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Abstract

In this paper we show how a parametric discussion on the optimal objective values to two mathematical models involved
in a fuzzy standard data envelopment analysis can provide an analytic description to the membership functions of the fuzzy
efficiencies of the decision-making units. We recall the mathematical models under discussion from the literature, but we
approach them from a novel perspective, thus providing an analytical alternative to the numerical methods used so far in the
literature.
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1. Introduction

Data Envelopment Analysis (DEA) in fuzzy environment is a research field of wide interest in the recent
literature. A relevant reference book in this field is [5S]. More recently, Soltanzadeh and Omrani [9] proposed a
model with fuzzy inputs and outputs for a dynamic network data envelopment analysis and applied it to evaluating
the Iranian airlines companies. Their approach was based on the extension principle, and involved a-cuts to derive
the fuzzy efficiencies of the decision-making units (DMU ).

A new model to rank the decision-making units within a DEA analysis was proposed in [13]. This model was
applied to instances whose dataset uncertainty was expressed by several alternative scenarios.

A two-stage DEA for the efficiency evaluation in a fuzzy environment was developed in [6]. They identified
the sources of inefliciency in a production system; explored the options for improving its performance; and derived
a common set of weights to assure a balance among the evaluation of the system efficiency and the component
process efficiencies. Azadi et al. [1] developed an integrated non-radial DEA model, and introduced a new
efficiency measure to measure sustainable supplier performance.
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Zhou and Xu [14] presented a survey on fuzzy DEA researches and their successful applications. They equally
reviewed the existing methodologies and applications providing useful clues to the researchers for further investi-
gations in the field. The need of fuzzy logic in describing uncertainty was re-emphasized in [12].

Returning to the roots of DEA, it is important to mention that Charnes et al. [4] proposed the classic / standard /
CCR (Charnes-Cooper-Rhodes) DEA model. The model was extended by Banker et al. [2] who included variable
returns to scale along with the original input and output variable weights. A fuzzy extension to their model
was discussed by Kao and Liu [7]. They provided a numerical description of the membership functions of the
fuzzy efficiencies of DMUs based on the a-cuts of the fuzzy parameters. In this study we recall the mathematical
models proposed by Kao and Liu [7]; approach them from a novel perspective — a parametric analysis with respect
to the membership degree « of the optimal objective value; and improve the numerical methods used so far in the
literature.

The rest of the paper is organized as follows: the problem formulation is given in Section 2; the parametric
analysis is described in Section 3; an illustrative example is provided in Section 4; and the final conclusion together
with some directions for future research are included in Section 5.

2. Problem formulation

Given n decision-making units (DMUs) involved in an evaluation process, let x;; denote the i-th input of the
DMU;,i=1,..,m, j = 1,..,n; and let y,; denote the r-th output for the DMU;, r = 1,...,s, j = 1,...,n. In CCR
DEA models (1), the efficiency of any DMU is equal to the maximum of the ratio of weighted outputs to weighted
inputs subject to the constraint that for every DMU its corresponding ratio is less than or equal to unity.

Model (1) describes the efficiency 9; of the DMU,,, p = 1,...,n.

¢, =max E,(u,v)
s.t.
Ej(l/l,V)Sl, j=1,}’l,
u,v =g,

)

where E; (u,v) = (Z Uy, j] / (Z ViX; j], j = 1,...,n. The weights of the inputs and outputs u and v respectively
i=1

are the variables whose values have to be determined. & is a small positive quantity (e.g. & = 1077) which assures
that all inputs and outputs are considered in the evaluation, even with a minor weight. Model (1) can be linearized
using the well-known Charnes-Cooper transformation [3] on the objective function £, (#, v); and multiplying each

r=1

inequality E; (u,v) <1 (j = 1,n) by its strict positive denominator. The linearized model is

S

9; = max E WYrp
r=1
S.t.

m

D vixiy =1 )

i=1
s

m
Duye < ) vixy, j=1Ln,
r=1 i=1

u,v > &,

Banker et al. [2] considered variable returns to scale, and modified the CCR DEA model to



Bogdana Stanojevi¢ et al. / Procedia Computer Science 199 (2022) 487-494

S

0,*) = max Z UrYrp

r=1

S.t.

m

Vo + Z Vixip = 1 3)
i=1

S m

ZuryerV()+ZV,‘xij, j=1,n,

=1 i=1

u,v =g,

where vy is a variable without restrictions on its sign.
Kao and Liu [7] addressed the fuzzy DEA model (4) considering fuzzy inputs and outputs in Banker et al.’s
DEA model, and defined the fuzzy efficiencies 6?;“,, p=1,...,nas follows.

S

¢, = max Z UYrp

r=1

S.t.
Vo + Z Vixp =1 )
Z ,yr] v0+2v,x,], = n
r=1
u,v=e

They numerically constructed the approximate shapes for the fuzzy efficiencies 9;, p = 1,...,n in accordance
to the extension principle. They commented on some special cases when analytical solutions can be derived, but
concluded that for their numerical example such solutions were not obtainable. Consequently, they used fifty-one
equidistant values of @ from O to 1, and numerically derived the shapes of the fuzzy efficiencies.

In the next section, we show how to obtain analytical solutions to fuzzy standard DEA problems as those
considered in [7]. For our numerical illustration we recall Kao and Liu’s example [7], and provide exact solutions
that match to the approximate solutions from the literature.

More information on the fuzzy numbers used to describe the fuzzy parameters can be found in [11] and [16].

3. Parametric analysis

Kao and Liu [7] used the a-cut intervals of the fuzzy numbers that described the inputs and outputs in a
fuzzy DEA model to construct a family of crisp linear programming problems whose optimal values provided the
approximate shapes of DMUs fuzzy efficiencies. According to [7], for each fixed value of «, the optimal values to
Models (5) and (6) describe the right and left endpoints respectively of the a-cut interval of the fuzzy efficiency
of DMU,,.

More details on a-cut intervals and fuzzy mathematical programming can be found in [15].

Model
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s

max Z u, (ﬁp):

r=1

S.t.
m
vo + Z Vi (')E,-p)z =1
i=1
S m
ZL&(S;I]): < VO+ZV,‘ (E]):, ]:7’]¢p

r=1 i=1
s m

(), <0+ 3o (),
i=1

r=1

u,v > g,

(&)

is used to describe the right side, while model

S

max Z Uy (’y'rp)i

r=1

S.t.

(6)

(o3
r=1 i=1
s L m U
Z u, (yr,,) <vyy + Z Vi (x,p)a
=1 o i=1
u,v =&,

describes the left side. . U _
The general notations (Z)a and (Z)a are used for the lower and upper endpoints of the a-cut interval [A]a of

the fuzzy number A. For a trapezoidal fuzzy number A = (ay, a», as, as), the a-cut interval is described by

(K)i:(az—al)a+a1, (A):=(a3—a4)a+a4 . )

Both models (5) and (6) are parametric linear programming problems with respect to @ when Formulas (7)
are used for the lower and upper bounds of the fuzzy inputs and outputs. Adding n + 2 slack variables to each of
the models (5) and (6), and replacing the variable v by a difference of two positive variables, we obtain a general
parametric linear programming problem in its standard form

max ¢! (@)u
S.t.
Al@u=>b, ®)

x>0,

that may equally describe both previous models.

A parametric analysis of Problem (8) can be done by employing the optimality criterion. Starting from a
basic feasible solution u* = (M*B, ”?v) to Problem (8), we can split the matrix A in a quadratic sub-matrix Ap
corresponding to the basic variables, and the sub-matrix Ay of non-basic variables such that A = (Ag, Ay), Ap has
a non-zero determinant, uy (@) = A;l (@) b, and uy, (a) = 0. With respect to the base B that contains the indexes of
variables included in uj; (@), the initial system of constraints A (@) u = b can be rewritten Ag (@) up+Ay (@) uy = b
that is further equivalent to

up = Ag' (@) b — Ag' (@) Ay (@) uy.
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Table 1. Triangular fuzzy numbers (TFN) and their a-cuts representing the input and output for four DMUs (first exmple)

DMUs TFN-inputs inputs @-cut TFN-outputs outputs @-cut

A (11,12,12,14) [11 +a, 14 - 2a] (10, 10, 10, 10) [10, 10]

B (30,30, 30, 30) [30,30] (12,13, 14,16) [12 + a,16 - 2¢]
C (40, 40, 40, 40) [40,40] (11,11,11,11) [11,11]

D (45,47,52,55) [45 + 22,55 - 3] (12,15,19,22) [12 + 3,22 - 3a]

The optimality criterion that makes u* to be optimal to Problem (8) imposes
cg () A;J,l (@) Ay () — cf, (@) =0, Az_al ()b = 0. )

Since the parameters of Problem (8) are linear with respect to «, the components of the matrices involved in the
above inequalities are ratios of polynomials of @, a discussion on their sign can be carried out, and piece-wise
descriptions of the optimal values can be derived. A numerical illustration to these statements is given in the next
section.

4. Numerical illustration

Our example is recalled from [7]. The same example was also considered in [10] and [8]. The fuzzy inputs
and outputs used in Model (4) for this example are given in Table 1 as trapezoidal fuzzy numbers together with
their corresponding a-cuts.

In what follows we carry out the parametric analysis needed to derive analytically the shape of the fuzzy
efficiency of DMU D.

Model (10)

max (12 + 3a) u;

S.t.

10u; —vi+vy —(Al+a)vi + 51 =0,
(16 = 2a)u; —vg + vy —30v; + 5, =0,
1luy —v§ + vy —40v; + 53 =0,
(12 +3a)u; —v§ +vy — (55 =3a)vi + 54 =0,
-5+ vy + (55 =3a)v; =1,
—up+ 55 =g,
—Vi+ 8¢ =&
ul,v(’;, Vg» Vs S1, 82, §3, 84, 55, 56 = 0

(10)

is analyzed to obtain the increasing piece of the membership function of the fuzzy efficiency; while Model (11)

max (22 -3a)u
S.t.

10u; — v + vy — (14 =2)v; + 51 =0,
(12 + @) uy — vy +vy —30v; + 5, =0,
Lluy — vy + vy —40v; + 53 =0,
(22 -3a)u; —vj +vy — (45 +2a) v (3?14)3 +54 =0,
vy + vy + @5+ 2a)v; = 1,
—uy+ 85 =¢&,

1)

V] + S¢ =&,
N
UL, Vs Vs V1 S5 525 53, 54, 55, 56 = 0

is analyzed for deriving the decreasing piece of the same membership function.

Following [7], we use in Model (10) the lower bounds for the output of DMU D and the inputs of DMUs A,
B, C; and upper bounds for the input of DMU D and the outputs of DMUs A, B, C, as prescribed in [7].

For @ = 0 in Model (10) the first optimal basis B; is formed with variables {ul,vg,vl, S1, 83, 84, S5}. To
discuss the optimality of this basis with respect to @ we make use of the condition (9). Table 2 reports the values
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Table 2. The Simplex Tableau that describes the optimality of bases B; and B, with respect to @ when solving Model (10).

=T —T =T
B AB, ()b AB, (@) Ay (@) B AB2 ()b
05 05 TZ5-T5a U333 U333
ui 8a 0 = =0 U Tra 0 Tra 0
va' 1 -1 0 55 -3a va' 1 -1 0 55 -3a
Vi 0 0 0 -1 V1 0 0 0 -1
3-a -5 203-34a+a? 0.666+a -3333
51 8o 0 Ta 8o , 51 e 0 Tia 44 - da
25-a —55 —17.5-22.50+30 —1.333+1.666a -5.333+0.667a
53 —a 0 8—a 8—a §3 dra 0 dra 25-3a
2-250 —6-1.5¢ —150-19a-+4.502 0.333+a -3.667
S4 P 0 = - 52 e 0 T 15 - 3a
s 05 0 08 12.5-154" P 033" 0 0555 0
5 8—a 8—q 8—q 5 4+q e
6+150 6+1.50 150+190—4.50
8—a 0 8—q 8—q 1 0 1 0

(depending on «, and with coefficients rounded to three decimal places) of the basic variables, and the quantities
involved in the optimality criterion. For a € [0, 1] all components on the last row are positive as needed for
optimality; and all values of the basic variables are positive except for s4 that is positive if and only if @ < 0.8. It
means that for any a € [0, 0.8] the optimal value of Problem (10) is

6+ 1.5«

6, (@) = S

(12)
Moreover, 8; (0) = 0.75 and 6, (0.8) = 1.

For @ > 0.8 the basic variable s4 is replaced by s, and the basis B, = {ul,vg, Vi, 81, 53, 52, ss} is obtained.
Table 2 shows that B, is optimal for @ > 0.8 and the efficiency is ) (@) = 1.

We now proceed to analyse Model (11). This model uses the upper bounds for the output of DMU D and the
inputs of DMUs A, B, C; and lower bounds for the input of DMU D and the outputs of DMUs A, B, C. Solving
Model (11) firstly for @ = 0, and then for @ € (0, 1], we obtain an optimal value equal to 1 for all values of
a € [0, 1]. Consequently, by inverting (12), and summarizing, we derive the following membership function of
the fuzzy efficiency of DMU D

87 —
T 2e10.75,1),
_ ) 15+z
He;, (@)= 1, z=1, (13)
0, otherwise.

If we keep the coefficient of > accurate (i.e. non-rounded to 0) in the expression of the optimal value in the

Simplex Tableau that describes the basis By, namely if we work with S13€H1070% jpgiead of S50 seen on last

row and second column in Table 2, then the membership function of the DMU D has the more complex form

2 —
®-9 . ze[075.1).
— -7
gy ) = 11.5+z+ V(1.5 +2)> +16(8z - 6) 10 o (14)
0, otherwise.

However, it is clear that both membership functions (13) and (14) have similar shapes, and the second one can be
reduced to the first one by rounding 10~ to 0, in this latest step.

Table 3 summarizes the parametric results that yield the membership functions of the fuzzy efficiencies of all
DMUs. Inverting the expressions given in Table 3, we derive the corresponding membership functions as follows:

@) = I, z=1,
He (2= 0, otherwise,

15.3333 + 19.66667z — V53.794889 + 1399.52917 — 370.5552972
2(z—0.3333) ’

z €[0.7183,0.88867),

z€[0.88867,1],
0, otherwise,
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Table 3. Optimal bases and optimal objective values that describe the membership functions of the fuzzy efficiencies of all DMUs

DMU Lower optimal objective value Upper optimal objective value
A 1, a € [0,1] 1, a€[0,1]
136+15.3332+0.33302
. R e ot et
A .| a
C 229.333-29.667Ta+a2’ @ €[0,1] e @ €[0,0.000015]
s —lla
. 10030=al’ a € (0.000015, 1]
D Erlardl0 o a € [0,0.8000065] 1, ael0,1]
1, a € (0.8000065, 1]
The fuzzy efficiency of DMU A The fuzzy efficiency of DMU B The fuzzy efficiency of DMU C The fuzzy efficiency of DMU D
1 il 4 1
0.8 08 08 |- E 08
0.6 = 06| 1 0.6 |- E 0.6
© S © ©
= = = =
® © © ©
04 - 04} - 04 E 04
0.2 a 0.2 1 0.2 0.2
0 . . G e R ) ) o . P
0.99 0995 il 1005 1.01 0.7 075 08 085 09 095 1 0.50.550.60.650.70.750.80.850.90.95 07 075 08 085 09 095 1
theta theta theta theta

Fig. 1. Graphic representations of the fuzzy efficiencies

29.6667z + 3.6667 — \13.444689 + 716.224367 — 37.22189122

o v : A < Y e[0.54366,0.6935).
Z
1, 2 = [0.6935,0.7908] ,
_) 1143 121 + 4667 — 357.666822
pey. (2) = +32+ ¥ +2 < ¢ 2 €(0.7908,0.9166646],
Z

10.9999 — 12

T 2 € (0.9166646,0.9166658] ,
Z

0, otherwise.

Figure 1 shows the graphic representations of the membership functions of all DMUs involved in the evaluation
process described in our numerical example. The obtained membership functions match the results reported in the
literature.

5. Final remarks

In this paper we approached the fuzzy standard DEA through a novel parametric analysis of the optimal
objective values of two crisp mathematical models. We proposed a methodology to provide analytic descriptions
to the membership functions of the fuzzy efficiencies of DMUs. We founded our approach on the a-cuts of the
fuzzy parameters, and a family of mathematical models recalled from the literature; advanced a new perspective;
and succeeded to provide an analytical alternative to the numerical methods used so far in the literature. We also
included a numerical illustration to our new solution approach.

In our future research we will focus on including a similar parametric analysis to other, more complex fuzzy
DEA models, aiming to provide more accurate descriptions to the fuzzy efficiencies of DMUs involved in more
sophisticated evaluation processes.
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