| @morg 2022 .

A METHODOLOGICAL APPROACH FOR
CONVERTING RELATIONAL TO GRAPH
DATABASES

Stefan Krstovié*!, Ognjen Panteli¢’, Ana Paji¢ Simovi¢'
"University of Belgrade — Faculty of Organizational Sciences
*Corresponding author, e-mail: stefan.krstovic@fon.bg.ac.rs

OBJECTIVE

Graph databases are better for data containing many relationships, and are most common with social
networks and similar information systems. Many systems that would benefit from using graph databases do
not utilize them. This paper aims to increase their adoption rate by streamlining the migration process.

The main question answered in this paper is which steps should be taken to reliably and consistently transfer
data from a relational DBMS (DataBase Management System) to a graph DBMS. A demonstration of the
transfer is provided, along with a comparison between queries in the two environments.

Microsoft Access is used to manage the relational database, while Neo4j and the Cypher query language are
used for the graph database. The approach can be used by institutions and companies to make their
information systems better suited to their work areas.

METHODOLOGY

The starting point was developing a theoretical approach to transferring data between the systems. Previous
research, notably by Virgilio, Roberto & Maccioni (2013) influenced this development phase.

The approach was refined by applying the proposed steps to the Northwind demo database from Microsoft
(Microsoft, 2019). Afterwards, all of the data was migrated. The database overview is provided in Figure 1.

Figure 1: The overview of the database used

The last step was to compare the queries between the two systems to determine the superior simplicity,
efficiency and clarity of graph queries.

26



.symorg 2022

RESULTS

The approach discovered can be divided into 3 major sections:

1. Preparing the initial database. This step brings the database into a desired state and helps discover
its characteristics, primarily how the entities relate to one another and which dependencies exist.

2. Loading and properly connecting the data in the graph system. The dependencies and relationships
discovered during the previous step should be used to determine how the connections should be
implemented in the graph database. The join table (which stores the many-to-many relationship data
between two tables) can be swapped for a set of relationship entities in the graph DBMS. Entities of
the same type can have varying attributes without the need for separation, unlike in the RDBMS.

3. Optimizing the resulting graph database. Some artefacts that remain in the system are redundant
after the conversion and should be removed to reduce bloat and minimize the chance for future
mistakes. These include join tables and foreign key attributes (as their function is performed by the
relationship entities).

The SQL queries are more complex, difficult to write and error-prone. Their Cypher equivalents are simpler,
as the relationship patterns required can be described through ASCII art, rather than JOIN statements. The
more tables required for the query, the higher the discrepancy.

In addition, the user can easily request a graphical representation of the results, so insights can be inferred
at a glance. Figure 2 is an example of how buyers and the products they bought, connected by the orders,
could be represented graphically.

Figure 2: A graphical representation of buyers and the products they bought

CONCLUSION

The steps laid out previously provide a clear path to migrating data between the two systems. Unlike the
approaches described in other literature (Virgilio et al., 2013; Ramachandran, 2015) which outline a more
general procedure, this paper defines specific recommendations for dealing with different cardinalities and
removing redundancies.

The limitation of this study, which will be addressed in future work is the automation of the migration process,
so that the user could provide only the minimum necessary information, and a software tool could take care
of the rest.

Keywords: relation, graph, database, conversion

27



.symorg 2022

REFERENCES

(1
(2]
(3]

[4]
(3]
6]
(7]
(8]
9]
[10]

Virgilio, R., Maccioni, A., Torlone, R. (2013). Converting relational to graph databases. First International
Workshop on Graph Data Management Experiences and Systems. DOI: 10.1145/2484425.2484426.

Lazarevi¢, B., Marjanovi¢ Z., Ani¢i¢ N., Babarogi¢ S. (2016). Baze podataka (Databases). Faculty of
organizational sciences, University of Belgrade.

Microsoft. (2019). Get the sample databases for ADO.NET code samples. Retrieved from
docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/ling/downloading-sample-databases (Accessed
1.2.2022)

Lutkevich B., Biscobing J. (2021). Relational database. Retrieved from
searchdatamanagement.techtarget.com/definition/relational-database (Accessed 4.2.2022)

IBM Cloud Education. (2021). Structured vs. Unstructured Data: What's the Difference? Retrieved from:
www.ibm.com/cloud/blog/structured-vs-unstructured-data (Accessed 3.2.2022)

Neo4j. (n.d.). Model: Relational to Graph. Neo4j Developer. Retrieved from: neo4j.com/developer/relational-to-
graph-modeling/ (Accessed 25.1.2022)

Ramachandran, S. (2015). GRAPH DATABASE THEORY, Comparing Graph and Relational Data Models.
LambdaZen.

Ugander, J., Karrer, B., Backstrom, L., & Marlow, C. (2011). The anatomy of the Facebook social graph. arXiv
preprint arXiv:1111.4503.

Codd E. F. (1970). A relational model of data for large shared data banks. Commun. ACM 13, 6 (June, 1970),
pp. 377-387. DOI: 10.1145/362384.362685

Foote K. (2017). A brief history of database management. Dataversity. Retrieved from
www.dataversity.net/brief-history-database-management/

28



