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Frank t-norm and t-conorm; most optimal alternative among comparative alternatives. Several authors put forward to
Intuitionistic fuzzy set: MAGDM by introducing different fuzzy frameworks and also different tools to deal with fuzzy
Maclaurin symmetric mean; information. Intuitionistic fuzzy set (IFS) is the fuzzy framework that deals with the uncertainty
Multi-attribute decision- in MAGDM. Due to their flexibility and generality, Frank t-norm (FTNM) and t-conorm
making; (FTCNM) play an essential role in information fusion. Moreover, as the generalization of some
Aggregation operators mean operators, the Maclaurin symmetric mean (MSM) operator considers the relationship

between multi-criteria arguments, especially in MAGDM. This article aims to develop some
MSM aggregation operators (AOs) for the intuitionistic fuzzy set (IFS) based on FTNM and
FTCNM and to apply newly developed AOs in the MAGDM. To utilize the MAGDM algorithm,
first, we defined the MSM by using the FTNM and FTCNM in the environment of IFS. Then we
proposed intuitionistic fuzzy (IF) Frank MSM (IFFMSM) and IF Frank weighted MSM
(IFFWMSM) operators. Then, the fundamental properties of these AOs are stated and proved.

* Corresponding author at: School of Mathematics, Thapar Institute of Engineering & Technology (Deemed University), Patiala 147004, Punjab,
India.

**Corresponding author at: School of Economics and Management, Nanchang Hongkong University, China.

E-mail addresses: hlwang71162@nchu.edu.cn (H. Wang), kifayat.khan.dr@gmail.com (K. Ullah), harish.garg@thapar.edu, harishg58iitr(w gmail.
com (H. Garg).

Peer review under responsibility of Faculty of Engineering, Alexandria University.

https://doi.org/10.1016/j.a¢j.2023.03.063

1110-0168 © 2023 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2023.03.063&domain=pdf
mailto:hlwang71162@nchu.edu.cn
mailto:kifayat.khan.dr@gmail.com
mailto:harish.garg@thapar.edu
mailto:harishg58iitr@gmail.com
mailto:harishg58iitr@gmail.com
https://doi.org/10.1016/j.aej.2023.03.063
http://www.sciencedirect.com/science/journal/11100168
https://doi.org/10.1016/j.aej.2023.03.063
http://creativecommons.org/licenses/by-nc-nd/4.0/

536

A. Hussain et al.

Then, the strategy is given that accounts for the application of the newly developed family of AOs.
Further, freshly defined operators are applied to the MAGDM problem with the help of an example
where the risk factors of the construction industry are assessed. To cope with the significance, the
proposed AOs are compared with some existing AOs. This study also addresses the variation of
these AOs’ behavior based on the interpretation of sensitive parameters.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria
University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

The MAGDM helps to choose an optimal alternative from the
provided list considering some attributes. The MAGDM is more
reliable than the multi-attribute decision-making (MADM)
because, in MAGDM, the result is cumulatively based on
experts’ opinions. In contrast, in the MADM, the result is based
on the opinion of only one expert. Hence the MAGDM is con-
sidered a more effective and efficient technique in decision-
making. The MAGDM has been applied in the areas of energy
[2,17,31], business [19,36], medical science [1,12,26], etc. More-
over, due to the complexity and ambiguity of the information,
the result obtained by decision-making may not be expressed
with proper mathematical modeling, especially in the case of
human opinion. To cope with the fuzziness and complexity of
information, [43] introduced an exciting idea of the fuzzy set
(FS), where he described an object as a member of phenomena
or set in the form of a membership grade (MG) by taking the val-
ues of this MG from [0, 1]. After the introduction of FSs, a new
direction was set for mathematicians by [9] to express the ambi-
guity in uncertain information. [9] thought to generalize the idea
of FS by adding grades to show the non-membership of an object
to a phenomenon or simply a set called the non-membership
grade (NG). Consequently, [9] proposed the idea of intuitionistic
FS (IFS) with the NG. The framework of the IFS covered the
complexity and the vagueness of the information more accu-
rately than the FS. Consequently, scholars applied the IFS to
cope with the problems due to the complexity and ambiguity
of the information. For example, AOs based on IFS [3], complex
intuitionistic fuzzy (CIF) classes [5], IFS in graph theory [8], IFS
in group theory [4], IFS in distance measure [10], IFS in pattern
recognition [11], etc., are some developments in various fields
depending upon the IFS.

In the MAGDM, the role of AOs is very significant because
the AOs aggregate the information comprehensively [16].
Depending on the AOs, many advantageous methods to aggre-
gate the information have been developed. For example, the
authors [27,20,46] introduced some important AOs. Unlike
traditional AOs, these methods comprehensively aggregate
the information of alternatives. In MADM and MAGDM,
the AOs have been becoming the most attractive topic to
research for a few years due to their vast applicability. For
example, AOs developed by the authors [13], AOs by [15],
and [14] in the different fuzzy frameworks are some AOs devel-
oped in the past few years. Some techniques to deal with the
MAGDM can be found in [22-25].

The AOs mentioned above aggregate multiple numbers into
a single number. MSM operators defined by Recently, a few
researchers have developed various types of AOs that aggre-
gate multiple numbers depending on the different attributes
by considering their relationship between them. For example,

AOs developed by [41,42,35,39] are some AOs to aggregate
fuzzy information considering the relationship between attri-
butes. For interval-valued IFS [25] introduced power MSM
AOs which aggregates information in the form of the intervals.
The limitation of these AOs is that they are based on the tra-
ditional operational laws. In addition, some researchers have
applied various operational laws to acquire better and flexible
results than the aforementioned AOs. For example, t-norm
(TNM) and t-conorm (TCNM) are used in power AOs by
[6,33] used Dombi TNM, and TCNM, [18] used the Hamacher
TNM and TCNM, [38,47] used Einstein TNM and TCNM,
and [44,45] used FTNM, and FTCNM and so on.

IFS has become a popular framework among researchers to
deal with the ambiguity and uncertainty in information. The main
points of the motivations for preparing this article are given as;

1. Frank’s family of operational laws [30] are very flexible and
reliable due to the involvement of parameters and are widely
applied in MAGDM by researchers as in [44,45] due to their
flexibility.

2. IFS is the framework to handle the fuzziness and ambiguity
in information by describing an object by two grades, MG
and NMG, as mentioned above; consequently, IFS has pro-
vided better results than the crisp set and FS while used in
MAGDM in various fields.

3. MSM is the operator that contributes to decision-making by
aggregating the information of alternatives and considering
their relationship. MSM has also been an exciting tool to
aggregate the data and provide better results because it deals
with the attributes by considering their inter-relationship.

4. The existing MSM operators for IFS based on the tradi-
tional operational laws. In this study we develop MSM
operators based on the flexible operational laws i.e., FTNM
and FTCNM.

There are five sections in this article. Section 2 states the
fundamental concepts for a better understanding of the article.
Then in Section 3, the newly proposed IFFMSM AOs are
developed, and their properties are stated and proved. In Sec-
tion 4, the IFFWMSM operator is designed, and its basic
properties are stated. Section 5 consists of the application of
the proposed AOs with the help of an example. In Section 5,
for the significance of our proposed work, we have also com-
pared it with existing AOs. Finally, Section 6 concludes our
detailed discussion.

2. Preliminaries

In this section, we elaborate on some fundamental concepts of
IFS, MSM, FTN, and FTCNM to better understand this
article.
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Definition 1. [9] Let Y be the universal set. Then an IFS A is
defined as,

A = {{g,%(9): B (9))lg € T}

Where % : ¥ — [0, 1],%; : ¥ — [0, 1] are the MG and NG,
respectively, with 3 +7; € [0, 1]. The hesitancy degree is deter-
mined by 1 —w; — hi;.

Definition 2. [9] Assume # = (% ioh A) be an IFV. The score
function of A is defined as follows,

Sc(A) = %s — Iy (1)

Where Sc(#) € [—1, 1]. Smaller the Sc(#) is the smaller
the IFV J# is.

It was found that some IFVs could not be ranked with the
help of the score function defined above. [17] gave the idea of
the grade of accuracy (GA), which is described below.

Definition 3. Assume # = (w4, hy) be an IFV. The GA of A is
defined as the following,

GA(H) = n; + Ty, (2)

GA(A#) € [0,1]

Definition 4. [30] The Frank TNM and TCNM are mappings
such that [0,1]* — [0, 1] given below;

(N = DR = 1)

Tp(r,s):LogN(qu R—1 >,r,s€[0,1],N>l

R (R
Sk(rys) =1— Logy, <1 +%>ms €0,1,8>1

Definition 5. Assume Ay = (ws;,ip,), #2= (%50, 14,) and
H = (%A, hA) be three IFVs and n > 0, the operations of IFVs
based on Frank TNM and TCNM are defined as follows,

R 1) (RTA2 -1
1 7L0gN(1 +%)’
H\BpHr = (NT’AI,I)(NT’AZ—I)
Logy| 1 +*——5——
R¥AL—1)(N*A2 -1
LogN(l +%>’
H\QpH 2 =
1QpH > (A1) (8 A1)
l —Logy| 1+ ——57——

11 e VA N PR L Vi
nA = (1 L 14 (1 + (N _ l)n,l 7L 4N 1+ (N _ 1)1171
. W=D\, R
H" = <L gx <1 + (N _ 1))11)’1 L 8 (1 + (N _ ])nfl >>

3)

Definition 6. [28] Assume h,(m =1,2,3,---,n) be the collec-
tion of positive real numbers. Then the MSM operator can be
given as follows,

w 1/w
. I:Ihm/
<my<mp<mz<---<m,<n
MSM(h17/12,h3,"'hn) = ! } Cn
w
4)
Where, C), is the binomial coefficient,
1<m <my<my<---<m,<n represents thew — tuple

combination of the positive real numbers.

3. Frank Maclaurin symmetric mean operator for IFVs

This section consists of the development of the IFFMSM oper-
ator and, which is based on the Frank operations on IFVs. In
this section, we also study some desirable properties of
IFMSM operator.

Definition 7. Let # (i =1,2,3---,n) be the collection of the
IFVsw=1,2,3,---,n. Then IFFMSM: Y" — Y an operator is
defined as,

IFEMSM (A, Hoy, Hos, - - Hoy)

w 1/w
OF ®F A

1<i)<ip<iz<--<iw<n j=I (
= 5)

Cy

Where, C}, is the binomial coefficient,
1 <1 <iy<i3<---<iy <n represents thew — tuple combi-
nation of the IFVs.

Based on the Frank operations defined above, we can prove
some fundamental properties of the IFFMSM operator. In
Theorem 1, we demonstrate the aggregated value obtained
by IFFMSM is again an IFV.

Theorem 1. Let #; = (w;, 1) (i = 1,2,3,---,n) be the collection
of IFVs and w=1,2,3,---.n. Then an IFV is obtained as
aggregated value by the IFFMSM operator and.

Which is an IFV. Hence the proof is completed.
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IFFMSM (A1, 0y, Hos, - Hn)

(et

1—-Logy 1
~»<+H,g.\,,:<.,
I=Logy | 1+ ®

Logy

Logy | 1+]

1 — Logy,

Proof: To prove this theorem, we calculate éfF H, first, as follows,
1

j=1 i—1

Which is an IFV. Now, we calculate

2 é)vF Hi =

1<i)<ip<iz<--<iw<n j=1

Dr

1<ij<ip<iz<--<iy<n j=I

. 1w
DF RF 7/}]

1<i) <y <iz<--<iw<n j=1

C

O H = <LogN (1 + (H (W —

1 — Logy

1)> (N — 1)‘”),1 — Logy (1 + (H

©r @ Ay as follows,

1<i) <ip<iz<--<iw<n j=I

I1

1<) <iz<iz<--<iw<n

1+

I+

1<i)<ip<iz<-<iwy<n

Logy

W oF S S
. 1< <ip<iz<-<iw<n j=1
®p Ay, is also clearly an IFV. Now, we calculate | ===

1-Logy | 14|

Logy I

1 — Logy

HL\(NVPL)))
[ —1 et
-1

(R — 1))(N -

H” (NI h"‘)
1-Logy HW
Losx I‘H|g|]<|1<|1< ciwen | M
Logg | 1+ &

.
a

)

1/w

as follows

y N
H' (84 -1) can
1-{ Logy | 1+ (,',:1,)'-1
~Logy 3 =" - Ryl -w
om | T etyeciyen ren
-1

)]

[
(®-1)

N —1|®=1""],
" =i

(l—LogN<l+%)) -

N —1lR=n"

s

1-ar
(®-1) S

-ar
(X=1)

1| ;=1
€
a
B I 4
1
—1| }=-n'
—1| =1
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Theorem 2. (Idempotency): Let #; = (w;, h;)(i =1,2,3,---,n)

be the collection of IFVs, and if
Hi= i, ) =H =, h)V(i=1,2,3,---,n). Then

IFFMSM (A1, H5, Hs, -+ Aoy

L,
= A is called the idempotent.

Logy (1+ (% = DF(R = 1)),

1= Logy(1+ (X" = 1)" (= 1)’

W

)

I, i
1-Logy (HHM i i <w]7<bwR (Pr T >)4>m71)‘ “> .
I-Logy | 1+] » S B -1 e T
Logy | 1+ | ® 1| ;-1 |,
IFFMSM (), Hy, H 3, - H ) = N
o () i “
Logy (HHK‘ iy en (n( B M(+ O )) fl>m—l»‘ ”) .
Logy | 14 ] » S T N
1— Logy | 1+ [ —1| =
& 0
| 1oen L l)”)) “w
1-Logy <I+H1<'1<h<'3<»~<aw<n (Nl </— x (‘ e T 1) (N])'u) .
1-Logy | 1+ ® -1 ®-1)
1-L
Logy| 1+ | W -1 ®=1)"],
= . 1
Jd-hi_p)" or "
(I*Lngu(1+((‘;lil)“i)] )) . o
2 S U [ -1 et .
Logy | 1+ X ~1 ®=1) <
1-L
1—Logy| 14+ | RN 1 ®=1)""
=(nh)=H
Hence the proof is completed.
Proof: As #; = (w;,h;)) = (w,h) = AV(i=1,2,3,---,n), by
the Theorem 1, we have. Theorem 3. (Monotonicity): Let Hi= (wi, h;)and
A= (w,0)(i=1,2,3,-+,n) be the collections of IFVs and
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if Hi>H for all (i=1,2,3,---,n). Then ,7<L,,M(,+H" L '>)>

IFEMSM (A1, #03, H3, - Hy) > TEFFMSM (A2, A8, A, A2, 1 - Logy | 1+ II X o NN SN
1<i) <ip<iz<--<iy<n

Proof: As stated that J#; > #¢ so, for IFVs »; > ! and

h; < hf. We can write.

Log, <1 + (ﬁ (e —

i=1

i

1)>(N— 1)1")
4 ) 1)'”)
And.

lLogN< (H (R — 1 ) 1)‘”)

< 1— Logy (1 + (H (R 1)> (N— Ul")

i=1

i=1

Further, we have.

( ( H (%i-1)
1—-| Log | 1+

o - ,w T
1-Log 1+ngi|<i2<i3< <iw<n

1+

1—-Log

Log| 1+

1-Log | 1+

>Log| 1+

).

i
1- (Lu}{ (1+7
1-Log I+H L .
1<i) <ip <iz<-<iw=n

(N1<""“ ('*HZN ()))) - 1) (- 1)'")

— Logy | 1+ H
1< <iy<iy<--<iw<n

And.
(Nl(m(”“l LE) ) wo )
et

D) )

Logy | 1 + H
1<i) <ip<iz<-<iw<n

< Logy| 1+ H
1<) <iy<iz<--<iw<n

Then we have.

==

(-

s(;l_

G
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And.

Logy | 1+ | N

1 —Logy| 1+ | N

Logy |+|| o
R 1<) <ip<iz<-<iw<n

Logy | 1+ ]| N

<1—Logy| 1+ [N

This completes the proof.

Theorem 4. (Boundedness): Let #'; = (w;, h;)(i =1,2,3,---,n)
be the collections of IFVs, and if
A~ = (minn;, maxh;), # " = (maxx;, minf;). Then.

H7 < IFFMSM (S|, Aoy, Hos, - Hon) < AT

Proof: Since »~ = min (»,) and %" = max (%;). Therefore,
we can write % <w <ux'Jh < <h" for all
i=1,2,3,--- n. Therefore, by the Theorem 3 and 4, we can
write.

A7 <IFEMSM(J |, Koy, Koy, - Hy) < HT

Hence the proof is completed.

Example 1. Consider #; = (0.1,0.2), #, = (0.4,0.5), and
A3 = (0.3,0.5) are three IFVs. Here, v~ = 0.1 and nt=0.5.
Hence, #~ = (0.1,0.5) and similarly #" = (0.4,0.2). Now, we
aggregate these values by proposed operators as follows.

IFEMSM (A, #, #3) = (0.4,0.3)

Hence, cleared from Example | the IFFMSM operator is
monotonic. It is important to note that the monotonicity can
not be proved for the score values of provided IFVs.

T

" o
L,
1-Logy jpxdi=tN  /
N B pyl—w
Logy I+ngul<i2<i3<---<\w§n X N K
-1

no( 1-h?
Hl*l v
e R T
X -1

L
(z-1) S

3

Ryl

4. Intuitionistic fuzzy frank weighted maclaurin symmetric mean
operator

The operator proposed in Section 3 aggregates the attributes
collectively. However, it cannot consider the self-importance
of various aggregated attributes. Therefore, we IFFWMSM
operator to overcome this problem. Note that we will use B
for the provided weight vector where B = {9;},i=1,2,---n
and > 7 ,0;=1 in the further discussion unless otherwise

I

stated.

Definition 8. Ler #;(i =1,2,3---,n) be the collection of the

IFVs,w=1,2,3,---.n and B be the weight vector. Then
IFFMSM: Y" — Y the operator is defined as,
IFFMSM (A |, Ay, Hor, -+ Hoy)
W 1/w
N T
_ 1<i)<ip<iz<--<iy<n j=1 (6)
G
Where, C}, is the binomial coefficient,

1<ij<ih<iz<---<iy <n represent w— tuple combina-
tion of the IFVs.
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Based on the Frank operations defined in Eqn. (3), we can Theorem 5. Let #; = (w;, 1) (i =1,2,3,---,n) be the collection
prove some fundamental properties of the IFFWMSM opera- of IFVs and w=1,2,3,---,n. Then the value obtained as
tor. In Theorem 1, we demonstrate the aggregated value aggregated value by the IFFWMSM operator is also an IFVIFV
obtained by IFFWMSM operator is an IFV. which is given as follows,

IFFWMSM (A1, #y, K5, -+ H)

Where to avoi? the length of the equations we assumed.

& =1— Logy
And.
@ =Logy| 1+

1+ 11

1<i) <ip<iz<-<iw<n

1<) <ip<iz<-<iw<n

N

N

1-5;
J
N 15
1-Logy 1+(N’:7|) iomeny
1=Logy | 1+ | TT, | ® -1 ®-1)"

(-2 ,)C{L v
1-Logy | 14—t
N n-nSw .
Logy| 1+ FSIE )
i1
1-Logy 1+(NWI.3,C‘"\
N -1 Sw! )
1-Lo 1+
Bx (R—D)F-!

1-9,
J

;
1-Logy (H(Nl,\-’]) % (N])lo"/>
1-Logy | 1+ [T, [ » -1 =7

—1 (N— 1)1*»»‘

1 (N_ 1)17w

Proof: To prove this theorem, we calculate QSF 5[/.%”}1. first, as follows,

toa(1+ (1]

[1

i=1

j=1

i=1

l—LogN(l—i-(
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Which is an IFV. Now, we calculate DOF éVF 0, A as follows,

1<i) <ip<iz<--<iw<n j=I s
5
i

9, 1-9,
1-Logy (H(N"Nq) % (net) h'/>
I—Logy | 1+ H:’:\ N —1 N=1)""

1 — Logy | 1+ II R 1=

1<y <y <iy <<y <n

1-5;
S e
1 Logy I+(N"r7|) % ey
1-Logs | 1+| TT0, | ® -1 (R—1)~!

Logy | 1+ II R 1=

1<) <ip<iz<--<iy<n

To avoid the e/xtra length of the equations we let.

-5,
0, 1-94,
1-Logy 1+(N""i71) oy
1-Logy | 1+ | 1., -1 ®-1)""

&=1—Log,| 1+ 11 N —1lx=-n"

1<i)<ip<iz<--<iw<n

z

And. 1
o ‘
I-Logy 1+(M‘,|) % )
1=rogy | 1+ TT., | ® -1 R-1)""

¢ =Logy| 1+ 11 R —1lx=n""

1<) <ip<iz<-<iw<n

Further we havew

cn
©DF RF O, H; — M
1§i1<i2<i3l;~-~<iwgn j:l; ! ! - 1 LOgN (1 + x=nSwt P
< Loy 1+ 2525
4N (1)
Finally, 1
d-¢_\Sw v
X (x=1)“w 1
Logy | 1+ o) s
w 1
OF ®F & A

1<i) <ip<iz<--<iwy<n j=I

C, &
w w1 W
1-Logy | 14 Y ’(l,)n i\l
N ®=n7w -1

1 — Logy| 1+

(R—1)¥!
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Which, is an IFV. Hence the proof is completed. Further,
Theorem 6. (Idempotency): Let #; = (w;, h;)(i =1,2,3,---,n) 1<1.<h§?5 ci<n ?f & A 1<, <12<63£ ciu<n ?f 811%
be the collection of IFVs, and if cr Z cr
Hi= (i, i) = (%, h) = #N(i=1,2,3,---,n). Then v v
IFFWMSM (#y, Hy, H 3, Hn) = H  is  called  the Finally,
idempotency. L L
@D ® 5, (] 6 Jf”
Proof: AS %[ = (%,‘,h;) = ”V(l = 1,2,3, .. -7n). Then we 1<1|<12<lxz <iw<n j= ]l: > l<1|<12<1qz <iw<n J 1
have. ch = ch
LagN(H(f[ (Nl o (18 ’”H")—l))(N—l) ‘),
Sedy #, = 2 ( 5 =0 ) Hence, proof is completed
=1 1-Logy (14 (8% —1)" (n—1y % -1 5 .
l—LogN(1+(f:1<N a (1+(8 1) —1))(N—1) )
Further,
ﬂ
1-Logy <|+(u' ":71) % (Nl)ldi’>
1-Logy | 1+ H’L] N —1 ®-1)""
1— Logy| 1+ II N —1|lm=0"],
1<i) <iy<iz<--<iy<n
Br 5 W = s
1<ij <iy<iz<-<iy<n ] 1 I _
1-Logy <|»(Nﬁr 1) % 1)|°’r>
1=Logy | 1+ TTL, [ ® ~1 R-1)7"
Logy| 1+ I N —1{®=-D""
1<i) <iy <iz<-<iy<n
= (%, h) Theorem 8. (Boundedness): Let #; = (wi, h;)(i=1,2,3,--+,n)
Finally be the collections of IFVs, if #~ = min (#;), # = max (#;).
’ ] Then.
P O 8 A\ H7 < IFEWMSM(H\, Hooy, Hos, - H ) < HF
1<i) <ip<iz<-<iy<n j=1 o (% h) ! !

C.

Hence, proof is completed.

Theorem 7. (Monotonicity): Let Hi= (i, hi)and
A= (w,0)(i=1,2,3,---,n) be the collections of IFVs,
and if H;> A for all (i=1,2,3,---,n). Then.
IFFWMSM (A, Hs, Ky, - Hy)

> TFEWMSM (A%, A3, A, - A7)

Proof: As stated that #; > # so, for IFVs »; > »{ and
hi; < If. We have.

Proof: Since and /" = max (h;). Therefore, we can write
w <w <ut i <k <h'foralli=1,2,3,---,n Therefore,
by the Theorem 6 and 7, we can write.

A7 <IFEWMSM( A\, Hoy, Hos, - Hoy) < AT

Hence the proof is completed.

5. Application of proposed approach in MAGDM

This section involves the methodology to apply the proposed
IFFWMSM operator to the decision-making problems having
the fuzzy information in the form of IFVs. An example has
also been provided in this section to discuss the application
in the field of risk management for the construction industry.
In the last of this section, the proposed IFFWMSM operator
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is compared with the existing AOs for significance of the pro-
posed AOs.

Consider the list of n alternatives Z = {{;,{,,--,{,} from
which anyone alternative has to be selected based on m attri-
butes B={f,,5,,---,B,} having the weights from

\P:{w171//25"'7l//m} with ZTL]'»DIVl: 1,2,3,"',}’}’1. Let
K = {ki,k2,--+,K;} be the weights of j experts and
T = [ry] be the decision matrix where r*; = (%ﬁj,/@.) be
the IF information provided by the decision expert s in the
form of IFVs.

Based on the developed IFFWMSM operator the, the
decision-making process is detailed below.

mxn

Step 1 Normalize the given IF information.

There are two types of attributes in general, i.e., benefit and
cost. The impact of different attributes must be same before
their aggregation. To do so, we change the cost type attribute
in the benefit type. The normalization of the data is given
below.

(T (%f,» ﬁ‘,_’»‘,»)forbeneﬁtaltribute
<hf-,-7 %‘}',-) | forcostattribute

Step 2 Aggregate the IF information with the help of the
proposed IFFWMSM operator (given in Eq. (6)) to obtain
the individual preferences values from the decision matrices
provided.

Step 3 Apply the IFFMSM operator (given in Eq. (5)) to
obtain the collective preference values.

Step 4 Calculate the score values with the help of Eq. (1) of
the obtained collective preferences values.

Step 5 Rank the alternatives.

Now, we apply our proposed study to the real-life problem.
The construction industry faces many risks that are affected by
its growth. Some of the major examples are political instabil-
ity, poor economic policies, poor trade policy, unforeseen
immediate, and so on. The major problem is that there is no
measurement tool to measure the effects of these factors; hence
we cannot assess the major factor so that we can tawe steps to
reduce the effects of that factor. Furthermore, every factor can
be based on some attributes. Hence, we apply the proposed
IFFWMSM operator to evaluate which factor is needed to
be addressed on priority by considering and solving a
MAGDM problem as in Example 2 in the following.

Example 2. The construction industry is the back boon of the
economy of any country. The well-developed countries have good
construction industry because they focus on it and make policies

for its improvement. However, the construction industry depends

upon some attributes, and there also are some risk factors for it.
In this example, we consider the problem of the risk management
where some of the risk factors have to be examined and one of
the most noticeable factors of these factors has to be determined.

Assume that 1 < 9; <4 are considered risk factors, i.e.,
poor economic policies, political instability, poor trade policy,
and unforeseen immediate for any construction industry after
the initial screening based on some attributes 1 < 1; < 4 hav-
ing weights (0.2,0.3,0.25,0.25). Consider there are three
experts that are evaluating the risk factors based on abovemen-
tioned attributes. The weights of the attributes are
(0.24,0.59,0.17). The experts assign the values to each alterna-
tive in the form of the IFV corresponding to each attribute.
The values assigned to each alternative from the decision
experts in the form of the IFVs has been tabulated in Table 1,
Table 2, and Table 3 as follows,

Step 1: In the above information, all the attributes are of
the same type. Hence, we do not need the normalization
because none of the attributes is the cost attribute.

Table 1 Decision matrix D1 provided by expert 1.

0 0> 03 04

%" h % h % h % h
9 0.4 0.4 0.1 0.2 0.3 0.5 0.4 0.3
) 0.3 0.2 0.4 0.5 0.5 0.3 0.4 0.5
93 0.5 0.2 0.2 0.5 0.2 0.5 0.3 0.4
Uy 0.2 0.4 0.4 0.4 0.4 0.2 0.5 0.3
Table 2 Decision matrix D2 provided by expert 2.

a1 62 63 64

% h % h % h % h
Y 0.4 0.3 0.4 0.5 0.4 0.5 0.4 0.5
2 0.3 0.2 0.3 0.4 0.3 0.4 0.3 0.4
) 0.5 0.3 0.5 0.4 0.5 0.4 0.5 0.4
oA 0.4 0.4 0.3 0.4 0.5 0.3 0.4 0.5
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Table 3 Decision matrix D3 provided by expert 3.

0 0> 03 04
% h % h % h % h
02 0.4 0.5 0.3 0.5 0.2 0.4 0.3 0.5
053 0.5 0.3 0.4 0.5 0.4 0.3 0.5 0.4
93 0.4 0.5 0.5 0.3 0.5 0.4 0.4 0.5
U4 0.5 0.3 0.5 0.3 0.4 0.5 0.3 0.4
Step 2: We apply the IFFWMSM operator to aggregate all
the individual values of attributes given in Tables 1- 3. The Table 6 Score values of risk factors.
obtained collective preference values, which are given in s¢(d,) sc(02) 5¢(33) sc{Bs)
Table 4 as follows,
0.648 0.375 0.540 0.431

Step 3: Then, we aggregate the obtained collective prefer-
ence values obtained in Table 4 by using IFFMSM opera-
tor obtain the individual preference values and the results
are given in Table 5,

Step 4: We evaluate the ranking order of the alternatives
with the help of the score function. The ranking orders of
the risk factors are given in Table 6, as follows,

As we obtain sc(9) > sc(03) > sc(0s) > sc¢(02), hence
01 > 03 = 04 > 0, which means that 9, is the most appropri-
ate alternative. This means that the factor (poor economic
policies) is a major risk to the construction industry.

5.1. Sensitivity analysis

The important characteristic of the FTNM and FTCNM is
that these operations are very flexible due to the involvement
of the parameter N. But the results may vary with the value
of this parameter when we change its value. In the following,
we have observed the variations of the results in Table 7.

Table 4 Collective Preference Values obtained by IFFWMSM.

We have examined the results obtained by our proposed
IFFWMSM and IFFMSM operators by variating the values
of X. We vary the value of N from 2 to 50. The interesting
results are tabulated in Table 7. At all the values of X we found
the poor economic policies as the major risk factor for the con-
struction industry. Hence, the IFFWMSM operator is stable
after at all the values of X > 2 and the decision-maker has a
choice to select the value of X of their own choices which is
the most important characteristic of the FTNM and FTCNM.
We also can recommend the N > 2 as the best value of the
parameter to obtain stable results.

The pictorial representation of the analysis tabulated in
Table 7 is below in Fig. 1.

Fig. 1 shows the variation of the score values of the risk fac-
tors (alternatives) on the different values of the parameter N.
On the vertical and horizontal axes, the values of N and

0 1)) 03 04
% h % h % h % h
9 0.54 0.28 0.48 0.02 0.59 0.04 0.58 0.04
05 0.43 0.19 0.58 0.04 0.68 0.08 0.61 0.05
93 0.63 0.36 0.60 0.05 0.66 0.07 0.61 0.05
2 0.36 0.14 0.60 0.05 0.70 0.09 0.60 0.05
Table 5 Individual preferences values obtained from Table 4.
0 0> 03 04
% h % h % h % h
Tjj 0.752 0.104 0.816 0.440 0.882 0.342 0.842 0.411
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Table 7 Variation in ranking orders of risk factors in
IFFWMSM operator with parameter.

Ranking of score values Preference Orders

2 sc(01) > s¢(03) > s¢(0s) > s¢(02) 01 > 03 > 04 = O
3 s¢(01) > sc(03) > sc(Ds) > s¢(02) 01 =03 =04 = 0>
4 SC(B]) > Sc(ag) > SC(84) > SC(az) 01 = 03 = 04 = 0>
5 50(81) > SC(83) > 50(84) > Sc(az) 01> 03 > 04 = 0
6 Sc(al) > SC(83) > SC(34) > SC(az) 01 > 03 > 04 = O
7 s¢(01) > sc(03) > sc(Ds) > s¢(02) 01 =03 =04 = 0>
8 sc(01) > s¢(03) > sc(0s) > s¢(02) 01 > 03 > 04 = O
9 SC(al) > SC(ag,) > SC(84) > Sc(az) 61 - 63 - 64 = 62
10 SC(B]) > 50(83) > SC(84) > SC(az) 01 = 03 = 04 = 0y
15 SC(al) > SC(83) > SC(84) > SC(az) 01> 03 > 04 = 0
20 SC(B[) > SC(83) > SC(54) > 58(82) Oy = 03 = 04 = 0>
30 Sc(al) > SC(83) > SC(84) > Sc(az) 81 = 83 - 34 = (92
40 s5¢(01) > s¢(03) > sc(ds) > sc(ds) 01 > 03 = 04 = 0
50 SC(al) > 56(63) > 56(84) > Sc(az) 61 - 63 - 64 = 62

obtained score values of risk factors are plotted respectively. It
is clear from Fig. 1 that the score values of these risk factors
change linearly on the different values of parameter X. We
can also observe from the graph that the ranking patterns of
the risk factors remain the same throughout the graph. Hence
the variation of the parameter X does not affect the ranking
(choices) of the risk factors.

5.2. Comparison with pre-existing operators

[40] developed the geometric aggregation operator (IFG) for
IFS to solve the MAGDM problem. Zhang et al. [44] studied
the application of Frank operations in the framework of the

&

0.000 0.200 0.400 0.600

B Unforseen immediate M Poor trade policies

Fig. 1

B Political instability

IFS and then solved the MAGDM problem. Qin & Liu [32]
developed some AOs for IFS based on MSM to solve the
MAGDM problem. Senapati et al. [34] introduced AOs based
on Aczel-Alsina TNM and TCNM (IFAAWA) for IFS. How-
ever, the proposed AOs in this study are the most reliable
because they based on the most generalized form of the mean
operator i.e., MSM operator and hence they aggregate attri-
butes by keeping their relationship preservative. Moreover,
the developed model is obtained based on the Frank’s opera-
tional laws which are more flexible and generalized. Conse-
quently, the developed model is more advantageous method
to aggregate information.

The proposed approach has been compared with the pre-
existing approaches mentioned above for the justification of
the proposed approach. The results obtained by the proposed
approach and the pre-existing approaches have been tabulated
in the following in Table 8. The comparative results have been
graphically represented as well in Fig. 1. Some of the key
points of this comparison have been listed below.

With the help of the proposed approach IFFWMSM oper-
ator, the best alternative obtained is 0;. Similarly, the most
appropriate alternative obtained by the IFWG operator is also
0. The most appropriate alternative obtained by both opera-
tors in Zhang et al. [44], Xu & Yager [40] and Qin & Liu [32] is
the also 9, which shows the significance of our proposed AOs.
However, the proposed approach is the most reliable approach
because it is based on the MSM. In IFFWMSM operator the
information is aggregated with the help of the MSM operator
by using the Frank operations where some parameters are
evolved. Hence, the IFFWMSM operator is the most appro-
priate operator to solve the MAGDM problems due to its
interesting elasticity due to the involvement of the parameter.

0.800 1.000 1.200

B Poor economic policies

Graph of changes in score values on different values of the parameter R from Table 7.
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Table 8 Comparison of IFFWMSM operators with pre-existing operators.

Operator Ranking of score values Preference Orders

IFFWMSM SC(@]) > SC(83) > SC(&;) > 56(82) 01 > 03 > 04 = 0>

IFMSM [32] 5¢(01) > s¢(02) > sc(0a) > 5¢(03) Oy = 0y = 04 = 03

IFGW [40] SC(@]) > 50(84) 63) > 56(82) 01 > 04 > 03 = 0

IFFWA [44] SC(B]) > 56(83) 84) > SC(az) 81 - 33 = 84 - 82

IFAAWA [34] SC(@]) > SC(63) > sc 64) > 56(82) 81 = 83 - 64 - 62
Hsc4 msc-3 Emsc-2 Hscl

RANKIG OF ALTERNATIVES
F

IFFWMSM

-0.400 -0.200 0.000

0.200

0.400 0.600 0.800

SCORE VALUES

Fig. 2 Graph of the comparison between the score values obtained by different operators.

In the following, Table 8 shows the ranking order of risk
factors obtained by different operator.

In Fig. 2, the score values obtained by the different aggre-
gation operators tabulated in Table 8 are plotted. Fig. 2 shows
the difference between the score values of these operators. In
this figure, the score values obtained by different operators
are plotted on the vertical axis. The lines in the graph shows
same ranking of choices (risk factors) which shows the signif-
icance of proposed the operators.

6. Conclusion

In this manuscript, the MSM operator has been extended to
the IFFMSM and IFFWMSM operators for the framework
of IFS based on the FTNM and FTCNM. The basic properties
of these operators have been observed and proved. Then the
proposed operator has been applied to a real-life problem by
considering a numerical example. In the example, the risk fac-
tors for any construction industry are examined with the help
of the proposed operator that has provided in the form of the
IFVs. Four risk factors are discussed and scored based on the
proposed research. Finally, the results obtained by the pro-
posed approach have been compared with the pre-existing
aggregation operators i.e., IFFWA, IFWG, and IFMSM oper-
ators. Some important points have been stated below.

The proposed IFFWMSM operator is based on the
FTNM and FTCNM operations and due to the involved

parameter X the IFFWMSM becomes flexible. With the help
of the proposed research, the risk factors for the construc-
tion industry are examined. Likely, we can examine risk fac-
tors for any other industry or company we want and can
make the necessary steps to accommodate those risk factors
that swear for the industry in the future. In short, we can
evaluate and intimate the risk factors and take precautions.
In the future, we aim to generalize the study to the frame-
work defined in the [2] and 47], and [29]. We also aim to
extend the developed model for the frameworks utilized in
[21] and [40].
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