A Systematic Approach for Converting
Relational to Graph Databases

Marija Buki¢, Ognjen Panteli¢, Ana Paji¢ Simovi¢, Stefan Krstovi¢, Olga Jeji¢

University of Belgrade, Faculty of Organizational Science, Belgrade, Serbia

In database design, a system can be abstracted
into three conceptual elements: a collection of
entities, the relationships among them, and the
attributes describing each entity. The database
serves as a system for storing data through the
mentioned conceptual elements. Different
database design approaches are customized to
suit particular use cases e.g. the comparison
between graph databases and relational
databases. Graph databases are particularly well-
suited for handling data with dense relationships,
as they are designed to store and represent
complex networks of interconnected data.
Relational databases pose a challenge in scenarios
where the graph would be better suited. The
migration process involves restructuring the data
and adapting the application logic which can be
resource-intensive and time-consuming. Current
solutions for database migration are often too
generalized, resulting in a lack of effectiveness in
addressing common migration cases. These
solutions fail to provide the necessary level of
specificity required to overcome the challenges
that arise during the migration process. This paper
proposes a structured approach for transferring
data from a relational to a graph database. The
proposed approach introduces strategies
dedicated to the conversion of specific relational
elements, such as associations, specializations,
and many-to-many relationships. The approach
was tested using Microsoft’s Northwind sample
database. Upon transferring the data from a
relational to a graph database, the paper reports
that queries produced identical results, indicating
that the details of the data were accurately
preserved during the migration. Following an
experimental analysis, the results indicate that the
proposed approach exhibits better performance,
as evidenced by shorter query execution times.
These findings affirm the feasibility and veracity of
the proposed approach.

Index Terms: conversion, graph database,
relational database, relationship

1. INTRODUCTION

system can be built in various ways,

depending on the intended purpose. In
database design, a system is typically
represented as a collection of entities, their
attributes, and the relationships that define their
interconnections. Databases handle the
aforementioned three concepts in distinct ways,
depending on the selected approach. This study

specifically focuses on relational and graph
database models.

Relational databases are defined by a rigid
structure. In the relational model, a table
represents an entity with its attributes, while
relationships among tables are established
through primary and foreign key constraints.
Table records are distinguished by a unique
attribute or a unique combination of attributes
known as the primary key. The primary key
identifies and differentiates each record within the
table. On the other hand, a foreign key stands for
an attribute or a set of attributes within a table
that references the primary key of another table.
By utilizing primary and foreign keys, relational
databases effectively maintain the integrity and
connectivity of the data, allowing for efficient
retrieval and manipulation of information [3].

IBM Corporation introduced SQL, or Structured
Query Language, in 1974 with the purpose of
managing structured data. SQL has become the
de facto standard for interacting with relational
databases, enabling seamless data
management, retrieval, and manipulation
operations. Relational databases are also known
as SQL databases [8].

Non-relational or NoSQL (Not Only SQL)
databases are characterized by their flexible data
structures. They are less affected by structural
changes and can provide usability and scalability
for systems containing large amounts of data.
These databases offer various data models, such
as key-value stores, document stores, columnar
databases, and graph databases, each catering
to specific use cases and requirements.

Unlike relational databases, where SQL is the
widely accepted database query language,
NoSQL databases do not have a universally
standardized query language (e.g., Cypher,
PGSQL, Morpheus, GraphQL, or Gremlin). Each
NoSQL database may have its specific query
language designed to work with its particular data
model.

This paper examines the conversion from a
relational to an attribute graph database. Each
table record from a relational database is
converted to a node. The relationships between
tables are treated as "first-order citizens" and
represented as elements that connect the source
and target nodes.

The crucial differences between relational and
graph databases are [12]:

1. Relational database structure is stricter than

graph structure,

2. Relationships in relational systems are
inferred from foreign keys, while graph
models define relationships as elements
with their properties, describing the
relationship in more detalil,

3. Graph models support no NULL values;
consequently, non-existing value entries
(properties) are not present,

4. Relational database models have a primary
focus on data, whereas graph models pay
attention to relationships,

5. A relational database supports reading and
writing equally; however, a graph database
is optimized for reading.

Graph databases are well-suited for scenarios
where data exhibits strong relational patterns and
connectivity. Some of the notable use cases
where graph databases are particularly
advantageous are fraud detection,
telecommunication, recommendation engines,
social networks, and supply chain mapping.

A 2011 study [16], conducted on the then-
active 721 million Facebook users, discovered
that an average user had 190 friends. With each
"friendship” connecting two users, the total
number of friendships reached over 70 billion, or
almost 100 per user. Extracting a list of
individuals and their friends using SQL queries
necessitates two JOIN operations. This process
involves generating a resource-intensive
Cartesian product of all possible user pairs and
subsequently filtering out non-friends. Such an
approach is prohibitively costly. Conversely, in a
graph system, the equivalent query seamlessly
connects friends through relationships,
eliminating the need for a Cartesian product.
Graph databases are faster at modeling and
identifying associations between elements as
they do not require expensive join operations.

By exploring the conversion process, the paper
aims to provide insights into and guidance on
how to effectively migrate data from a relational
database to an attribute graph database. The
presented approach ensures that the attributes
associated with tables and relationships from the
relational database are accurately preserved
during the conversion process into the graph
database. This paper outlines the specific steps
and considerations involved in migrating the data
and relationships from a relational model to a
graph model. The data migration from MS
Access to the Neodj database is implemented as
a practical example of the proposed approach.
By utilizing directed graphs, Neo4j enhances the
expressiveness and efficiency of working with
relational data. Directed graphs differentiate

between the starting and ending points of a
relationship, unlike undirected graphs, where
relationships are defined between two nodes
without specifying which one is the “start”, and
which one is the “end” [6].

The need for database migration between
different systems is expected to grow in the
future. This paper attempts to bridge this gap by
presenting a systematic approach to database
migration that is suitable for future automation.
The proposed approach offers a methodology
that covers various aspects of the migration
process, ensuring that all essential elements are
considered and preserved. Leveraging graph
concepts, it offers dedicated strategies to handle
the conversion process of specific relational
elements, such as associations, specializations,
and many-to-many relationships, ensuring
accurate conversion and better query
performance.

2. RELATED WORK

Researchers have recognized the significance
of having a systematic approach to converting
widely used relational databases into different
database models. This surge is primarily driven
by the growing demand to handle semi-structured
and unstructured data, which traditional relational
databases are not inherently designed to
accommodate. Over the past two decades, there
has been a notable increase in the number of
studies focused on the conversion of relational
databases. In terms of the conversion to a graph-
based NoSQL database, various approaches
were introduced using different starting points.
The entity-relationship (ER) diagram is the
starting point of the conversion process in [1], [9],
and [13]. As for [2], [4], [11], [15], and [17], the
conversion process starts with a relational
database, using a table, tuple, or table record as
a starting point.

In [1], the focus of the conversion process is on
the relationship types that can be found in
relational databases, association and inheritance.
The authors propose transformation rules that
result in each entity being transformed into a
node. The starting node is the entity on the one
side of the relationship (in the case of a one-to-
one relationship, either entity can be the starting
node). The ID of the start node is included as a
node property for the end node. The validation of
the proposed rules is performed by comparing
the number of query outcomes.

The authors of [9] propose an algorithm that
can migrate data by traversing the ER diagram
and using transformational rules. As a result,
each unrelated entity becomes a node. Related
entities are also transformed into nodes, with
foreign keys used to determine the direction of
graph relationships. An approach based on the
ER diagram is also proposed in [13]. The author

defines transformation rules for one-to-one, one-
to-many, and many-to-many relationships.

Two transfer methods for converting relational
to graph databases were proposed in [2]. In the
first transfer method for databases that do not
need normalization, each table row is converted
to a single node. The second transfer method
aims to find functional dependencies and apply
normalization up to 3NF. For that purpose, each
table cell is converted to a node. Both proposed
methods map relationships from a relational
model to relationships in a graph model.

In [4], the authors suggest that data values
most likely to be retrieved together should be
stored in the same node. Therefore, a node can
contain values from different tuples. Foreign keys
are inserted as properties, while relationships are
converted to graph relationships.

The authors of [11] propose a relational-to-
graph data conversion algorithm that can be used
in the preparation of data for graph mining
analysis. The algorithm follows the defined
conversion order, resulting in an undirected
graph whose connectedness and acyclicity
depend on the relational database structure and
the data contained within. Table tuples are
converted to either nodes or relationships, with
foreign keys becoming relationships. Attributes
that are not part of any key are converted to
either node or relationship properties.

An automated mechanism for the automatic
conversion of relational databases to graph
databases is presented in [15]. The relational
database schema needs to be in the 5" normal
form for the mechanism to be applied.

In [17], the authors studied the hierarchical
legal document system. Using relational tables as
a starting point, they propose an approach to
migrating hierarchical data from relational to
graph databases.

The authors of [5] draw an ER diagram for the
relational database to complete the mapping
between metadata. Firstly, tables are mapped
into graph nodes. Later in the process,
relationships are mapped to graph relationships
through the “direct construction method” or by
creating a connection table.

The aforementioned studies used the ER
diagram or a relational database as a starting
point and proposed transformation rules that
addressed various types of relationships. This
paper introduces a method of transforming a
relational database into a graph database,
starting with the relational model. The proposed

Preparation

Start
transformation

Generate
relationships

approach focuses on the migration of keys,
aiming to preserve all relationship types during
migration.

3. THE APPROACH

The conversion process can be structured into
three distinct phases: (1) preparation, (2) loading
data and generating relationships, and (3)
optimizing the graph database.

The approach focuses specifically on the
migration of primary and foreign keys during the
database transformation process. It emphasizes
the significance of these key attributes and
provides insights into their preservation and
handling during the migration. By specifically
targeting these key attributes, the approach
narrows down the scope of the migration process
and delves into their translation and integration
into the new database system.

This section provides both a formal and a
graphical representation. The graphical
representation of the entire approach can be
seen in Figure 1.

A. Preparation

As a prerequisite to data migration, the
relational database needs to be examined and, if
necessary, modified. The graphical
representation of the Preparation phase can be
seen in Figure 2. The Preparation phase includes
the following steps:

1. Examine the relational database for
normalization — to preserve the data and
complex relationships among the data, the
approach applies the concept of
normalization. By applying normalization,
the proposed approach ensures that the
relational data is structured in a way that
accurately represents the relationships
among different tables. This step helps to
eliminate data redundancy and improve
the overall integrity of the data.
Denormalized tables contain derived
foreign keys that violate data integrity. To
preserve the consistency of redundant
data, the implementation of constraints at
the procedural level is required (triggers).
Normalization of tables eliminates the need
for trigger migration.

Optimize the
graph database

E End
transformation

Figure 1 Graphical representation of the proposed approach

Remove
duplicates and
calculated
values

Examine the
relational
database for
Start normalization
analyzing

Identify
primary and
foreign keys

Exists duplicate
values?

-—
-

Relational
database

)

Identify
dependent
tables

—

Extract the data —O
Extract

completed
C3Vfile
]

)

Identify
specializations
tables

Figure 2 Graphical representation of the Preparation phase

2. Remove duplicates and calculated values -
all duplicate or calculated values added
previously for query optimization should be
removed [13] or ignored.

3. Identify primary and foreign keys - analyze
the database to identify all primary and
foreign keys, as the approach focuses
specifically on the migration of the key
attributes.

4. ldentify dependent tables — usually, it can be
inferred simply by observing the keys of a
table (e.g., if a primary key consists of
multiple fields, the tables are most likely
dependable).

5. Identify specialization tables - the
specialization table is recognized based on
its key. The primary key, inherited from the
general table, is also a foreign key,
consisting of the same attributes.

6. Extract the data — a format supported by the
graph database should be used.

B. Loading the Data and Generating Relationships

This step relies on the results from the
previous step to properly connect the nodes and
use the potential of the graph system. The
graphical representation of the Load data and
generate relationships phase can be found in
Figure 3. The steps of the Load data phase are:

1.Load the data - each relational database

table should be loaded into the graph
system using available functions.

2.Map the tables - a new node should be

generated for each record of the table.

Each node should be enriched with a label
of the same name as the table from which
the data in the node came.

3.Map the specialization tables - data from

specialization tables should be stored as
nodes with multiple labels. The first label
should show the general table from which
the node’s data is taken. The other label
should show which specialized table the
data is taken from.

Specialization is needed in relational
models because each record in a given
table needs to have the same columns.
However, this is not the case in graph
systems for nodes with a given label. As
graph systems allow elements under the
same label to have different properties, the
proposed approach suggests mapping
records of specialization tables into nodes
with multiple labels.

4.Map one-to-one and one-to-many

relationships — these types of relationships
should be mapped first. In this step,
relationships between basic tables are
mapped into graph model relationships.
Basic tables are not dependent on other
tables. Relationships connecting tables
that depend on only one other table are
mapped next. Foreign keys should be used
to form directional relationships between
the nodes.

Map one-to-one
Map the and one-to- Map the

Map the tables specializations association

tables fnany tables
T relationships

Load the data

Start generating
a graph database

Agraph database
created

CSV file %
1]

Graph database

Figure 3 Graphical representation of the Load data and generate relationship phase

5.Map the association tables - records of
tables created as a result of many-to-many
relationships should be mapped as nodes.
Association tables can be dependent on
two or more tables and reference or be
referenced by other tables. This makes the
records of association tables unsuitable to
be transformed into relationships inside
graph systems. The records in these
tables, therefore, are stored as nodes.

C. Optimizing the Graph Database

Some of the elements from the relational
database should be removed in the following
steps. They were needed in the relational model
and the earlier steps of the conversion process,
but have no purpose onward. Figure 4 graphically
describes the final phase of the approach — the
optimization phase. The steps of the Optimization
phase are as follows:

1. Remove foreign keys — foreign key attributes
are no longer necessary in the graph
model because of the actual relationships
that exist between nodes.

2.Remove technical primary keys - all
technical primary keys should be removed
as well, as the graph model will provide
those on its own [10].

3. Add unique value restrictions - this restriction
can be added both before and after the
data import. The restriction will fail to be
set if any of the required data is not unique.

4. Split lists of properties into individual nodes —
following the suggestion form [13], lists of
properties should be split into individual
nodes.

4. THE APPROACH IN ACTION

The proposed approach was tested using
Microsoft's Northwind sample database [8]. This
paper outlines the specific steps involved in
migrating the data and all types of relationships
from the MS Access relational model to the graph
model implemented in Neo4j, as a practical
example. For research purposes, the authors
scaled the Northwind database model and chose
the entities that are crucial for the graph model.

Remove
technical
primary keys

Remave
foreign keys

Start optimization

Graph database

The description of the approach given in the
previous section (Section 3) will be adhered to in
this section.

A. Preparation

The steps given in Figure 2 and described in
Section 3A are explained in the Northwind
database.

1.The database is normalized to avoid
redundant data.

2. The database contains no duplicate values.

3. Primary and foreign keys are available as
table metadata. Neo4j recommends
distinguishing between natural primary
keys and generated or technical primary
keys, which hold no value outside the
database [10].

4. The mapping process of dependent tables
will be shown in the example of the Order
Details table (Figure 7). Order Detail has
its own primary key, which distinguishes it
from association tables. The table can be
mapped to a graph using the Cypher
language code in Listing 1.

Listing 1 Conversion of Order Details to graph

1: match (o: Order),
(od:0OrderDetails),

(p: Product)

where o0.ID= od.OrderID
and od.ProductID = p.ID
create (o)-[: details]->
(od)<-[:references]-(p)

~ o U W N

5. The mapping process of specialization tables
will be shown in the example of the Person
and Employee tables. If a person with ID =
1001 exists as a graph node with a Person
label, it should be enriched with the
corresponding Employee data, and the
Employee label should be added. If a node
does not exist, create the node with the
Employee label and ID = 1001 first. Then
add the Person label and the data.

6. The extraction of the data is performed
through the built-in Microsoft functions.

Split lists of

Add unique
value
restrictions

properties into
individual
nodes End optimization

Figure 4 Graphical representation of the Optimization phase

B. Loading the Data and Generating Relationships

The steps described in Section 3B are

explained in the Northwind database examples.

1. For data loading, the authors used the
built-in function in the Cypher language. The
data was loaded from CSV files, as Neo4j
supports CSV files and provides simple
commands.

2. A new node is generated for each record
in the relational table. Each node is enriched
with a label of the same name as the table
whose data it contains. The Cypher code
used for creating Orders from the file is
given in Listing 2.

Listing 2 Cypher code for Orders node

load csv with headers
from 'file:///Orders.csv'
as row

merge (o: Order

{orderID: row.orderID})
on create set
o.shipName= row.ShipName;

~N oUW N

3. The demonstration for specialization will
be based on the simplified example shown
in Figure 5. Attributes from specializations
should be stored together with the attributes
from their general objects. For example, a
person with ID = 1001 should have both a
name and a salary. Cypher language uses a
MERGE statement for this purpose.

Person

ID <> Mumber M=
Name Characters (256)
ID <pi
a Person (1D, Name)
Student (1D, Avg_grade)
Student Employee Employee (ID, Salary)
Avg_grade Number | Salary Number
Person
D Name | :Person
1001 |John Doe _Employee "
Ve ID: 1001 ™
Employee » w\ Name: ‘John Doe’
ID Salary “._ Salary: 5000 ,
1001|5500 —

Figure 5 Example of specialization table migration - in a
relational database, data is stored in two tables. In the
graph database, a single node can store the same data

If the node with ID = 1001 and the Person
label exists, it will be updated with an
additional Employee label and the Salary

property. The Cypher language code in
Listing 3 can be used.

Listing 3 Cypher code for existing Person node

1: load csv with headers

2: from

3: 'file:///Employee.csv'

4: as row fieldterminator ';'

merge (pers: Person

{ID: row.ID})

on match set

pers.Salary = row.Salary,
9: pers: Employee

10: on create set

11: pers.Salary = row.Salary,
12: pers: Employee

0 J oy U

If the node with ID = 1001 and the Person
label does not exist (Employee file is read
before Person file), the new node will be
created. The node will contain ID = 1001,
Person label, Employee label, and both the
Name and Salary properties. The Cypher
language code in Listing 4 can be used.

Listing 4 Cypher code for new Person node

[

load csv with headers
from 'file:///Person.csv'
as row fieldterminator ';'
merge (p: Person

{ID: row.ID})

on match set
p.PersName=row.PersonName
on create set

O 00 J o U b W N

p.PersName=row.PersonName

Figure 6 shows the data used. Both the
tables (relational model) and the nodes
(graph model) are displayed. The graph
shows four nodes with the Person label and
two of them with the Employee label (in
orange).

Person neokj$ p:Person

ID Name o) CEmplopee) (Persons)
1001 | John Doe -

1002 | Gl Joe

1003 | Mr X

1004 | Stewart Little

Employee

1D Salary

1001 | 5500 . .
1004 6200

Figure 6 Data for the specializations in the relational (left) and

the graph (right) model

4. Foreign keys have been imported as

regular properties. Now they can be used to
properly connect the right nodes and
implement relationships (Listing 5).

Listing 5 Connecting node Customer and node Order

1: match (c:Customer), (o:0rder)
2: where c¢.ID = o.CustomerID
3: create (c)-[:orders]->(0)

5. The records of association tables are
stored as nodes, not relationships. The
association tables can reference or be
referenced by two or more other tables. In
Neodj, relationships are formed between two
nodes, and cannot be referenced. If the
association tables were forced into
becoming relationships, all table references
beyond the first two would have to be stored
as properties reminiscent of foreign keys. As
this is not strictly according to the graph
paradigm, it could create problems if keys
are dropped while tables referencing them in
the relational model endure.

The Employee Privileges is the only true
association table. Order Details can be
interpreted as an association table, the
difference being that it has its own primary
key (Figure 7). The proposed approach
works with both types without the need for
adaptation. Employee Privileges table can
be converted using Cypher language code in
Listing 6.

Listing 6 Conversion of EmpoyeePrivileges

1l: match (e: Employee),

2: (ep: EmployeePrivileges),

3 (p: Privileges)

4: where e.ID= ep.EmployeelD

5: and ep.PrivilegeID =

6: p.PrivilegeID

7: create (e)-[:privileges]->
8 (ep)<-[:references]-(p)

Employees

Privileges

Figure 7 Example of association table - Employee
Privileges and dependant table — Order Details

C. Optimizing the Graph Database

The optimization process includes the following
steps:

1. All properties representing foreign keys can
be deleted. They are already used to
properly connect the right nodes and are no
longer needed. When a new node is created

for each record in the table Orders, foreign
keys (Customer ID, Shipper ID) are deleted.

2. Neod4j distinguishes between natural
primary keys and technical primary keys. As
the graph model provides the technical
primary keys, all technical keys are
removed. Upon converting each record of
the dependent table Order Details to a node,
the technical primary key (ID) is deleted.

3. The ID properties have unique values, so
unique value restrictions are added. The
following Cypher code can be used to add a
unique value constraint to the OrderID of the
Order node (Listing 7).

Listing 7 Cypher code for unique constraint

1l: create constraint orderCon
2: on (o: Order)
3: assert o0.0rderID is unique

4. Splitting the list of properties into individual
nodes is not required.

5. COMPARATIVE ANALYSIS WITH EXISTING
APPROACHES

To provide a more in-depth analysis, the
authors have compared the proposed approach
to several previous studies. More recent studies
relevant to this research were taken into
consideration. The basis of the comparison
(shown in Table 1) is the number of relationship
types for which a conversion method was
provided in each approach.

Existing studies oftentimes use an ER model
as a starting point for the conversion process. In
many cases, the model does not exist or has not
been accurately transferred to the relational
schema. In some instances, technical primary
keys are added, or the rules for constructing the
relational model are not strictly followed. This
could lead to unreliable conversions from a
relational to a graph system. To address the
above issue, the authors of this paper propose a
conversion method that does not rely on the ER
model.

Table 1 Comparison with existing studies
(Y — arule for the relation type conversion is proposed)

o |2 |E | 6

c © =

e le | §E | 8

RDB relationship | £ e 2 |3
S |2 |2 |3

°© 16|24

Proposed Y Y Y Y
[1] Y [Y [Y Y

[5] Y [Y | Y | -

[9] Y | Y [Y | -
[17] Y [Y [Y | -

Table 1 presents the comparison between the
proposed approach and the previous studies. It

demonstrates that the proposed approach covers
a greater number of relationship types compared
to studies referenced as [5], [9], and [17].
Additionally, compared to the study [1], the
proposed approach handles the migration of
specializations and many-to-many relationships
differently. This section provides a detailed
breakdown of the differences observed in each
step of the conversion process among the
mentioned approaches.

A. Preparation

Before migrating the data, it is important to
examine the relational database and make any
necessary modifications. As preparation for data
migration, [5] creates an ER diagram to complete
the mapping between metadata, that is, sorting
out the relationships between tables. [17] focuses
on eliminating data with default values and
converting denormalized and duplicated data into
separate nodes. In contrast, studies [1] and [9]
conduct no specific preparation activities before
data migration. It is unclear from the information
provided whether these studies directly migrate
the data as it is or if they employ other methods
for preparation that are not mentioned.

In the proposed approach, the authors include
table normalization as the first step in the
preparation phase to preserve data integrity and
prevent data loss. This helps in optimizing the
structure of the tables by eliminating redundancy
and ensuring data consistency. Furthermore, the
proposed approach involves removing calculated
values used for query optimizations. This step
simplifies the data migration process by focusing
on the key attributes for migration. As the authors
propose the migration based on key attributes,
primary and foreign keys should be identified,
followed by dependent tables and specializations.

B. Loading the Data and Generating Relationships

The migration process to the graph system

relies on the outcomes of the Preparation phase.

1. Load the data — no specific distinction was
identified between the compared approaches
for this step of the conversion process.

2. Map the tables — in studies [1] and [9], a hew
node is generated for each entity in the ER
model during the migration process. However,
[9] migrates entities that do not reference any
other entities first, followed by entities that
reference only the already migrated entities,
and so on. This sequential approach helps in
managing dependencies between entities
during the migration. But it also introduces the
challenge of circular references. If entity A
references entity B, which in turn references
entity C, and entity C references entity A,
none of these entities can be imported due to
the circular reference. Overcoming this issue
would require an algorithm that detects and
resolves circular references, which adds

complexity to the migration process.

In contrast, the approach proposed in this
paper avoids situations where data cannot be
imported due to circular references or when a
node needs to be connected to another node
that does not exist yet. This is achieved by
loading the data before the connection
process, ensuring that all required nodes are
available for establishing relationships.

In studies [5] and [17], a new node is
created for each record in the relational table,
and the table columns are transferred as node
properties. The label of the node corresponds
to the name of the table.

The mentioned studies have different
approaches to node creation and relationship
establishment during the migration process.
The proposed approach in this paper takes a
specific stance on avoiding circular references
and ensures the data is loaded before the
connection process. Studies [5] and [17] share
similarities with the proposed approach in
terms of node creation.

3. Map the specialization tables — Studies [5],
[9], and [17] do not explicitly describe any
specific conversion activities for handling
specializations in the migration process. It
remains unclear whether these studies
migrate specialization tables or entities in a
similar manner as other tables or if they
employ alternative methods for conversion
that are not mentioned.

In study [1], a node is created for each
participating entity, with the general entity
becoming a start node and the specialized
entity becoming an end node. The ID of the
start node is included as a node property in
the end node. This approach does not fully
utilize the capabilities of graph systems but
instead adheres to the limitations of the
relational system. Specializations are used
when some tables of the same group have
some varying columns; for example, each
person has an ID and a hame, but only some
(employees) have a salary. Storing this data in
a single table would result in many columns
with missing values, which is inefficient. Graph
systems do not have such limitations, as
graph nodes with the same label can have
different properties. Based on this
understanding, the authors of this paper
propose mapping specialization tables into
nodes with multiple labels, thus maximizing
the benefits of graph systems in terms of data
representation and efficiency. Each node
contains two labels: the Ilabel of the
specialized node and the label of the general
node. Following the example from Section 4B,
this approach generates a single node with
two labels (Person and Employee) instead of

having a Person node connected to an
Employee node representing a single person.

4. Map one-to-one and one-to-many
relationships - in [1], each entity is converted
to a node, with an entity that has a minimum
cardinality of 0 (one-to-one relationship) or an
entity that is on the one side (one-to-many
relationship) becoming the start node. The ID
of the start node is then included as a node
property in the end node. Similarly, in study
[9], a node is created for each entity, and
foreign keys are used to connect the nodes
and determine the direction of the
relationships in the graph.

In [17], foreign keys are utilized to form
relationships between nodes and removed
afterward. Study [5] employs a similar
conversion method to the approach proposed
in this paper. A foreign key is used to create a
directional relationship between the nodes in
the graph. This ensures that the relationships
between the entities in the relational model
are accurately represented in the graph
system.

5. Map the association table - In study [1], the
conversion of a many-to-many relationship
follows a similar principle as the one-to-many
relationship. However, the relationship itself is
represented as a relationship property
between the nodes in the graph system. In
study [9], the approach for handling many-to-
many relationships involves creating a node
for each entity and connecting them with two
relationships in different directions.

The association table resulting from a many-
to-many relationship is transformed into a
graph relationship in study [17]. Study [5]
proposes a method similar to [17], with the
addition of an intermediate step. A connection
table based on foreign keys is created,
serving as an intermediate step in establishing
the relationships between nodes.

The aforementioned approaches retain the
information from the many-to-many
relationship as a relationship property.
However, this paper suggests that mapping
records of many-to-many relationship tables
as nodes would be a more practical approach.
True association tables, which solely
represent many-to-many relationships, are
uncommon. In many cases, these tables have
technical primary keys (such as an ID or a
counter) and are not directly dependent on
any other tables. Therefore, mapping their
records as nodes provides a more
straightforward representation in the graph
system and avoids potential future-proofing
issues if the business requirements change
and additional connections are needed.

C. Optimizing the Graph Database

In the conversion process from a relational
model to a graph model, it is common to identify
relational model elements that are no longer
necessary and should be removed. The
approaches discussed in studies [5] and [17]
address this optimization step, while studies [1]
and [9] mention no specific optimization activities
after data migration.

In study [5], foreign keys are utilized to
establish directional relationships between
different nodes in the graph model. During the
conversion process, technical primary keys are
removed, while natural primary keys are used to
name the nodes in the graph. Once all the nodes
and relationships have been converted, unique
value constraints are added to certain fields.
Similarly, in study [17], unique constraints are
added for the natural primary keys during the
migration process, while all technical primary
keys are removed. After forming the relationships
in the graph system using foreign keys, the
foreign keys themselves are removed.

In the proposed approach, the authors suggest
removing foreign key properties when they are no
longer required in the graph model, as the actual
relationships between nodes define the
connections. Additionally, the authors
recommend removing all technical primary keys,
as the graph model provides those on its own.
However, it is important to maintain unique value
restrictions for the ID properties, as they should
still have unigue values to ensure data integrity.
Furthermore, if necessary, lists of properties can
be split into individual nodes, which can enhance
the graph model's flexibility and efficiency.

Overall, the proposed approach focuses on
optimizing the graph model after data migration
by removing unnecessary elements such as
foreign keys and technical primary keys. This
allows for a more streamlined and efficient graph
model while still maintaining data integrity and
unigueness through appropriate constraints.

6. EXPERIMENTAL RESULTS

The presented approach was tested using
Microsoft's Northwind sample database. The
objective was to migrate both the data and the
relationships from the MS Access relational
model to a graph model implemented in Neo4j.
This practical example served as a validation of
the conversion process.

A. Approach validation

To verify the data integrity of the graph
database after the migration, the results of the
conversion process are compared.

The number of records in relational tables in
the original database is identical to the number of
graph nodes in the converted graph database.

Consistency in the number of records and nodes
demonstrates that the relational data is
successfully converted and represented in the
graph database without loss or distortion. This
validation step provides confidence in the
integrity of the converted graph database and
confirms that the conversion process effectively
maintains the data structure during migration.

To validate the accuracy of data conversion,
data query results between the relational and
graph databases were compared. Two pairs of
equivalent queries were executed in both
databases to verify the consistency of the results.

The first pair of queries is presented in Listing
8 and Listing 9. The corresponding results are
presented in Figure 8. Listings showcase the
executed queries, highlighting their equivalence
between the relational and graph databases.

Listing 8 SQL code of the first validation query

In addition, a second pair of queries were
executed to further validate the migration of the
specialization table to the graph. The queries are
presented in Listing 10 and Listing 11. The
respective results are displayed in Figure 9.

Listing 10 SQL code of the second validation query

1: SELECT PersonName, Salary
2: FROM Person INNER JOIN Employee
3: ON Person.ID = Employee.ID;

SELECT c¢.ID, o.ID, od.ID

FROM Customer c¢ INNER JOIN Order o
: ON c.ID = o.CustomerID INNER JOIN
: OrderDetails ON o0.ID = od.OrderID
: ORDER BY c¢.ID, c¢.ID, od.ID;

g W N

Listing 9 Cypher code of the first validation query

: match (c:Customer)-[]->(o:0rder)
-[]1-> (od:OrderDetails)

return c¢.ID, o0.ID, od.ID

: order by c.ID, 0.ID, od.ID

SN

Figure 8 displays the results obtained from
executing these queries, demonstrating matching
outcomes between the two databases. The
gueries provide identical results with the same
number of records. The results are sorted so that
the first few tuples can be directly compared
between the databases.

CustomersID = | OrderID ~ OrderDetailsID =

1 44 48
1 44 49
1 44 50
1 71 77

Record: 14 1 of 58

©0.0rder_ID

iy m42"

streaming 58 records 1 less than 1ms and completed after 16ms.

Figure 8 Results from equivalent queries show the same
number of records and the same tuples in the results

Listing 11 Cypher code of the second validation query

1: match (e: Employee)
2: return e.PersonName, e.Salary

Figure 9 demonstrates that the results of the
queries in both databases are identical, resulting
in the same number of records. By successfully
reproducing identical results for the queries
related to the specialization table, the approach
demonstrates its capability to handle and
preserve specialized attributes during the
conversion process.

PersonName ~ Salary =
John Doe 5500
Stewart Little 6200

«.PersonName

“Stewant Lime*

Figure 9 Results from equivalent queries show the same
number of records in the results

The execution of equivalent queries resulted in
identical outcomes, confirming that the data
details were accurately preserved during the
transfer from the relational database to the graph
database.

B. Comparison of query performance

To provide a comprehensive analysis, the
authors compared the approach proposed in this
paper to the approaches presented in previous
work, specifically the approaches described in [1]
and [5]. The approach discussed in [5] was
selected as the most recent work in the field at
the time of the study. Similar to the proposed
approach, [1] offers conversion methods covering
all relationship types. However, it addresses
associations and specializations distinctively.
This approach was selected to evaluate how
variations in handling associations and
specializations impact the performance of the
generated graphs.

Table 2 displays the size of the generated
graphs, quantified in terms of the number of

nodes. By adhering to the proposed approach, a
notably higher number of nodes are generated.
This discrepancy arises from the conversion of
association tables.

Table 2 Size of generated graphs

Approach This paper | [1] [5]

Number of nodes 319 260 260

To facilitate the comparison between the
approaches, the authors utilized the Northwind
database available to them. Equivalent queries
were executed on the resulting graphs generated
by each approach to assess their performance
and correctness. The initial testing query,
displayed in Listing 12, is taken over from [5].
Subsequently, the second testing query, which
relates to the dependent table Order Detalils, is
showcased in Listing 13. The third testing query,
referring to the specialization table Employee, is
exhibited in Listing 14. The chosen queries serve
the purpose of assessing the performance of the
approach on different types of relational
elements, considering the distinct guidelines
provided by the approach for converting
association and specialization tables. By
executing this query on all graphs, the authors
were able to compare the query results and
evaluate the performance of each approach in
terms of data retrieval.

Listing 12 The first testing query

1: match (p: Product{Category:
2: "Produce"})<--(s:Supplier)
3: return distinct

4: s.Company as ProduceSuppliers

Listing 13 The second testing query for Order Details node

: match(o:0rder)-[]->(od:0rderDetail)
: <=[]-(p:Product)

: where p.ProductName="Coffee"

: return p.ProductName,

: sum(od.Quantity)

g w N

Listing 14 The third testing query for Employee node

: match (emp: Employee) where

: emp.JobTitle='Sales Representative'
: return emp.lastName, emp.FirstName,
: emp.Salary

DSw N -

All approaches demonstrated identical query
execution time of 2ms for the first query. This
finding indicates that the proposed approach
exhibits equally good performance compared to
the approaches described in [1] and [5].

The second and third testing queries revealed
better performance of the proposed approach. As
depicted in Table 3, the execution time for these
queries using the proposed approach was shorter
in comparison to the approaches outlined in [1]
and [5]. This finding underscores that the
proposed approach leverages graph concepts,
leading to enhanced performance outcomes.

Table 3 Query execution time (in ms) for the proposed
approach and approaches presented in [1] and [5]

Approach / Query (D) (2) 3)
This paper 2 4 2

[1] 2 5 3

[5] 2 5 3

The distinguishing factor of the presented
approach is its conversion process, as
highlighted in Section 5 of the paper. The authors
propose a more straightforward representation of
association tables in the graph system to address
potential future-proofing issues. By avoiding the
mapping of association tables as relationships
with relationship properties, the approach
ensures that any future changes in business
requirements, such as the need for additional
connections, can be accommodated more easily.

On the other hand, the approach described in
[5] does not explicitly discuss any specific
conversion activities for handling specializations
in the migration process. In contrast, the
proposed approach in this paper leverages the
capabiliies of graph systems by mapping
specialization tables into nodes with two labels:
one label representing the specialized node and
another label representing the general node.

7. CONCLUSION

Considering the increasing volume of data and
its dense connections, the need for efficiently and
effectively migrating data from relational to graph
systems is ever more present.

The proposed approach offers a method of
transforming a relational database into a graph
database without the need to consult a common,
more abstract ER model. In many cases, the
model does not exist or has not been accurately
transferred to the relational schema.

A notable advantage of the proposed approach
is its distinct method of converting relational
model elements to a graph database. It leverages
graph concepts by allowing nodes with the same
labels to have different attributes, connections,
and even multiple labels. This flexibility is not
possible in traditional relational models.
Moreover, the approach considers the specific
characteristics of various relational elements,
such as associations, specializations, and many-
to-many relationships. It provides dedicated
strategies to handle these elements during the
conversion process, ensuring a comprehensive
and accurate conversion.

The performance and accuracy of the
compared approaches were evaluated by
executing equivalent queries on the generated
graphs. The queries were chosen considering the
distinct guidelines for converting association and
specialization tables. The results showcase
identical results and better performance of the
proposed approach compared to other

approaches, evident in shorter query execution
times. The validation and comparison process
confirmed the successful preservation of data
during the conversion, showcasing the feasibility
and enhanced performance of the proposed
approach.

A. Future Work

To validate the proposed approach, the
authors employed experimentation by comparing
the query results obtained from the original
database with the query results obtained from the
target database format. This comparison helped
assess the effectiveness of the proposed
approach in maintaining the integrity of the data
throughout the migration process. As a direction
for future work, the authors consider validating
the conversion process through formalization
techniques.

Another area of future research involves
extending the application of the proposed
approach beyond the conversion from MS
Access to Neodj. The intention is to demonstrate
the feasibility and effectiveness of the approach
by applying it across a wider range of relational
and graph databases. This will further emphasize
that the proposed approach is not dependent on
any particular database system and can be
successfully adapted to various environments.

An additional area of future investigation is
mapping data from various structured formats,
such as XML, JSON, texts, or documents. This
research would aim to extend the versatility and
adaptability of the proposed approach. As a
further extension of the proposed approach, the
inclusion of application-specific logic is
considered, namely business logic and triggers.

The successful preservation of data details
indicates the potential for automation in the
migration process, aiming to minimize the need
for extensive human involvement and improve
efficiency. The authors will attempt to fully
automate the approach so that no human
intervention is required. The next step is to
automate the extraction of table metadata and
use it to efficiently load, connect, and optimize
the data.

REFERENCES

[1] ALOTAIBI, Obaid; PARDEDE, Eric. Transformation of
schema from relational database (RDB) to NoSQL
databases. Data, vol. 4, no. 4, p. 148, 2019.

[2] ALTIN, Ramazan; KINACI, A. Cumhur. Analyzing The
Encountered Problems and Possible Solutions of
Converting Relational Databases to Graph
Databases. Journal of Advanced Research in Natural
and Applied Sciences, vol. 8, no. 2, p. 281-292, 2022.

[3] CODD, Edgar F. A relational model of data for large
shared data banks. Communications of the ACM, vol.
13, no. 6, pp. 377-387, 1970.

[4] DE VIRGILIO, Roberto; MACCIONI, Antonio;
TORLONE, Riccardo. Converting relational to graph
databases. In: First International Workshop on Graph
Data Management Experiences and Systems. p. 1-6,
2013

[5] FENG, Hui; HUANG, Meigen. An Approach to
Converting Relational Database to Graph Database:
from MySQL to Neo4j. In: 2022 IEEE 2nd International
Conference on Power, Electronics and Computer
Applications (ICPECA). IEEE, p. 674-680. 2022.

[6] Gabrovsek, P; Miheli¢, J. Graph Covering and Subgraph
Problems. IPSI Transactions on Internet Research,

2019.
[7] IBM, “Structured vs. unstructured data: What's the
difference?,” IBM. [Online]. Available:

https://www.ibm.com/cloud/blog/structured-vs-
unstructured-data. [Accessed: 17-Dec-2022].

[8] Microsoft, “Get the sample SQL Server databases for
ADO.NET code samples - ADO.NET,” Get the sample
SQL Server databases for ADO.NET code samples -
ADO.NET | Microsoft Learn, 21-Sep-2022. [Online].
Available: https://docs.microsoft.com/en-
us/dotnet/framework/data/adonet/sql/ling/downloading-
sample-databases. [Accessed: 14-Dec-2022].

[9] NAN, Zhihong; BAI, Xue. The study on data migration
from relational database to graph database. In: Journal
of Physics: Conference Series. IOP Publishing, vol.
1345, no. 2, p. 022061, 2019.

[10] Neo4j, “Model: Relational to graph - developer guides,”
Neodj Graph Data Platform. [Online]. Available:
https://neodj.com/developer/relational-to-graph-
modeling/. [Accessed: 28-Dec-2022].

[11] OREL, Ognjen; ZAKOSEK, Slaven; BARANOVIC, Mirta.
Property oriented relational-to-graph database
conversion. automatika, vol. 57, no. 3, pp. 836-845,
2016.

[12] POKORNY, Jaroslav. Integration of relational and graph
databases functionally. Foundations of computing and
decision sciences, vol. 44, no. 4, p. 427-441, 2019.

[13] Ramachandran, S. Graph database theory. Comparing
graph and relational data models, LambdaZen, 2015.

[14] Rodrigues, Cajetan; Jain, Mit Ramesh, Khanchandani,
Ashish. Performance Comparison of Graph Database
and Relational Database. 2023.

[15] SHAHZAD, Ahmad; COENEN, Frans. Automated
Generation of Graphs from Relational Sources to
Optimise Queries for Collaborative Filtering. DBKDA
2020.

[16] UGANDER, Johan, et al. The anatomy of the facebook
social graph. arXiv preprint arXiv:1111.4503, 2011.

[17] UNAL, Yelda; OGUZTUZUN, Halit. Migration of data
from relational database to graph database.
In: Proceedings of the 8th International Conference on
Information Systems and Technologies, p. 1-5, 2018.

Marija Puki¢ is a Teaching Associate at the University of
Belgrade, Faculty of Organizational Sciences. Her areas of
research are business analytics, ERP systems, and process
mining (corresponding author - e-mail:
marija.djukic@fon.bg.ac.rs).

Ognjen Panteli¢ is an Associate Professor at the University
of Belgrade, Faculty of Organizational Sciences. His areas of
research are ERP systems and process mining (e-mail:
ognjen.pantelic@fon.bg.ac.rs).

Ana Paji¢ Simovi¢ is a Teaching Assistant at the University
of Belgrade, Faculty of Organizational Sciences. Her areas of
research are relational databases, ERP systems, business
process modeling, and process mining (e-mail:
ana.pajic.simovic@fon.bg.ac.rs).

Stefan Krstovic¢ is a Teaching Assistant at the University of
Belgrade, Faculty of Organizational Sciences. His areas of
research are databases and process mining (e-mail:
stefan.krstovic@fon.bg.ac.rs).

Olga Jeji¢ is a Teaching Assistant at the University of
Belgrade, Faculty of Organizational Sciences. Her areas of
research are event sourcing, event and relational databases,
business process modeling, and process mining (e-mail:
olga.jejic@fon.bg.ac.rs).

