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One of the most important innovations brought by digitization is the cryptocurrency, also called virtual or digital currency, which
has been discussed in recent years and in particular is a new platform for investors. Different types of cryptocurrencies such as
Bitcoin, Ethereum, Binance Coin, and Tether do not depend on a central authority. Decision making is complicated by cate-
gorization and transmission of uncertainty, as well as verification of digital currency. )e weighted average and weighted
geometric aggregation operators are used in this article to define a multi-attribute decision-making approach. )is work in-
vestigates the uniqueness of q-rung orthopair fuzzy hypersoft sets (q-ROFHSS), which respond to instabilities, uncertainty,
ambiguity, and imprecise information.)is research also covers some fundamental topics of q-ROFHSS.)emodel offered here is
the best option for learning about electronic currency. )is study validates the complexity of decision-making problems with
different attributes and subattributes to obtain an optimal choice. We conclude that Bitcoin has a diverse set of applications and
that crypto assets are well positioned to become an important asset class in decision making.

1. Introduction

)e concept of cryptocurrency has been widely used in the
past. Cryptocurrencies are also known as digital currencies
that use encryption for transaction verification. In 2009,
Satoshi Nakamoto [1] generated a cryptocurrency to be a
peer-to-peer electronic cash transaction. As a result, the first
cryptocurrency, Bitcoin, was founded in 2009. Crypto-
currencies are digital currencies that use the cryptographic
approach and are based on blockchain technology [2]. With
exponential changes in the cryptocurrency market, buying or
selling a cryptocurrency is a difficult task in the onlinemarket.
To cope with this, we need to analyze the cryptocurrency
market by decision-making problem. )e process of selecting
the best options from a dataset is known as decision making.
To make the right decision, several researchers have given a

number of concepts. Decisions were developed at the be-
ginning of the era on the basis of accurate numerical datasets,
but this resulted in insufficient conclusions that were less
applicable to real circumstances. Many researchers used
different decision-making models in some branches of
mathematics, statistics, and artificial intelligence. According
to Urquhart [3], trading activity and significant volatility draw
people’s attention to Bitcoin. However, it noted that no
meaningful results for anticipating volatility could be found
via online searches. However, David et al. [4]. worked on the
feedback cycles between the socio-eooi signals in the bitcoin
economy. And the used vector autoregression to identify two
positive feedback loops. In 2020, Ramadani and Devianto [5]
developed the forecasting model of Bitcoin price with fuzzy
time series Markov chain and Chen logical method. Fuzzy
time series can model various types of time series data pattern
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because this method is free from classical assumption. In the
field of fuzzy set theory, Jana et al. [6] developed a dynamic
decision-making method based on aggregation operators in
complex q-rung orthopair fuzzy environment. In 2022,
Palanikumar et al. [7] also developedmulti-attribute decision-
making problems based on aggregation operators by using
Pythagorean neutrosophic normal interval-valued fuzzy sets.
After the classical notion of set, Zadeh [8] proposed fuzzy set
theory. Bhattacharya and Mukherjee [9] worked on fuzzy set
and developed fuzzy relations and fuzzy groups. Yager and
Filev [10, 11] in 1994 using fuzzy set developed aggregation
operators, fuzzy models, and formal structures. In 1999,
Demirci [12] introduced fuzzy functions and their funda-
mental properties. Atanassov [13] proposed intuitionist fuzzy
sets with the condition that the total of these two grades
should not exceed unity. In some cases, the sum of mem-
bership grade and non-membership grade is greater to one,
then intuitionistic fuzzy sets did not completely fulfill this
condition. (e.g. .9 + .6> 1), hence intuitionistic fuzzy sets fail.
Yager [14] proposed Pythagorean fuzzy sets, an extended
version of intuitionist fuzzy sets in which the square sum of
the MM and non-membership grades is less than or equal to
one. As in the previous study, linear inequalities between
membership and non-membership grades are explored. If the
decision maker increases the power to 2, however, .92 + .82≰1
is obtained, suggesting that the Pythagorean fuzzy set theory is
also erroneous. Ali et al. [15] used complex interval-valued
Pythagorean fuzzy set in green supplier chain management.
Ashraf et al. [16] introduced interval-valued picture fuzzy
Maclaurin symmetric mean operator as application in deci-
sion-making problem. In the instance of q-rung orthopair
fuzzy set (q-ROFS) [17–19], the conditions on membership
function and non-membership functions are changed to
0≤ uq + vq ≤ 1(q≥ 1). Even for very large values of “q,” we can
treat the membership and non-membership grades inde-
pendently to some extent. As a result, q-ROF set has more
ability in terms of processing ambiguous data than intui-
tionistic and Pythagorean fuzzy set. )ese theories, on the
other hand, are unable to account for the parametric values of
the alternatives. Molodtsov [20] presented the concept of soft
set theory for dealing with unpredictability in a parametric
way in order to overcome these restrictions. He identified
some mathematical representations and proposed a soft set
theory for solving problems. By using the concepts of soft set,
Cagman et al. [21] introduced fuzzy soft sets and also created
fuzzy aggregation operators and applied them to real-world
applications. Using the soft set scheme, Maji [22, 23] created a
fuzzy soft set theory and a neutrosophic soft set theory. )e
previous study focused only on data gaps caused by mem-
bership and non-membership values. )ese assumptions, on
the other hand, are unable to cope with the overall incon-
sistency and inaccuracy of the data. Previous theories fail to
handle such situations when characteristics of a group of
parameters contain additional subattributes. In order to
overcome the restriction indicated above, Smarandache [24]
introduced the hypersoft set theme by using the soft set
concept. )e basics of the hypersoft set, such as complement,
non-set, hypersoft subset, and aggregation operators, were
then presented by Saeed et al. [25]. Several scholars have

looked into different operators and features under the
hypersoft set and its expansions [26–30]. )e theme of the
fuzzy intuitionistic soft set was then extended and a new
theme of the intuitionistic fuzzy hypersoft set was established,
as well as aggregation operators for solving MADM problems
by Zulqarnain [31].

Motivation. )e modeling of the decision-making problems
requires deep importance on the attributes, and we cannot
directly consider or neglect any attribute without considering
its importance. In order to deal with more attributes, it is a dire
need to get the benefit of the theory hypersoft set (HSS). Since
hypersoft sets deals with attributes and subattributes, while soft
theory deals only with attributes, and fuzzy hypersoft sets deal
with attributes and sub attributes in an uncertain way. So, that
is why we choose the field of hypersoft set theory by con-
sidering the nature of subattributes. )e main goal of our
research is to develop a novel aggregation operator for a q-rung
orthopair fuzzy hypersoft environment. We have also created
an algorithm to explain multi-criteria decision-making situa-
tions, as well as a numerical example to show how the sug-
gested technique works in the q-ROFHS context. In the digital
market, the selection and evaluation of cryptocurrency is a vital
procedure. As a result, more studies using MCDM approaches
in the selection of cryptocurrencies are needed to accurately
capture the uncertainty of the cryptocurrency market data as
well as that of the manufacturer of decision preferences. We
propose some operational principles based on the decision
formula in terms of q-ROFH set. We then create two aggre-
gation operators, the q-ROFHWA and q-ROFHWGoperators,
using operational principles. Score and accuracy functions are
also provided to compare the q-ROFH set. To handle decision-
making concerns, the algorithm’s rule is proposedwith the help
of the proposed operators. Finally, a numerical example is
provided to show the method’s efficiency.

2. Materials and Methods

)is section collects some fundamental elements that will
contribute to the compilation of the remaining part of the
article: soft set, hypersoft set, and q-rung orthopair fuzzy
hypersoft set and their example.

Definition 1 (see [20]). Let Ⓢ be a set of discourse with
attributive set E, and ⌆⊆E. A pair (↫ , ⌆) is called soft set
over Ⓢ, where↫ is a function such that↫: ⊼⟶ PⓈ and
PⓈ represents the family of all possible subsets ofⓈ. A pair
(↫,⌆) can be defined as (↫,⌆) � 〈e,↫(e)〉|{

e ∈ ⌆,↫(e) ∈ FⓈ}.

Definition 2 (see [24]). Let Ⓢ be a universal set with n
distinct attributive sets a1, a2, a3, . . . , a€n, whose attributive
value belong to the sets ⊼1,⊼2, . . . ,⊼€n, respectively, such that
⊼i ∩⊼j � ϕ, for all i, j ∈ 1, 2, . . . , n{ }. A pair (↫,⌆) is called
hypersoft set over Ⓢ, where ↫ is a function such that
↫: ⌆⟶ P(U) and ⌆ � ⊼1 × ⊼2 × . . . , ×⊼€n. A pair (↫,⌆)
can be defined as (↫,⌆) � 〈 ∝ ,↫(⋉)〉| ∝ ∈􏼈

⌆,↫(⋉) ∈ P(U)}.
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Definition 3 (see [32]). LetⓈ be universal set and a1, a2, a3,
. . ., an be n distinct attributes concerning Ⓢ whose corre-
sponding attributive values are members of the sets
⊼1,⊼2, . . . ,⊼€n, respectively, such that ⊼i ∩⊼j � ϕ, where i� j
for each n> 1 and i, j ∈ {1, 2, ..., n}. A pair (↫,⌆) is called
q-ROFHS set, where ↫ is a mapping
↫: ⌆⟶ q − ROFS(Ⓢ) and ⊼1 × ⊼2 × · · · × ⊼€n �

⌆ � k1, k2, . . . , k€n􏼈 􏼉 is a family of subparameters. A pair
(↫,⌆) can be expressed as (↫,⌆) � ( ∝ ,↫⌆􏼈

(⋉)): ∝ ∈ ⌆,↫⌆(⋉) ∈ q − ROFSⓈ ∈ 0, 1}, where ↫⌆(⋉) �

〈€y,↷⌆(⋉)(€y), €↷⌆(⋉)(€y)〉|€y ∈ Ⓢ and q≥ 1􏽮 􏽯. Here↷ and €↷
represent membership and non-membership functions with
the restriction 0≤ (↷⌆(⋉)(€y))q + ( €↷⌆(⋉)(€y))q ≤ 1 and q≥ 1,
where q − ROFHSN can be expressed as
(↫,⌆) � (↷⌆(⋉ij), €↷⌆(⋉ij)).

Example 1. LetⓈ � y1, y2, y3, y4􏼈 􏼉 be the set of four houses
under consideration say Ⓢ and also consider the set of
attributes as

(i) ℸ1 represents location of the house.
(ii) ℸ2 represents the price of the house.
(iii) ℸ3 represents number of bedrooms in the house.

Also, ℸ1 � {♮11 � the proximity of important services,
♮12 � resale value in future, ♮13 � lifestyle},
ℸ2 � ♮21 � 5, 000, 000, ♮22 � 8, 000, 000􏼈 􏼉,
ℸ3 � ♮31 � 5, ♮32 � 4􏼈 􏼉 are sets of corresponding parameters.
Suppose ⊼1 � ♮11, ♮12􏼈 􏼉,⊼2 � ♮21􏼈 􏼉,⊼3 � ♮31, ♮32􏼈 􏼉, and B1 �

♮11􏼈 􏼉, B2 � ♮21, ♮22􏼈 􏼉, B3 � ♮31, ♮32􏼈 􏼉 are subsets ofℸi for i� 1,
2, 3. )en, ⌆ �ℸ1 × ℸ2 × ℸ3 will contain elements with
three tuples, and we will assume q� 5:

⌆ � ⋉1,⋉2,⋉3,⋉4,⋉5,⋉6,⋉7,⋉8,⋉9,⋉10,⋉11,⋉12􏼈 􏼉,

⋉1 � ♮11, ♮21, ♮31( 􏼁,⋉2 � ♮11, ♮21, ♮32( 􏼁,⋉3 � ♮11, ♮22, ♮31( 􏼁,⋉4 � ♮11, ♮22, ♮32( 􏼁,

⋉5 � ♮12, ♮21, ♮31( 􏼁,⋉6 � ♮12, ♮21, ♮32( 􏼁,⋉7 � ♮12, ♮22, ♮31( 􏼁,⋉8 � ♮12, ♮22, ♮32( 􏼁,

⋉9 � ♮13, ♮21, ♮31( 􏼁,⋉10 � ♮13, ♮21, ♮32( 􏼁,⋉11 � ♮13, ♮22, ♮31( 􏼁,⋉12 � ♮13, ♮22, ♮32( 􏼁.

(1)

Suppose
⋉1 � ♮11, ♮21, ♮31( 􏼁,

⋉2 � ♮11, ♮21, ♮32( 􏼁,

⋉3 � ♮12, ♮21, ♮31( 􏼁,

⋉4 � ♮12, ♮21, ♮32( 􏼁,

b1 � ♮11, ♮21, ♮31( 􏼁,

b2 � ♮11, ♮21, ♮32( 􏼁,

b3 � ♮11, ♮22, ♮31( 􏼁,

b4 � ♮11, ♮22, ♮32( 􏼁.

(2)

)en, (↫,⌆) and (↬, β∗ ∗ ∗ ), two q-ROFHS sets, may
be expressed as

(↫,⌆) �

c〈⋉1, y1, (.6, .8)( 􏼁, y2, (.7, .9)( 􏼁, y3, (.8, .6)( 􏼁, y4, (.5, .9)( 􏼁􏼈 􏼉〉

〈⋉2, y1, (.5, .8)( 􏼁, y2, (.7, .6)( 􏼁, y3, (.9, .5)( 􏼁, y4, (.9, .8)( 􏼁􏼈 􏼉〉

〈⋉3, y1, (.6, .8)( 􏼁, y2, (.7, .6)( 􏼁, y3, (.7, .9)( 􏼁, y4, (.6, .9)( 􏼁􏼈 􏼉〉

〈⋉4, y1, (.9, .7)( 􏼁, y2, (.9, .7)( 􏼁, y3, (.7, .8)( 􏼁, y4, (.8, .9)( 􏼁􏼈 􏼉〉

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(↬, β) �

c〈b1, y1, (.9, .7)( 􏼁, y2, (.8, .9)( 􏼁, y3, (.7, .9)( 􏼁, y4, (.8, .7)( 􏼁􏼈 􏼉〉

〈b2, y1, (.7, .8)( 􏼁, y2, (.7, .8)( 􏼁, y3, (.9, .8)( 􏼁, y4, (.9, .7)( 􏼁􏼈 􏼉〉

〈b3, y1, (.9, .8)( 􏼁, y2, (.8, .9)( 􏼁, y3, (.7, .8)( 􏼁, y4, (.8, .9)( 􏼁􏼈 􏼉〉

〈b4, y1, (.7, .9)( 􏼁, y2, (.8, .9)( 􏼁, y3, (.9, .8)( 􏼁, y4, (.9, .7)( 􏼁􏼈 􏼉〉

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(3)
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Tables 1 and 2 show the tabular forms of q-ROFHS
values.

Definition 4. For two q-ROFHS sets (↫,⌆) and (↬, β) by a
universe of discourse Ⓢ, we define (↫,⌆) as a q-ROFHS
subset of (↬, β), defined as (↫,⌆) 􏽥⊆ (↬, β), if the following
hold.

(1) ⌆⊆β.
(2) For any ∝ ∈ ⌆,↫(⋉)⊆↬(b).

Example 2. In Example 1, we consider these parameters and
assume that (↫,⌆) and (↬, β) are two q-ROFHS sets on
Y � y1, y2, y3, y4􏼈 􏼉. Tabular forms of (↫,⌆) and (↬, β) are
provided in Tables 3 and 4.

It is clear that (↫,⌆)⊆(↬, β).

3. Aggregation Operators

)e score and accuracy function for q-ROFHSNs are dis-
cussed in this part, as well as q-ROFHS weighted average and
q-ROFHS weighted geometric operators. Furthermore, we
discuss the fundamental properties of q-ROFHS weighted
averaging and q-ROFHS weighted geometric aggregation
operators by utilizing developed q-ROFHSNs.

Definition 5. )e score function of q-ROFHSN is defined as

§⋉ij􏼒 􏼓 �↷⌆ ⋉ij( 􏼁
− €↷⌆ ⋉ij( 􏼁

. (4)

Definition 6. )e accuracy function of q-ROFHSN is de-
fined as

β §⋉ij􏼒 􏼓 �↷⌆ ⋉ij( 􏼁
+ €↷⌆ ⋉ij( 􏼁

. (5)

For the comparison purpose of q-ROFHSNs, the fol-
lowing laws are classified:

(1) S(§⋉ij)> S(􏽢§⋉ij); then, §⋉ij > 􏽢§⋉ij.
(2) S(§⋉ij) � S(􏽢§⋉ij); then,
(i) If β(§⋉ij)> β(􏽢§⋉ij), then §⋉ij > 􏽢§⋉ij.
(ii) If β(§⋉ij) � β(􏽢§⋉ij), then §⋉ij � 􏽢§⋉ij.

Definition 7. Let §⋉k � (↷⌆(⋉k), €↷⌆(⋉k)) be a q-ROFHNs and
wi � w1, w2, . . . , w€n􏼈 􏼉 and vi � v1, v2, . . . , v €m􏼈 􏼉 be the expert

weight vectors and selected subattributes, respectively, with
the condition that wi > 0, 􏽐

€n
i�1 wi � 1, vi > 0, 􏽐

€m
i�1 vi � 1. )e

mapping for the q-ROFHWA operator is thus defined as
q − ROFHWA: Δ€n⟶Δ, where Δ is the collection of all
q-ROFHNs, provided as

q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ⊕€m

j�1vi ⊕
€n
i�1wi§⋉ij􏼒 􏼓.

(6)

Example 3. Let Ⓢ be the set of decision makers to decide
best laptop given as Ⓢ � y1, y2, y3􏼈 􏼉 and also consider the
set of attributes as ℸ1 and ℸ2, where ℸ1 represents laptop
type and ℸ2 represents laptop RAM. )en, their corre-
sponding attributive sets can beℸ1 � a11 � HP, a12 � Dell􏼈 􏼉,
ℸ2 � a21 � 8GB, a22 � 16GB, a23 � 16GB􏼈 􏼉

Suppose ⊼1 � ♮11, ♮12􏼈 􏼉,⊼2 � ♮21, ♮22􏼈 􏼉. )en, ⌆ � ℸ1 ×

ℸ2 will have 2 tuple elements and we suppose q� 8.
)en, q-ROFHS set (↫,⌆) can be written as

〈§⋉11〉 � 〈0.81, 0.88〉,

〈§⋉12〉 � 〈0.95, 0.97〉,

〈§⋉21〉 � 〈0.87, 0.84〉,

〈§⋉22〉 � 〈0.95, 0.91〉.

(7)

Let wi � (0.2, 0.1, 0.4, 0.3), vj � (0.6, 0.1, 0.3), and q � 8.

q − ROFHWA §⋉11, §⋉12, §⋉21, §⋉22􏼐 􏼑

�

������������������������

1 − 􏽙
3

j�1
􏽙

4
i�1 1 − ↷q

⋉k
􏼒 􏼓

wi

􏼒 􏼓
vi

q

􏽶
􏽴

, 􏽙
3

j�1
􏽙

4
i�1 €↷⋉k􏼐 􏼑

wi
􏼒 􏼓

vi⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

� (0.732, 0.488).

(8)

Table 1: q-ROFHS values.

(↫,⌆) y1 y2 y3 y4

(♮11, ♮21, ♮31) (.6, .8) (.7, .9) (.8, .6) (.5, .9)

(♮11, ♮21, ♮32) (.5, .8) (.7, .6) (.9, .5) (.9, .8)

(♮12, ♮21, ♮31) (.6, .8) (.7, .6) (.7, .9) (.6, .9)

(♮12, ♮21, ♮32) (.9, .7) (.9, .7) (.7, .8) (.8, .9)

Table 2: q-ROFHS values.

(↬, β) y1 y2 y3 y4

(♮11, ♮21, ♮31) (.9, .7) (.8, .9) (.7, .9) (.8, .7)

(♮11, ♮21, ♮32) (.7, .8) (.7, .8) (.9, .8) (.9, .7)

(♮12, ♮21, ♮31) (.9, .8) (.8, .9) (.7, .8) (.8, .9)

(♮12, ♮21, ♮32) (.7, .9) (.8, .9) (.9, .8) (.9, .7)

4 Complexity



Theorem 1. Let §⋉k � (↷⋉k, €↷⋉k) be a q-ROFHN. <en, the
aggregated result for q − ROFHWA operator is given as

q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ⊕€m

j�1vi ⊕
€n
i�1wi§⋉ij􏼒 􏼓

�

������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
1 − ↷q

⋉k
􏼒 􏼓

wi
⎛⎝ ⎞⎠

vi
q

􏽶
􏽴

, 􏽙

€m

j�1
􏽙

€n

i�1
€↷⋉k􏼐 􏼑

wi⎛⎝ ⎞⎠

vi

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

(9)

where wi � w1, w2, . . . , w€n􏼈 􏼉 and vi � v1, v2, . . . , v €m􏼈 􏼉 are the
expert weight vectors and selected subattributes, respectively,
with given circumstances
wi > 0, 􏽐

€n
i�1 wi � 1, vi > 0, 􏽐

€m
i�1 vi � 1.

Proof. Consider the principle of mathematical induction to
verify the given results: for €n � 1, we get w1 � 1. )en, we
have

q − ROFHWA I⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ⊕ €m

j�1 vj§⋉

�

����������������

1 − 􏽙

€m

j�1
1 − ↷q

⋉k
􏼒 􏼓

vi
q

􏽶
􏽴

, 􏽙

€m

j�1
€↷⋉k􏼐 􏼑

vi⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

�

������������������������

1 − 􏽙

€m

j�1
􏽙

1

i�1
1 − ↷q

⋉k
􏼒 􏼓

wi
⎛⎝ ⎞⎠

viq

􏽶
􏽴

, 􏽙

€m

j�1
􏽙

1

i�1
€↷⋉k􏼐 􏼑

wi⎛⎝ ⎞⎠

vi

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(10)

For €m � 1, we get v1 � 1. )en, we have

q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ⊕€ni�1wi§⋉ij

�

����������������

1 − 􏽙

€n

i�1
1 − ↷q

⋉k
􏼒 􏼓

wi
q

􏽶
􏽴

, 􏽙

€n

i�1
€↷⋉k􏼐 􏼑

wi⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

������������������������

1 − 􏽙
1

j�1
􏽙

€n

i�1
1 − ↷q

⋉k
􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

, 􏽙
1

j�1
􏽙

€n

i�1
€↷⋉k􏼐 􏼑

wi⎛⎝ ⎞⎠

vj

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(11)

)is verifies that equation (4) is correct for n� 1 and
m� 1. We will now show that equation (5) also holds for
€m � 1 and€m � 2, thus completing our proof.

q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ⊕2j�1vj ⊕

2
i�1wi§⋉ij􏼒 􏼓

� v1 ⊕
2
i�1wi§ ∝ i1

􏼒 􏼓⊕v2 ⊕
2
i�1wi§ ∝ i2

􏼒 􏼓

� v1 w1§⋉11⊕w2§⋉21􏼐 􏼑⊕v2 w1§⋉12⊕w2§⋉22􏼐 􏼑

� v1

�������������

1 − 1 − ↷q
11( 􏼁

w1
q

􏽱

, 􏽥↷w1
11􏼒 􏼓⊕

�������������

1 − 1 − ↷q
21( 􏼁

w2
q

􏽱

, €↷
w2
21􏼒 􏼓􏼚 􏼛

⊕v2
�������������

1 − 1 − ↷q
12( 􏼁

w1
q

􏽱

, €↷
w1
12􏼒 􏼓⊕

�������������

1 − 1 − ↷q
22( 􏼁

w2
q

􏽱

, €↷
w2
22􏼒 􏼓􏼚 􏼛

� v1

����������������

1 − 􏽙
2

i�1
1 − ↷q

i1( 􏼁
wi

q

􏽶
􏽴

, 􏽙

€n

i�1
€↷

wi

i1
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠⊕v2

����������������

1 − 􏽙
2

i�1
1 − ↷q

i2( 􏼁
wi

q

􏽶
􏽴

, 􏽙

€n

i�1
€↷

wi

i2
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

�

��������������������

1 − 􏽙
2

i�1
1 − ↷q

i1( 􏼁
wi⎛⎝ ⎞⎠

v1q

􏽶
􏽴

, 􏽙
2

i�1
€↷

wi

i1
⎛⎝ ⎞⎠

v1
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠⊕

��������������������

1 − 􏽙

2

i�1
1 − ↷q

i2( 􏼁
wi⎛⎝ ⎞⎠

v2
q

􏽶
􏽴

,

􏽙

2

i�1
€↷

wi

i2
⎛⎝ ⎞⎠

v2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

�����������������������

1 − 􏽙

2

j�1
􏽙
2

i�1
1 − ↷q

ij􏼐 􏼑
wi⎛⎝ ⎞⎠

vjq

􏽶
􏽴

, 􏽙
2

j�1
􏽙
2

i�1
€↷

wi

ij
⎛⎝ ⎞⎠

v1
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠.

(12)

Hence, it is true for €m � k1 + 1 and €n � k2 + 1.)erefore,
equation (28) is true for all €m, €n≥ 1, by mathematical
induction. □

Theorem 2. Let §⋉k � (↷⌆(⋉k), €↷⌆(⋉k)) be a q-ROFHN and
wi � w1, w2, . . . , w€n􏼈 􏼉 and vi � v1, v2, . . . , v €m􏼈 􏼉 be the expert
weight vectors and selected subattributes, having the

Table 3: q-ROFHS values.

(↫,⌆) y1 y2 y3 y4

(♮11, ♮21, ♮31) (.8, .9) (.7, .9) (.7, .8) (.8, .9)

(♮11, ♮21, ♮32) (.7, .8) (.6, .9) (.7, .9) (.7, .8)

(♮12, ♮21, ♮31) (.7, .9) (.8, .9) (.7, .8) (.7, .9)

(♮12, ♮21, ♮32) (.8, .9) (.7, .9) (.7, .9) (.8, .9)

Table 4: q-ROFHS values.

(↬, β) y1 y2 y3 y4

(♮11, ♮21, ♮31) (.9, .8) (.9, .8) (.8, .7) (.9, .7)

(♮11, ♮21, ♮32) (.8, .7) (.8, .7) (.8, .7) (.8, .7)

(♮12, ♮21, ♮31) (.8, .8) (.9, .7) (.9, .7) (.8, .7)

(♮12, ♮21, ♮32) (.9, .8) (.9, .8) (.9, .8) (.9, .8)
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condition that wi > 0, 􏽐
€n
i�1 wi � 1, vi > 0, 􏽐

€m
i�1 vi � 1.<en, the

q-ROFHWA operator holds for the following properties:

(i) Idempotency: if §⋉k � ζ⋉ for all (i� 1,2, . . ., €n) and
(j� 1,2, . . ., €m), then q-ROFHWA
(§⋉11, §⋉12, . . . , §⋉nm

) � ζ⋉.

Proof. Since we know §⋉k � (↷⌆(∝⋉k), €↷⌆(⋉k)) � ζ⋉ is a
collection of q-ROFHNs, then from )eorem 1, we have

q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑

�

������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
1 − ↷q

⋉k
􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

, 􏽙
€m

j�1 􏽙

€n

i�1
€↷⋉k􏼐 􏼑

wi⎛⎝ ⎞⎠

vj

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

�

�������������������������

1 − 1 − ↷q

⋉k
􏼒 􏼓

􏽘
€n

i�1
wi⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

􏽘
€m

j�1
vjq

􏽶
􏽵
􏽵
􏽴

, €↷⋉k􏼐 􏼑
􏽘

€n

i�1
wi⎛⎝ ⎞⎠

􏽘
€m

j�1
vj⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

����������������

1 − 1 − ↷q

⋉k
􏼒 􏼓, 􏽥↷⋉k

q
􏽲

􏼠 􏼡

� ζ⋉.

(13)

)erefore,

q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ζ⋉. (14)

(ii) Boundedness: if

§−⋉ij � minjmini ↷⌆ ⋉ij( 􏼁􏼚 􏼛,maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓, (15)

§
∝ ij

+
� maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛,minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓, (16)

then

§−⋉ij ≤ q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑≤ §+⋉ij . (17)

□

Proof. §−⋉ij � (minjmini ↷⌆(⋉ij)􏼚 􏼛,maxjmaxi 􏽥↷⌆(⋉ij)􏼚 􏼛) and

§+⋉ij � (maxjmaxi ↷⌆(⋉ij)􏼚 􏼛,minjmini €↷⌆(⋉ij)􏼚 􏼛). To prove

that § ∝ ij

− ≤ q− ROFHWA(§ ∝ 11 ,§ ∝ 12 ,...,§ ∝ nm
)≤ § ∝ ij

+
, for each i� 1, 2,

. . ., n and j� 1, 2, . . ., m, we have

minjmini ↷⌆ ⋉ij( 􏼁􏼚 􏼛≤↷⌆ ⋉ij( 􏼁
≤maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛

⇒1 − maxjmaxi ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩≤ 1 − ↷q

⌆ ⋉ij( 􏼁

≤ 1 − minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩

⇔ 1 − maxjmaxi ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

wi

≤ 1 − ↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

≤ 1 − minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

wi

⇔ 1 − maxjmaxi ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

􏽘
€n

i�1
wi

≤􏽙

€n

i�1
1 − ↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi
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≤ 1 − minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

􏽘
€n

i�1
wi

⇔ 1 − maxjmaxi ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

􏽘
€m

j�1
vj

≤􏽙

€m

j�1
􏽙

€n

i�1
1 − ↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

⎛⎝ ⎞⎠

vj

≤ 1 − minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

􏽘
€m

j�1
vj

⇔1 − maxjmaxi ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩≤􏽙

€m

j�1
􏽙

€n

i�1
1 − ↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

⎛⎝ ⎞⎠

vj

≤ 1 − minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩

⇔minjmini ↷⌆ ⋉ij( 􏼁􏼚 􏼛≤ 1 − 􏽙

€m

j�1
􏽙

€n

i�1
1 − ↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

⎛⎝ ⎞⎠

vj

≤maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛.

(18)

Hence,

minjmini ↷⌆ ⋉ij( 􏼁􏼚 􏼛≤

���������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
1 − ↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

≤maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛. (19)

Next, for each i� 1, 2, . . ., €n and j� 1, 2, . . ., €m, we have

minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛≤ €↷⌆ ⋉ij( 􏼁 ≤maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛

⇔􏽙

€m

j�1
􏽙

€n

i�1
minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj

≤􏽙

€m

j�1
􏽙

€n

i�1
€↷⌆ ⋉ij( 􏼁􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj

≤􏽙

€m

j�1
􏽙

€n

i�1
maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj

⇔􏽙

€m

j�1
􏽙

€n

i�1
minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓

􏽘
€n

i�1
wi⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

􏽘
€m

j�1
vj

≤􏽙

€m

j�1
􏽙

€n

i�1
€↷⌆ ⋉ij( 􏼁􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj

≤􏽙

€m

j�1
􏽙

€n

i�1
maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓

􏽘
€n

i�1
wi⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

􏽘
€m

j�1
vj

,

(20)

which implies that

minjmini €↷
⌆ ∝ ij)( 􏼉≤􏽑

€m

j�1
􏽙

€n

i�1
€↷⌆ ⋉ij( 􏼁􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj

≤maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)
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)erefore, q − ROFHWA(§⋉11, §⋉12, . . . , §⋉
€n €m

) �

(↷⌆(⋉ij), €↷⌆(⋉ij)) � §⋉ij, and thus

minjmini ↷⌆ ⋉ij( 􏼁􏼚 􏼛≤
�������

↷q

⌆ ⋉ij( 􏼁

q
􏽲

≤maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛. (22)

minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛≤ €↷⌆ ⋉ij( 􏼁
≤maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛.

(23)

So, we have S(§⋉ij) � (↷⌆(⋉ij))
q − ( €↷⌆(⋉ij))

q ≤maxjmaxi ↷⌆(⋉ij)􏼚 􏼛
q

− minjmini €↷⌆(⋉ij)􏼚 􏼛
q

� S(§+⋉ij ),
S(§⋉ij) � (↷⌆( ∝ ij))

q− ( €↷⌆(⋉ij))
q ≥

minjmini ↷⌆(⋉ij)􏼚 􏼛
q

− maxjmaxi €↷⋉(⋉ij)􏼚 􏼛
q

� S(§−⋉ij ).
)en,

S §−⋉ij􏼒 􏼓≤ q − ROFHWA §⋉11, §⋉12, . . . , § ∝
€n €m

)≤ S §+⋉ij􏼒 􏼓.􏼒

(24)
□

Definition 8. Let §⋉k � (↷⌆(⋉k), €↷⌆(⋉k)) be a q-ROFHN,
wi � w1, w2, . . . , w€n􏼈 􏼉 and vi � v1, v2, . . . , v €m􏼈 􏼉 be the weight
vectors of the experts and selected parameters of sub-
attributes, respectively, having the condition that
wi > 0, 􏽐

€n
i�1 wi � 1, vi > 0, 􏽐

€m
i�1 vi � 1. )en, the mapping for

q-ROFHWG operator is defined as
q − ROFHWG: Δ€n⟶Δ, where Δ is the collection of all
q-ROFHNs.

q − ROFHWG §⋉11, §⋉12, . . . , §⋉
€n €m

􏼒 􏼓 � ⊗ €m
j�1vi ⊗

€n
i�1wi§⋉ij􏼒 􏼓.

(25)

Example 4. LetⓈ be the set of decision makers to decide the
best car given asⓈ � y1, y2, y3􏼈 􏼉 and also consider the set of
attributes as ℸ1 and ℸ2, where ℸ1 represents colour of the
car and ℸ2 represents price of the car. )en, their corre-
sponding attributive sets can be
ℸ1 � a11 � black, a12 � white􏼈 􏼉,
ℸ2 � a21 � 25lac, a22 � 30lac, a23 � 20laclac􏼈 􏼉.

Suppose ⊼1 � ♮11, ♮12􏼈 􏼉,⊼2 � ♮21, ♮22􏼈 􏼉. )en, ⌆ � ℸ1 ×

ℸ2 will have 2 tuple elements and we suppose q� 8.
)en, q-ROFHS set (↫,⌆) can be written as

〈§⋉11〉 � 〈0.91, 0.84〉,

〈§⋉12〉 � 〈0.85, 0.92〉,

〈§⋉21〉 � 〈0.80, 0.93〉,

〈§⋉22〉 � 〈0.95, 0.88〉.

(26)

Let wi � (0.2, 0.1, 0.4, 0.3), vj � (0.6, 0.1, 0.3), and q � 8.

q − ROFHWG §⋉11, §⋉12, §⋉21, §⋉11􏼐 􏼑

� 􏽙
3

j�1
􏽙

4

i�1
↷⋉k􏼐 􏼑

wi⎛⎝ ⎞⎠

vi

,

�����������������������

1 − 􏽙
3

j�1
􏽙

4

i�1
1 − €↷

q

⋉k􏼐 􏼑
wi⎛⎝ ⎞⎠

viq

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

� (0.895, 0.569).

(27)

Theorem 3. Let §⋉k � (↷⋉k, €↷⋉k) be a q-ROFHN. <en, the
aggregated result for q − ROFHWG operator is given as

q − ROFHWG §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ⊗ €m

j�1vi ⊗
€n
i�1wi§⋉ij􏼒 􏼓

� 􏽙

€m

j�1
􏽙

€n

i�1
↷⋉k􏼐 􏼑

wi⎛⎝ ⎞⎠

vi

,

�����������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
1 − €↷

q

⋉k􏼐 􏼑
wi⎛⎝ ⎞⎠

vi
q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

(28)

where wi � w1, w2, . . . , w€n􏼈 􏼉 and vi � v1, v2, . . . , v €m􏼈 􏼉 are the
weight vectors of the experts and selected parameters of
subattributes, respectively, with given circumstances
wi > 0, 􏽐

€n
i�1 wi � 1, vi > 0, 􏽐

€m
i�1 vi � 1.

Proof of <eorem 3. Consider the principle of mathematical
induction to verify the given result as follows: for €n � 1, we
get w1 � 1. )en, we have

q − ROFHWG §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ⊗ €m

j�1§
vj

⋉ij

� 􏽙

€m

j�1
↷⋉k􏼐 􏼑

vi
,

����������������

1 − 􏽙

€m

j�1
1 − €↷

q

⋉k􏼐 􏼑
vi

q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

� 􏽙

€m

j�1
􏽙

1

i�1
↷⋉k􏼐 􏼑

wi⎛⎝ ⎞⎠

vi

,

�����������������������

1 − 􏽙

€m

j�1
􏽙

1

i�1
1 − €↷

q

⋉k􏼐 􏼑
wi⎛⎝ ⎞⎠

viq

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(29)

For €m � 1, we get v1 � 1. )en, we have

q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ⊗ €n

i�1 §⋉i1􏼒 􏼓
wi

� 􏽙

€n

i�1
↷⋉k􏼐 􏼑

wi
,

����������������

1 − 􏽙

€n

i�1
1 − €↷

q

⋉k􏼐 􏼑
wi

q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽙

1

j�1
􏽙

€n

i�1
↷⋉k􏼐 􏼑

wi⎛⎝ ⎞⎠

vj

,

�����������������������

1 − 􏽙

1

j�1
􏽙

€n

i�1
1 − €↷

q

⋉k􏼐 􏼑
wi⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(30)

For €n � 1 and €m � 2, this proves that equation (28) is
true. Now we will prove that equation (28) also holds for
€n � 2 and €m � 1, so we have

8 Complexity



q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ⊕2j�1vj ⊗

2
i�1wi§⋉ij􏼒 􏼓

� v1 ⊕
2
i�1wi§⋉i1􏼒 􏼓⊗ v2 ⊕

2
i�1wi§⋉i2􏼒 􏼓 � v1 w1§⋉11 ⊗w2§⋉21􏼐 􏼑⊗ v2 w1§⋉12 ⊗w2§⋉22􏼐 􏼑

� v1 ↷
w1
11 ,

�������������

1 − 1 − €↷
q

11􏼐 􏼑
w1

q
􏽱

􏼒 􏼓⊗ ↷w2
21 ,

�������������

1 − 1 − €↷
q

21􏼐 􏼑
w2

q
􏽱

􏼒 􏼓􏼚 􏼛⊗ v2 ↷
w1
12 ,

�������������

1 − 1 − 􏽥↷q
12( 􏼁

w1
q

􏽱

􏼒 􏼓⊗ ↷w2
22 ,

�������������

1 − 1 − €↷
q

22􏼐 􏼑
w2

q
􏽱

􏼒 􏼓􏼚 􏼛

� v1 􏽙

€n

i�1
↷wi

i1 ,

����������������

1 − 􏽙
2

i�1
1 − €↷

q

i1􏼐 􏼑
wi

q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠⊗ v2 􏽙

€n

i�1
↷wi

i1 ,

����������������

1 − 􏽙
2

i�1
1 − €↷

q

i2􏼐 􏼑
wi

q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽙
2

i�1
↷wi

i1
⎛⎝ ⎞⎠

v1

,

��������������������

1 − 􏽙
2

i�1
1 − €↷

q

i1􏼐 􏼑
wi⎛⎝ ⎞⎠

v1q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠⊗

􏽙
2

i�1
↷wi

i2
⎛⎝ ⎞⎠

v2

��������������������

1 − 􏽙
2

i�1
1 − €↷

q

i2􏼐 􏼑
wi⎛⎝ ⎞⎠

v2
q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽙
2

j�1
􏽙

2

i�1
↷wi

ij
⎛⎝ ⎞⎠

v1

,

�����������������������

1 − 􏽙
2

j�1
􏽙

2

i�1
1 − €↷

q

ij􏼐 􏼑
wi⎛⎝ ⎞⎠

vjq

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(31)

Hence, the result is true for €n � 2 and €m � 2. Further
suppose that equation (28) is true for €m � k1 + 1, €n � k2 and
€m � k1, €n � k2 + 1, such as

⊗ k1+1
j�1 vj ⊗

k2
i�1wi§⋉ij􏼒 􏼓 � 􏽙

k1+1

j�1
􏽙

k2

i�1
↷wi

ij
⎛⎝ ⎞⎠

vj

,

�����������������������

1 − 􏽙

k1+1

j�1
􏽙

k2

i�1
1 − €↷

q

i1􏼐 􏼑
wi⎛⎝ ⎞⎠

vjq

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

⊗ k1
j�1vj ⊗

k2+1
i�1 wi§⋉ij􏼒 􏼓 � 􏽙

k1

j�1
􏽙

k2+1

i�1ij

↷wi⎛⎝ ⎞⎠

vj

,

�����������������������

1 − 􏽙

k1

j�1
􏽙

k2+1

i�1
1 − €↷

q

i1􏼐 􏼑
wi⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(32)

For €m � k1 + 1, €n � k2 + 1, we have

⊗ k1+1
j�1 vj ⊗

k2+1
i�1 wi§⋉ij􏼒 􏼓 � ⊗ k1+1

j�1 vj ⊗
k2
i�1wi§⋉ij ⊗wk2+1§⋉ k2+1( )j

􏼒 􏼓

� ⊗ k1+1
j�1 ⊗

k2
i�1vjwi§⋉ij ⊗

k1+1
j�1 vjwk2+1§⋉ k2+1( )j

�

􏽙

k1+1

j�1
􏽙

k2

i�1
↷wi

ij
⎛⎝ ⎞⎠

vj

⊗ 􏽙

k1+1

j�1
↷⋉ k2+1( )j􏼒 􏼓

wk2+1

􏼒 􏼓
vj

�����������������������

1 − 􏽙

k1+1

j�1
􏽙

k2

i�1
1 − €↷

q

i1􏼐 􏼑
wi⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

⊗

��������������������������

1 − 􏽙

k1+1

j�1
1 − €↷

q

⋉ k2+1( )j􏼒 􏼓
wk2+1

􏼒 􏼓
vj

q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽙

k1+1

j�1
􏽙

k2+1

i�1
↷wi

ij
⎛⎝ ⎞⎠

vj

,

�����������������������������

1 − 􏽙

k1+1

j�1
􏽙

k2+1

i�1
1 − €↷

q

⋉ k2+1( )j􏼒 􏼓
wi

⎛⎝ ⎞⎠

vjq

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(33)
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Hence, it is true for €m � k1 + 1 and €n � k2 + 1.)erefore,
equation (26) is true for all €m, €n≥ 1, by mathematical
induction. □

Theorem 4. Let §⋉k � (↷⌆(⋉k), €↷⌆(⋉k)) be a q-ROFHN and
wi � w1, w2, . . . , w€n􏼈 􏼉 and vi � v1, v2, . . . , v €m􏼈 􏼉 be the weight
vectors of the experts and selected parameters of subattributes,
respectively, having the condition that

wi > 0, 􏽐
€n
i�1 wi � 1, vi > 0, 􏽐

€m
i�1 vi � 1. <en, the q-ROFHWA

operator holds for the following properties:

Idempotency: if §⋉k � ζ⋉ for all (i� 1, 2, . . ., n) and (j� 1,
2, . . ., m), then q-ROFHWA (§⋉11, §⋉12, . . . , §⋉nm

) � ζ⋉.

Proof. As we know §⋉k � (↷⌆(⋉k), €↷⌆(⋉k)) � ζ⋉ is a collec-
tion of q-ROFHNs, then from )eorem 1, we have

q − ROFHWA §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � 􏽙

€m

j�1
􏽙

€n

i�1
↷⋉k􏼐 􏼑

wi⎛⎝ ⎞⎠

vj

,

�����������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
1 − €↷

q

⋉k􏼐 􏼑
wi⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

� ↷⋉k􏼐 􏼑
􏽘

€n

i�1
wi⎛⎝ ⎞⎠

􏽘
€m

j�1
vj

,

�������������������������

1 − 1 − €↷
q

⋉k􏼐 􏼑
􏽘

€n

i�1
wi⎛⎝ ⎞⎠

􏽘
€m

j�1
vj

q

􏽶
􏽵
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� ↷⋉k,
�����������

1 − 1 − €↷
q

⋉k􏼐 􏼑
q

􏽱

􏼒 􏼓

� ζ⋉.

(34)

)erefore,

q − ROFHWG §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑 � ζ⋉. (35)

(ii) Boundedness: if

§−⋉ij � minjmini ↷⌆ ⋉ij( 􏼁􏼚 􏼛,maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓, (36)

§+⋉ij � maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛,minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓, (37)

then

§−⋉ij ≤ q − ROFHWG §⋉11, §⋉12, . . . , §⋉nm
􏼐 􏼑≤ §+⋉ij . (38)

□

Proof of <eorem 4. Part ii.

§−⋉ij � (minjmini ↷⌆(⋉ij)􏼚 􏼛,maxjmaxi 􏽥↷⌆(⋉ij)􏼚 􏼛) and

§+⋉ij � (maxjmaxi ↷⌆(⋉ij)􏼚 􏼛,minjmini €↷⌆(⋉ij)􏼚 􏼛). To prove

that § ∝ ij

− ≤ q− ROFHWG(§ ∝ 11 ,§ ∝ 12 ,...,§ ∝
€n €m

)≤ § ∝ ij
+
, for each i� 1, 2,

. . ., €n and j� 1, 2, . . ., €m, we have

minjmini ↷⌆ ⋉ij( 􏼁􏼚 􏼛≤↷⌆ ⋉ij( 􏼁

≤maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛

⇒minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩≤↷q

⌆ ⋉ij( 􏼁
≤maxjmaxi ↷

q

⌆ ⋉ij( 􏼁
􏼨 􏼩

⇔ minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

wi

≤ ↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

≤ maxjmaxi ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

wi

⇔ minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

􏽘
€n

i�1
wi

≤􏽙

€n

i�1
↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

≤ maxjmaxi ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

􏽘
€n

i�1
wi

10 Complexity



⇔ minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

􏽘
€m

j�1
vj

≤􏽙

€m

j�1
􏽙

€n

i�1
↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

⎛⎝ ⎞⎠

vj

≤ maxjmaxi ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩􏼠 􏼡

􏽘
€m

j�1
vj

⇔minjmini ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩≤􏽙

€m

j�1
􏽙

€n

i�1
↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

⎛⎝ ⎞⎠

vj

≤maxjmaxi ↷
q

⌆ ⋉ij( 􏼁
􏼨 􏼩

⇔minjmini ↷⌆ ⋉ij( 􏼁􏼚 􏼛≤􏽙

€m

j�1
􏽙

€n

i�1
1 − ↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

⎛⎝ ⎞⎠

vj

≤maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛. (39)

Hence,

minjmini ↷
⌆ ∝ ij)( 􏼉≤􏽙

€m

j�1
􏽙

€n

i�1
↷q

⌆ ⋉ij( 􏼁
􏼠 􏼡

wi

⎛⎝ ⎞⎠

vj

≤maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

Next, for each i� 1,2, . . ., €n and j� 1,2, . . ., €m, we have

minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛≤ €↷⌆ ⋉ij( 􏼁

≤maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛

⇔

������������������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
minjmini 1 − €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

≤

��������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
1 − €↷⌆ ⋉ij( 􏼁􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

≤

�������������������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
maxjmaxi 1 − €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

⇔

�������������������������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
minjmini 1 − €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓

􏽘
€n

i�1
wi⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

􏽘
€m

j�1
vjq

􏽶
􏽵
􏽵
􏽴

≤

��������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
1 − €↷⌆ ⋉ij( 􏼁􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj
q

􏽶
􏽴
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≤

��������������������������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
maxjmaxi 1 − €↷⌆ ⋉ij( 􏼁􏼚 􏼛􏼒 􏼓

􏽘
€n

i�1
wi⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

􏽘
€m

j�1
vjq

􏽶
􏽵
􏽵
􏽴

, (41)

which implies that

minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛≤

��������������������������

1 − 􏽙

€m

j�1
􏽙

€n

i�1
1 − €↷⌆ ⋉ij( 􏼁􏼒 􏼓

wi
⎛⎝ ⎞⎠

vj
q

􏽶
􏽴

≤maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛. (42)

)erefore, q − ROFHWG(§⋉11, §⋉12, . . . , §⋉
€n €m

) �

(↷⌆(⋉ij), €↷⌆(⋉ij)) � §⋉ij, so

minjmini ↷⌆ ⋉ij( 􏼁􏼚 􏼛≤
�������

↷q

⌆ ⋉ij( 􏼁

q
􏽲

≤maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛,

(43)

minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛≤ €↷⌆ ⋉ij( 􏼁
≤maxjmaxi €↷⌆ ⋉ij( 􏼁􏼚 􏼛.

(44)

So, we have

S §⋉ij􏼒 􏼓 � ↷⌆ ⋉ij( 􏼁􏼒 􏼓
q

− €↷⌆ ⋉ij( 􏼁􏼒 􏼓
q

≤maxjmaxi ↷⌆ ⋉ij( 􏼁􏼚 􏼛
q

− minjmini €↷⌆ ⋉ij( 􏼁􏼚 􏼛
q

� S §+⋉ij􏼒 􏼓,

S §⋉ij􏼒 􏼓 � ↷⌆ ⋉ij( 􏼁􏼒 􏼓
q

− €↷⌆ ⋉ij( 􏼁􏼒 􏼓
q

≥minjmini ↷⌆⌆ ⋉ij( 􏼁􏼚 􏼛
q

− maxjmaxi 􏽥↷⌆ ⋉ij( 􏼁􏼚 􏼛
q

� S §−⋉ij􏼒 􏼓.

(45)

)en,

S §−⋉ij􏼒 􏼓≤ q − ROFHWG §⋉11, §⋉12, . . . , §⋉
€n €m

􏼒 􏼓≤ S §+⋉ij􏼒 􏼓.

(46)
□

4. Proposed Methodology

Decision making is a technique used to choose logical al-
ternatives in different cases/environment. Here, we will use
our proposed technique under q rung orthopair fuzzy
hypersoft sets environment for multi criteria decision
making process. Let Q1, Q2, . . . , Qs􏼈 􏼉 be a set of s attributes
and x1, x2, . . . , x€n􏼈 􏼉 be a set of n experts. )e weight of
experts are given as w � w1, w2, . . . , w€n􏼈 􏼉

T. Let
ϖ � ϖ1,ϖ2, . . . ,ϖ€m􏼈 􏼉 be the set of attributes with their
corresponding subattributes as ϖ

�
� ϖ1a × ϖ2a×, . . . × ϖmp􏽮 􏽯

for all a ∈ 1, 2, . . . , t{ } with weights
v � v1a × v2a×, . . . × v €mp􏽮 􏽯 such as va > 0, 􏽐

t
p�1 aa � 1. )e

following algorithm can be used to make a decision:

Step 1. Construct a decision matrix containing sub-
attributes of parameters.
Step 2. Construct a decision matrix based on the ex-
perts’ evaluations of each alternative in the form of
q-ROFNs.

(Q,ϖ
�

) � §q⋉ij􏼔 􏼕
€n× €m

�

§q⋉11 §
q

⋉12
. . . §q⋉1m

§q⋉21 §
q

⋉22
. . . §q⋉2€m

. . . . . .

. . . . . .

. . . . . .

§q⋉
€n1
§q⋉

€n2
. . . §q⋉

€n €m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)
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Step 3. Aggregate all the alternatives according to the
proposed aggregation operators, i.e., weighted average
and weighted geometric operator.
Step 4. Calculate each alternative’s score.
Step 5. Choose the best option by ranking the alter-
natives according to the descending values of the score
value.

4.1. Numerical Example. To demonstrate how each stage of
the typical decision-making approach works, we present a
practical stepwise procedure based on the following scenario.

We want to examine the price stability of specific crypto-
currencies (alternative), denoted as A1�Tether, A2�Binance
Coin, A3�Ethereum, and A4�Bitcoin. A committee of de-
cision makers having weight vector (.16, .25, .33, .26) decides
the best cryptocurrency.)e attribute-valued setsϖ� {security,
decentralization, demand} with their corresponding sub-
attributes are given as ϖ1 � security� {a11� strong level of
security, a12� low level of security},ϖ2 � decentralization� {a21
decentralized application (dApp), a22� decentralized autono-
mous organization (DAO)}, and ϖ3 � demand� {more de-
mands, less demand}. )en, ϖ

�
� ϖ1 × ϖ2 × ϖ3 is a set of

subattributes which have 3-tuple elements.

ϖ
�

� ♮11, ♮12􏼈 􏼉 × ♮21, ♮22􏼈 􏼉 × ♮31, ♮32􏼈 􏼉

�
c ♮11, ♮21, ♮31( 􏼁, ♮11, ♮21, ♮32( 􏼁, ♮11, ♮22, ♮31( 􏼁, ♮11, ♮22, ♮32( 􏼁

♮12, ♮21, ♮31( 􏼁, ♮12, ♮21, ♮32( 􏼁, ♮12, ♮22, ♮31( 􏼁, ♮12, ♮22, ♮32( 􏼁
􏼨 􏼩.

(48)

Figure 1: 1BTC� 46004.15USD (source: price index data from CoinDesk (https://coinmarketcap.com/currencies/bitcoin/?period�7d)).

Table 5: Decision matrix for cryptocurrency market.

A1 ⋉1 ⋉2 ⋉3 ⋉4 ⋉5 ⋉6 ⋉7 ⋉8
X1 (.91, .97) (.81, .97) (.96, .98) (.79, .68) (.81, .98) (.79, .98) (.79, .96) (.97, .98)

X2 (.87, .98) (.98, .88) (.88, .98) (.85, .99) (.87, .99) (.86, .87) (.86, .97) (.90, .98)

X3 (.87, .89) (.98, .79) (.77, .99) (.88, .97) (.88, .89) (.97, .99) (.79, .98) (.89, .79)

X4 (.67, .98) (.89, .98) (.87, .99) (.95, .86) (.87, .96) (.78, .89) (.97, .87) (.79, .98)

Table 6: Decision matrix for alternative (A1 �Tether).

A1 ⋉1 ⋉2 ⋉3 ⋉4 ⋉5 ⋉6 ⋉7 ⋉8
X1 (.71, .98) (.81, .91) (.91, 0.98) (.79, .68) (.81, .98) (.77, .98) (.73, .94) (.79, .98)

X2 (.81, .88) (.78, .88) (.88, .98) (.85, .99) (.85, .89) (.83, .88) (.83, .87) (.99, .78)

X3 (.78, .89) (.98, .69) (.77, .69) (.88, .77) (.88, .89) (.98, .89) (.79, .98) (.88, .79)

X4 (.67, .87) (.69, .88) (.87, .99) (.97, .86) (.87, .96) (.68, .89) (.97, .87) (.69, .88)

Table 7: Decision matrix for alternative (A2 �Binance Coin (BNB)).

A1 ⋉1 ⋉2 ⋉3 ⋉4 ⋉5 ⋉6 ⋉7 ⋉8
X1 (.74, .98) (.76, .98) (.95, .98) (.81, .91) (.89, .98) (.76, .98) (.83, .94) (.95, .93)

X2 (.83, .87) (.98, .88) (.98, .88) (.78, .88) (.84, .99) (.93, .88) (.87, .85) (.97, .76)

X3 (.78, .79) (.85, .89) (.74, .79) (.98, .69) (.85, .89) (.95, .89) (.83, .89) (.89, .74)

X4 (.97, .87) (.89, .76) (.87, .93) (.69, .88) (.98, .79) (.98, .84) (.94, .86) (.79, .84)
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Let ϖ
�

� ⋉1,⋉2,⋉3,⋉4,⋉5,⋉6,⋉7,⋉8􏼈 􏼉 be a set of all
subattributes with (.22,.1,.04,.07,.13,.14.11,.17) weights. Un-
der the examined subattributes, each expert will assess each
alternative’s ratings in the form of q-ROFHNs.)e following
are the decision processes to determine the optimal alter-
native using the q-ROFHWA or q-ROFHWG operators:

Step 1. Develop a matrix containing subattributes of
parameters (see Table 5).

Step 2. Develop the decision matrices (see Tables 6–9)
of the experts as follows.
Step 3. Aggregated values of experts from given tables
are calculated using the given weighted average ag-
gregation operator as follows:

A1, (.881576, .869115),

A2, (.879565, .860845),

A3, (.907279, .881586),

A4, (.916721, 841755).

(49)

Step 4. Score value of alternatives.

A1 � 0.012461,

A2 � 0.01872,

A3 � 0.025693,

A4 � 0.074966.

(50)

Step 5. )e rank of alternatives shows us that
A4 >A3 >A2 >A1, and Bitcoin (alternative A4) is the
best among all these cryptocurrencies (alternatives).
According to the team of experts, a Bitcoin has a strong
security level and decentralized application. Also, Bit-
coin has more market demand as compared to other

Table 8: Decision matrix for alternative (A3 �Ethereum).

A1 ⋉1 ⋉2 ⋉3 ⋉4 ⋉5 ⋉6 ⋉7 ⋉8
X1 (.78, .94) (.76, .98) (.95, .98) (.84, .95) (.93, .84) (.76, .94) (.86, .97) (.89, .98)

X2 (.86, .87) (.85, .89) (.98, .99) (.87, .87) (.77, .65) (.93, .98) (.88, .85) (.84, .99)

X3 (.78, .77) (.85, .89) (.77, .78) (.95, .79) (.87, .88) (.92, .89) (.86, .89) (.84, .99)

X4 (.97, .88) (.83, .79) (.83, .97) (.69, .88) (.74, .89) (.91, .88) (.91, .86) (.85, .89)

Table 9: Decision matrix for alternative (A4 �Bitcoin).

A1 ⋉1 ⋉2 ⋉3 ⋉4 ⋉5 ⋉6 ⋉7 ⋉8
X1 (.79, .98) (.79, .68) (.95, .92) (.83, .91) (.89, .98) (.76, .98) (.83, .94) (.95, .94)

X2 (.83, .84) (.88, .69) (.98, .76) (.78, .81) (.84, .99) (.93, .88) (.86, .81) (.97, .86)

X3 (.88, .72) (.95, .78) (.84, .78) (.98, .91) (.85, .89) (.95, .89) (.88, .81) (.81, .84)

X4 (.99, .88) (.69, .97) (.89, .73) (.71, .88) (.98, .79) (.98, .84) (.91, .88) (.71, .88)

Figure 2: 1ETH� 3760.10USD (source: price index data from
CoinDesk (https://coinmarketcap.com/currencies/ethereum/?
period�7d)).

Figure 3: 1BNB� 508.32USD (https://coinmarketcap.com/
currencies/bnb/?period�7d).

Figure 4: 1Tether� 1.00USD (https://coinmarketcap.com/
currencies/tether/?period�7d).
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cryptocurrencies because Bitcoin is a good indicator of
the crypto market. Bitcoin’s price has rapidly grown in
recent months. �e latest price rise in the world’s most
popular cryptocurrency has generated speculation about
its future. �erefore, the team of experts announced its
decision on Bitcoin. Graphical representation of cryp-
tocurrency (alternatives) is shown in Figure 1.

As we have seen from the result, Bitcoin has a high range
compared to other cryptocurrencies.�ese all have a di�erent
price validity in relation to time. First of all, we will discuss the
volatility of Bitcoin prices as in April 2011, from 1 USD to a
peak of 29.60 USD by June. 2012 was a rather quiet year for
Bitcoin, while 2013 saw signi�cant price increases. Bitcoin
trading started in January 2013 at 13.28 and peaked at 230 in
April. In 2014, its price reached 315.21 USD. Also, its prices
still have a big increase from 900 USD in 2016 to 40,000 USD
in 2021. �e graphical representation of Bitcoin, Ethereum,
Binance Coin, and Tether is presented in Figures 2–5.

�e combined graphical representation of the price of
Bitcoin, Ethereum, Binance Coin, and Tether is shown in
Figure 6.

5. Comparison Analysis

We will compare our suggested structure to the present one in
this section. Our proposed structure has multiple choices of
attributes in which we deal with uncertainty more generally

with respect to the fuzzy soft set theory [21], intuitionistic fuzzy
soft set [33], the Pythagorean fuzzy soft set [34], and the q-rung
orthopair fuzzy soft set [35]. All these existing structures are
widely applicable in many �elds and areas. However, these
theories have restrictions due to their parametrization tool on
some speci�c parameters. On the other hand, when we
compare our suggested structure to the hypersoft form of fuzzy
sets, such as fuzzy hypersoft set, intuitionistic fuzzy hypersoft
set [24], and Pythagorean fuzzy hypersoft set [28], we �nd that
our proposed structure is superior.

�e fuzzy hypersoft set, the intuitionistic fuzzy hypersoft
set, and the Pythagorean fuzzy hypersoft set are all special
cases of the q-rung orthopair fuzzy hypersoft set, as can be
shown from these structures. Because our proposed struc-
ture provide more information by comparing with existing
research. �is proposed structure can deal with uncertain
data in the decision making process in a very simple way.
�erefore, the structure of q rung orthopair fuzzy hypersoft
sets is more practical from the existing fuzzy structures. In
our proposed structure, we use multiple choices of attributes
in order to solve the problems of everyday life. Our proposed
structure addressed the uncertainties in a more speci�c way
as compared to the existing structures.

6. Conclusion

To control di�erent types of cryptocurrencies, avoid losses,
and continue trading in the online market, an e�ective and
proper analysis of the cryptocurrency market is necessary.
�e analysis of the cryptocurrency market revealed that
security, decentralization, and demand are the most essential
elements for Bitcoin investment intentions, followed by �-
nancial incentives with a minor di�erence. Finally, the
ranking of subfactors is the high level of security, decen-
tralized application, and increased demand in the crypto-
currency market. As a result, a number of academics and
researchers began working on cryptocurrency. Many
scholars are turning to fuzzy set theory and its hybrid
structures to solve the di�culty of studying the Bitcoin
market since ambiguity exists in almost all real-world sys-
tems. In this work, a novel scienti�c instrument is designed
that uses a parametric method to expose factual information.
�e q-rung orthopair fuzzy set and the hypersoft set de�ne
the multi-argument functions that provide the set of the
q-rung orthopair fuzzy hypersoft. Two aggregation tech-
niques for the q-rung orthopair fuzzy hypersoft sets are
weighted mean and weighted geometric. �e validity and
implementation of the suggested operations and de�nitions
are tested using appropriate examples. �is research is also
important for decision-making approaches. �e main mo-
tive of experts in this work is to invest in the cryptocurrency
market using a decision-making technique for various at-
tributes and subattributes. In the future, we intend to create
new techniques for analyzing the Bitcoin market using
decision-making problems.

Data Availability

No data were used to support this study.
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