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Abstract: Since corn is the second most widespread crop globally and its production has an impact on
all industries, from animal husbandry to sweeteners, modern agriculture meets the task of preserving
yield quality and detecting corn stress. Application of remote sensing techniques enabled more
efficient crop monitoring due to the ability to cover large areas and perform non-destructive and
non-invasive measurements. By using vegetation indices, it is possible to effectively measure the
status of surface vegetation and detect stress on the field. This study describes the methodology
for corn stress detection using red-green-blue (RGB) imagery and vegetation indices. Using the
Excess Green vegetation index and calculated vegetation index histogram for healthy crop, corn
stress has been effectively detected. The obtained results showed higher than 89% accuracy on both
experimental plots, confirming that the proposed methodology can be used for corn stress detection
using images acquired only with the RGB sensor. The proposed method does not depend on the
sensor used for image acquisition and vegetation index used for stress detection, so it can be used in
various different setups.
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1. Introduction

One of the biggest challenges facing the global population of 8 billion people is food
security and preservation. Over 700 million people go hungry every day and do not have
access to the basic foodstuffs needed for their existence [1]. Due to global warming, finding
methods and strategies which may increase crop tolerance under different types of stress
is of significance [2—4]. Furthermore, since arable area is limited and the need for food
is growing year by year, the application of more efficient methods of food production is
crucial for survival [5,6].

Corn is the second most widespread crop of all and is used in almost all areas and has
an impact on all industries, from animal husbandry to sweeteners [7]. Given that corn is not
a very tolerant crop to external factors, such as wet weather or temperature, especially in
the early stages, and its production has an impact on the global population, one of the major
tasks faced by modern agriculture is the preservation of quality yield and the detection of
stress in the early stages of cultivation [8].

Starting with global producers such as America and China, which produce more than
50% of corn in the world, the challenge of producing enough food is faced by all other
spheres of industrial production, including the final consumers, who either do not have
food available or who cannot pay the price dictated by a small supply and high demand.
Since the bacteria, viruses, weeds, and animals are the direct cause of yield loss, they are
responsible for the loss of between 20 and 40% of the global yield, which in the case of
corn production, would be 200-400 million metric tons [9]. It is worth noting that corn
irrigation is not a common practice in developing countries; thus, rain-fed corn fields are
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largely affected by climate changes [10,11]. If the losses are expressed in money, the losses
would be between USD 70 and 140 billion.

Stress detection in agriculture is a field that is very popular in recent times and
is being encountered by various scientists and engineers [12,13]. The traditional field-
based methods for crop monitoring include on-site sampling and laboratory analysis,
which have disadvantages in the collection of data, since they are often labor-intensive,
costly, time-consuming, and in some cases not possible because of the crop type and
stage. By comparison, remote sensing and precision agriculture have found applications in
plant health monitoring [14]. Precision agriculture can be used as a specific soil and crop
management system that assesses variability in soil and crop properties and parameters
using various tools, such as Geographical Information System (GIS), Global Positioning
System (GPS), and remote sensing. Application of the remote sensing techniques enabled
more efficient crop monitoring due to the ability to cover large areas rapidly and repeatedly
and perform non-destructive and non-invasive measurements [15,16].

When it comes to sensors used in remote sampling methods, unmanned aerial vehicles
(UAVs) have been commonly used in recent years because they enable high-resolution
imaginary and their versatility, light weight, and low costs give them an advantage over
other ways of remote sensing data collection. In addition, a large number of aircrafts allow
the installation of various sensors that enable data collection by using hyperspectral or near-
infrared sensors [17,18]. A common use of remote sensing in agriculture is the evaluation
of crop condition based on canopy greenness by using vegetation indices (VIs) [19].

A vegetation index is a combination of surface reflectance at two or more wavelengths
designed to highlight a particular property of vegetation [19]. It represents a simple, effec-
tive, and empirical measure of the status of surface vegetation [20]. Based on the different
sensors mounted on the UAYV, it can collect imagery with different spectral bands, such as
visible and near-infrared (NIR); different vegetation indices can be calculated and used
for studying crop condition. Accordingly, a large amount of previous research is based
on the use of NDVI (Normalized Difference Vegetation Index), which is calculated as a
ratio difference between measured canopy reflectance in the red and near-infrared bands,
respectively [13,21]. In a study by Chen et al., an NDVI sensor and two commercial chloro-
phyll meters were used to detect the difference in leaf chlorophyll contents of buffaloberry
under halogen light and sunlight [22]. Candiago S. et al. demonstrated the great potential
of collecting multispectral images and evaluating different VIs, such as NDVI, GNDVI (The
Green Normalized Difference Vegetation Index), and SAVI (The Soil-Adjusted Vegetation
Index), suggesting that they can be used as a fast, reliable, and cost-effective resource in
crop monitoring [23]. Furthermore, along with near-infrared imaging, thermal imaging
found application in the detection of plant stress, where Gerhards et al. detected water
stress in a potato plant by measuring visible, near-, and shortwave infrared reflectance and
fluorescence [24].

In addition to multispectral sensors, which are expensive, RGB (red, green, blue) image
sensors, which capture data across three wavelength bands in the visible spectrum, are
also used for the evaluation of crop condition. Due to their lower costs and their ability to
measure vegetation, vegetation indices based on the RGB sensors found their application
in precision agriculture [24,25]. RGB-based vegetation indices such as Excess Green (ExG)
can be used to accurately estimate canopy coverage [26]. In their research, Kim D.-W. et al.
developed and validated a crop growth estimation model based on UAV RGB imagery for
quantifying various biophysical parameters of Chinese cabbage and white radish [27]. They
used ExG vegetation index and used the Otsu method for crop extraction from the image.

The importance of corn production stimulated many researchers to write papers re-
lated to the application of various machine learning and statistical methods and algorithms
to multispectral images in order to analyze spatial variation in various biophysical factors,
such as canopy cover, leaf area, and crop height, and predict corn yields along with the
preservation of crop health by detecting different types of plant stress [28-30]. Given
that the use of multispectral sensors provides more information than the standard visual
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sensors, which collect only red, green, and blue wavelengths, most of the previous studies
were related to the use of multispectral and hyperspectral images in order to detect corn
stress. In their research, Karimi et al. used the support vector machine (SVM) as a tool for
classifying hyperspectral images in order to detect weed and nitrogen stress in corn, while
Geol et al. applied artificial neural networks (ANNSs) to accomplish stress detection on the
same dataset [31,32]. Zhang et al. extracted corn canopy temperature at the late vegetative
stage by using RGB and thermal imagery and applied it in water stress monitoring [33].

This paper describes the methodology for corn stress detection using UAV-RGB im-
agery, which is based on the corn stress detection by comparing vegetation index histograms
for each region of interest of the field with the vegetation index histogram of the healthy
crop. The image obtained through RGB imagery is divided into regions of interest, where
red, green, and blue wavelength data are extracted and the ExG vegetation index histogram
is calculated for each region. In the image processing phase, each region is compared with
the healthy crop histogram previously calculated from the ground-truth data. By applying
histogram overlapping of two histograms, each region is classified into a group depending
on the overlap percentage. The methodology can be used with different vegetative indices
and also be applied to the multispectral images.

The goal of this study is to propose a methodology for corn stress detection using RGB
image and vegetation indices. Based on the challenges we encountered, the contributions
of this paper are reflected in the following: (i) application of stress detection using RGB
imagery for different types of plant stress—by using ground-truth for the healthy crop it is
possible to detect different types of the stress, (ii) application on different crops and using
different vegetation indices.

2. Materials and Methods

The methodology for corn stress detection using RGB image is based on the extraction
of the ExG vegetation index histogram for each region of interest of the acquired image
and its comparison with the vegetation histogram representing a healthy crop. Figure 1
shows the flow chart of the proposed methodology. In the first step of image acquisition, a
UAV has been used to fly over experimental fields and collect data using an RGB sensor.
Image alignment and georeferencing of the collected images have been applied in the image
preprocessing step in order to convert the data into an image orthomosaic. Labelled healthy
crop segments are selected and extracted for the next steps. Before the next step, the size
of the region of interest, which represents the area on the field covering the maximum
corn size and spacing between two crops, is defined. In the vegetation index histogram
extraction step, for each pixel in the labelled healthy crop segments, the ExG value is
calculated and presented on the histogram representing the standard for a healthy crop
and will be used in the processing phase of the methodology. The image processing phase
consists of dividing the image orthomosaic into multiple regions of interest and passing
through each region to calculate the vegetation index histogram along with the overlap
percentage between the selected region histogram and the histogram representing a healthy
crop. Before classifying each region of interest into one of the three pre-defined clusters,
cluster boundaries are determined by performing hierarchical cluster analysis on one
variable using Ward’s method. The last step of the corn stress detection model is classifying
each region of interest based on the calculated cluster boundaries and detecting stressed
crops on the field.

2.1. Image Acquisition

Two corn fields were used as experimental regions for this study. The first one is
located in Pasareni, Romania with the area of 45.57 ha, with the corn in V4 growing stage
planted (Figure 2). At the time of image acquisition and remote sensing, corn size was
between 15 and 20 cm, with the crops spaced 20 cm from each other. The second field is
located in Ivanovo, Serbia, with a size of 10.32 ha and the same V4 corn planted. At the
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time of sampling, corn size was between 10 and 20 cm, with a distance between crops of
15-20 cm.

/ Image Acquisition /

A 4

N Region of Interest
Image preprocessing > selection
v 5
Vegetation Index USSR
Histogram Extraction
Image processing and R Cluster Range
ROI Classification P 7 Definition

v
Corn stress
detection model

Figure 1. Flow chart of methodology for corn stress detection using remote sensing and vegetation

indices.

Figure 2. Test site: corn V4 field in Pasdreni, Romania.

The unmanned aerial vehicle (UAV) platform used in this study was DJI Phantom
4 Advanced (S5Z DJI Technology Co., Ltd, Shenzhen, China) equipped with a 1” 20 MPX
CMOS sensor and OV 84° 8.8 mm /24 mm lens. For the automatic fly-over of the experi-
mental fields, Drone Deploy Android App 2.9 (Santa Clara, CA, USA) was used and both
fields were surveyed at a height of 70 m above the ground. The fly path was generated,
and the sequence of overlapped images based on the time-lapse function, which took one
image every two and a half seconds, was collected on the flight mission.

In order to label field segments which represent the healthy crops, white tape was
used to make the process of healthy crop segment extraction in the next step easier.



Sustainability 2023, 15, 5487

50f12

2.2. Image Preprocessing and Region of Interest

After multiple images were collected by flying over the fields, Drone Deploy web ap-
plication (Santa Clara, CA, USA) was used to perform image alighment and georeferencing.
After georeferencing the images, they were converted into an image orthomosaic by using
image stitching functionality developed by Drone Deploy.

On the obtained georeferenced image orthomosaic, previously labelled healthy crop
segments of the field were selected using the drawing tool and extracted for the next steps.
For the marked area of the field representing a healthy crop, it is necessary to mark at least
10 segments with the minimum size of the region of interest to be defined.

In order to effectively perform vegetation histogram calculation and stress detection,
it is necessary to select the appropriate region of interest (ROI) that represents the area on
the field covering the maximum corn size and spacing between two crops. The idea of the
proposed methodology is to select the region of interest which will enable the effective
recognition of potential stress by measuring the difference in biophysical characteristics
of the crop with the use of the vegetation index histogram. As shown in Figure 3, for the
region of interest, an area of 70 x 70 cm was used, based on the geometric characteristic
that included the maximum size of the crop and the distance between each crop.

Figure 3. Selected region of interest (ROI) covering the maximum size of the crop and spacing
between each crop.

2.3. Vegetation Index Histogram Extraction

For the calculation of the vegetation index histogram of the healthy crop, the vegetation
index of ExG was used, since it can effectively assess canopy variation in green crop biomass
based on the RGB images. The ExG was calculated using the calibrated RGB reflectance
values (Equation (1)) [34]:

ExG=2g—-r—0, @)

where 7, g, and b range from 0 to 1 and were calculated as follows:

R G B

= —_— = — bzi
"T“RYG+B 8T R+G+B R+G+B

@)
where R, G, and B represent reflectance values of R, G, and B bands in the original image
acquired by the UAV-RGB sensor [35].

Given that the methodology is based on the comparison of vegetation index histograms
and the determination of their percentage of overlap, in the first step it is necessary to
calculate the histogram of a healthy crop based on the segments labelled as a healthy crop
in the image acquisition phase by the agriculture expert. For each pixel in the selected
segments, the ExG value is calculated and the values are presented on a histogram. In order
to create a histogram which can be compared with the region of interest, the healthy crop
histogram has was normalized by dividing by the total number of pixels, and the values on
the y-axis were presented in relative frequencies, as in Figure 4.
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Figure 4. Normalized ExG vegetation index histogram of a healthy crop.

Calculating the histogram in this way represents the standard for a healthy crop, and
in the processing phase of the methodology, it will be compared with all regions of interest
in the entire field.

2.4. Image Processing and ROI Classification

In the image processing phase, the image orthomosaic of the field is divided into
multiple regions of interest previously defined. Passing through each ROI, the vegetation
index histogram is calculated as mentioned in the previous section and then compared
with the histogram representing a healthy crop, as calculated in the previous step.

In order to calculate the overlap percentage of two histograms, the histogram intersec-
tion algorithm was used [36]. The calculation of the overlap percentage was performed
using the following formula (Equation (3)):

Zmin [Ij, M]] (3)
j=1

where [j represents the histogram value of the ROI for the j-th bin, and M represents the
histogram value of a heathy crop for the j-th bin. Both histograms ranged from 0 to 1 in
steps of 0.01. In this way, the cumulative difference in relative frequencies between the
two histograms is calculated. In order to compute the overlap percentage, the cumulative
difference is divided by the number of relative frequencies of the M histogram of the healthy
crop, as in Equation (4):

Yy min[lj, M]

-1 Mj

4)

Figure 5 shows a graphic representation of two examples of overlapping histograms.
In both histograms, the histogram M representing a healthy crop is colored in green, while
the I histogram of the ROl is colored in red. In the left example, the percentage of overlap
is 3.31%, while on the right, the percentage of overlap is 68.89%.

After the overlap percentages for all ROIs and the histogram of the healthy crop have
been calculated, the next step is to perform their classification and detect regions of interest
with corn stress. Each ROI will be classified in one of the three pre-defined clusters: healthy
crop, potential stress, and plant stress. In order to determine cluster boundaries for each of
the clusters, hierarchical cluster analysis (HCA) on one variable using Ward’s method was
performed [37]. When the cluster boundaries were defined, each ROI was classified into a
cluster depending on the calculated percentage of overlap. ROIs with the lowest overlap
percentage were classified into a plant stress cluster, while the ROIs with the highest overlap
percentage were classified into a healthy plant cluster. Finally, in order to enable visual
representation of the obtained results, a corn stress map was generated using ArcGIS 10.0.2
(Esri, Redlands, CA, USA), where each ROI contains georeferenced data and is marked
with the appropriate cluster color.



Sustainability 2023, 15, 5487 7 of 12

(@) (b)

Figure 5. Vegetative index histogram overlap examples: (a) 3.31% of overlap; (b) 68.89% of overlap.

3. Results

The data collected by the UAV-RGB sensor were uploaded into the Drone Deploy
software package and georeferenced. After applying image stitching functionality, an
image orthomosaic was obtained for both test corn V4 fields. Before flying over the fields,
field segments representing healthy crops were marked and will be used in the next step
for vegetation index calculation. Experimental field data as well as the number of segments
labelled as healthy crops and their minimum area are provided in Table 1.

Table 1. Experimental field data including total field area, number of labelled segments representing
healthy crop along with the total labelled area, and minimum segment size sampled.

Test Area Labelled Total Labelled Min. Segment
Field Segments Area Size
Pasareni (Romania) 45.57 ha 8 245 m? 20 m?
Ivanovo (Serbia) 10.32 ha 11 261 m? 18 m?

The segments representing the healthy crop were labeled using Drone Deploy software
and extracted so that they could be used for the next phase of histogram calculation.
For each test field, a histogram of the ExG vegetation index was calculated and then
standardized, as explained in the previous section, in order to display relative frequencies
on the y-axis. Calculated healthy crop histograms for both test fields are shown in Figure 6.

04

03

0.2

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 6. (a) ExG vegetation index histogram of a healthy crop for Pasareni corn field; (b) ExG
vegetation index histogram of a healthy crop for Ivanovo corn field.

On the obtained histograms of a healthy crop, 95% of the values for the Pasareni field
are located between 0.17 and 0.51, with a median value of 0.29. On the other hand, a lower
median of 0.11 was obtained for the Ivanovo field, where 95% of the values are located
between 0.01 and 0.20. The lower values of the ExG index for the Ivanovo field can be
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influenced by the brighter image, because during the flyover period, the sun fell directly
on the ground, and there was also a slightly larger distance between crops.

In the next step of the methodology for corn stress detection, the complete image was
divided into regions of interest. For the ROI size, an area of 70 x 70 cm was selected as
mentioned in the previous section, in order to cover the maximum width of the crop and
the distance between each crop. Passing through each RO, the vegetation index histogram
was calculated. For each ROI histogram, the overlap percentage with the healthy crop
histogram was calculated using the histogram intersection algorithm.

Hierarchical cluster analysis on one variable using Ward’s method was performed in
order to obtain overlap percentage boundaries for each of the three pre-defined clusters:
healthy plant, potential stress, and plant stress. The potential stress cluster is defined as
a group where corn stress cannot be confirmed, but the region of interest is not a healthy
crop. The results of the application of hierarchical cluster analysis with the obtained cluster
boundaries are shown in Table 2. Based on the cluster boundaries, all ROIs were classified
into a cluster depending on the percentage of overlap.

Table 2. Results of hierarchical cluster analysis (HCA) using Ward’s method, displaying cluster
ranges in percentage of histogram overlap for each test field.

Cluster Range Healthy Plant Potential Stress Plant Stress
Pasareni (64.32-100] (32.78-64.32] [0-32.78)
Ivanovo (59.46-100] (23.54-59.46] [0-23.54)

Georeferenced data for each ROI were obtained by taking the center point for each
70 x 70 cm segment, and a georeferenced stress map was generated using the ArcGIS 10.0.2
software package. The stress map was generated in order to visually represent the ROIs
marked as potential stress or plant stress (Figure 7), where the green color represents the
healthy plant, the yellow color represents potential stress, and plant stress is displayed with
the red color. In this way, it is possible to combine georeferenced data with other methods
of precision agriculture in order to monitor plant health and apply necessary measures on
the selected region of interest in order to preserve the crops.

(b)

Figure 7. (a) UAV-RGB orthomosaic image of corn V4 field; (b) georeferenced stress map of corn V4

field generated using the stress detection methodology applied to the UAV-RGB image (red—plant
stress, yellow—potential stress, green—healthy plant).

Validation of the presented methodology for stress detection in corn was performed
using isolated segments that represent a healthy crop and were used to calculate the healthy
crop histogram, as well using field segments that represent the ground-truth of a stressed
plant. Samples with a total of 192 ROIs were allocated in the Pasareni field, while in
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the Ivanovo field, 112 ROIs were allocated. In order to validate the proposed method, a
confusion matrix was calculated where ground-truth data were used as the sample. The
confusion matrix is displayed in Table 3.

Table 3. Results of confusion matrix for the two test fields, presenting difference between actual and

predicted ROI classes.
Predicted
Test Field Healthy Plant Potential Stress  Plant Stress  Total Error %
Healthy Plant 834 49 22 905 7.84
Pasdreni Actual
Plant Stress 2 12 178 192 7.29
Healthy Plant 739 54 31 824 10.31
Ivanovo Actual
Plant Stress 1 10 101 112 9.82

As shown in Table 3, when it comes to validating the ground-truth, the data used
for the healthy crop gave good results, with an accuracy of 92.16% and 89.69% for both
fields, respectively. For the ground-truth data representing stressed crops, the accuracy
percentage is slightly higher, so the model error is 7.29% for the Pasareni field and 9.82%
for the Ivanovo field. The precision percentage of the model is 89%, with a recall of 92.71%,
for Pasareni, and the precision percentage is 76.52% along with a recall of 90.18% for the
Ivanovo field. Within the misclassified ROIs, most of them are classified as potential stress,
which tells us that this cluster needs to be additionally processed in detail in order to reduce
the model error [38].

4. Discussion

Vegetation indices are an effective way to separate crops from the background, that is,
to identify all differences in soil that can be characterized as stress. When it comes to images
collected using only RGB bands, Excess Green (ExG) gives excellent results for healthy crop
identification. In a study by Kim et al., ExG was applied for automatic crop segmentation
with the Otsu threshold [27]. In our study, a histogram of vegetation index ExG was
calculated based on the defined region of interest covering the maximum width of the corn
in V4 phase and the spacing between two crops. By applying the defined methodology,
each ROI was classified into one of the previously defined groups. Based on the confusion
matrix used for validation of the results, the model showed errors ranging from 7.84% to
10.31% when it comes to cross-validation of ground-truth data of a healthy crop. For the
ground-truth data of a stressed crop, the error ranged from 7.29% to 9.82%, which implies
that the applied methodology gives acceptable results, with >90% success. Kim et al. also
obtained significant results with >80% success with their method [27]. The downside of this
methodology is that a large number of ROIs are classified into the potential stress cluster,
which represents the sensitivity zone of this method, and thus these data should be further
processed in the future in order to increase the efficiency of the given methodology.

In previous research related to the stress detection in crops and corn itself, most
researchers have used vegetation indices calculated using multispectral and hyperspectral
sensors with a big application of thermal cameras, which provide much more information
than an image collected using only the visible RGB band [33,39,40]. In our research, UAV-
RGB imaging was used, as it does not require expensive equipment and can be used with
different vegetation indices. Furthermore, the presented methodology is applicable to
different types of corn stress, considering that the histogram of a healthy crop is generated
based on the ground-truth data, while in most research in this field, the focus is on a certain
type of corn stress, such as water, nitrogen drought, or weed stress [41,42].
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5. Conclusions

This paper presents a methodology for corn stress detection based on a UAV-RGB
image obtained by remote sensing, as corn stress represents one of the biggest challenges
faced by most farmers. Using the ExG vegetation index, the histogram of a healthy crop
was calculated based on the marked segments from the field. The calculated histogram
of a healthy crop was then compared with vegetation index histograms of all defined
regions of interest on the field, and the percentage of overlap was calculated. Based on the
percentage of overlap, all regions of interest were classified into one of the three pre-defined
groups in order to detect corn stress. The advantage of this methodology is reflected in the
fact that it is not dependent on the sensor used for image acquisition and can be applied
with multispectral sensors in order to use different vegetation indices for stress detection.
Moreover, the methodology detects general stress in crops, so it can be applied on different
types of stress in corn or another crops. However, the drawback of this method is the
potential stress cluster, where regions of interest classified in this group should be further
analyzed in detail. Future research should include additional analysis of the potential stress
cluster, as well as the application of this methodology on different plant cultures and stages
of growth. Additionally, the application of different vegetation indices can be used in order
to compare the results and define which vegetation index gives the best results.
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