of
tetrahedra necessary for their 3-triangulation. In the similar way, it would be possible
to investigate the same problems for polyhedra topologically equivalent to sphere
with p handles but with more possible cases of graphs of connection. For p-toroids it
would be difficult to establish the minimal number of vertices necessary to form such
a polyhedron. Since this investigation is more complicated, it would be left out for
some future work.
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