

In database design, a system can be abstracted
into three conceptual elements: a collection of
entities, the relationships among them, and the
attributes describing each entity. The database
serves as a system for storing data through the
mentioned conceptual elements. Different
database design approaches are customized to
suit particular use cases e.g. the comparison
between graph databases and relational
databases. Graph databases are particularly well-
suited for handling data with dense relationships,
as they are designed to store and represent
complex networks of interconnected data.
Relational databases pose a challenge in scenarios
where the graph would be better suited. The
migration process involves restructuring the data
and adapting the application logic which can be
resource-intensive and time-consuming. Current
solutions for database migration are often too
generalized, resulting in a lack of effectiveness in
addressing common migration cases. These
solutions fail to provide the necessary level of
specificity required to overcome the challenges
that arise during the migration process. This paper
proposes a structured approach for transferring
data from a relational to a graph database. The
proposed approach introduces strategies
dedicated to the conversion of specific relational
elements, such as associations, specializations,
and many-to-many relationships. The approach
was tested using Microsoft’s Northwind sample
database. Upon transferring the data from a
relational to a graph database, the paper reports
that queries produced identical results, indicating
that the details of the data were accurately
preserved during the migration. Following an
experimental analysis, the results indicate that the
proposed approach exhibits better performance,
as evidenced by shorter query execution times.
These findings affirm the feasibility and veracity of
the proposed approach.

Index Terms: conversion, graph database,

relational database, relationship

1. INTRODUCTION

 system can be built in various ways,

depending on the intended purpose. In

database design, a system is typically

represented as a collection of entities, their

attributes, and the relationships that define their

interconnections. Databases handle the

aforementioned three concepts in distinct ways,

depending on the selected approach. This study

specifically focuses on relational and graph

database models.

Relational databases are defined by a rigid

structure. In the relational model, a table

represents an entity with its attributes, while

relationships among tables are established

through primary and foreign key constraints.

Table records are distinguished by a unique

attribute or a unique combination of attributes

known as the primary key. The primary key

identifies and differentiates each record within the

table. On the other hand, a foreign key stands for

an attribute or a set of attributes within a table

that references the primary key of another table.

By utilizing primary and foreign keys, relational

databases effectively maintain the integrity and

connectivity of the data, allowing for efficient

retrieval and manipulation of information [3].

IBM Corporation introduced SQL, or Structured

Query Language, in 1974 with the purpose of

managing structured data. SQL has become the

de facto standard for interacting with relational

databases, enabling seamless data

management, retrieval, and manipulation

operations. Relational databases are also known

as SQL databases [8].

Non-relational or NoSQL (Not Only SQL)

databases are characterized by their flexible data

structures. They are less affected by structural

changes and can provide usability and scalability

for systems containing large amounts of data.

These databases offer various data models, such

as key-value stores, document stores, columnar

databases, and graph databases, each catering

to specific use cases and requirements.

Unlike relational databases, where SQL is the

widely accepted database query language,

NoSQL databases do not have a universally

standardized query language (e.g., Cypher,

PGSQL, Morpheus, GraphQL, or Gremlin). Each

NoSQL database may have its specific query

language designed to work with its particular data

model.

This paper examines the conversion from a
relational to an attribute graph database. Each
table record from a relational database is
converted to a node. The relationships between
tables are treated as "first-order citizens" and
represented as elements that connect the source
and target nodes.

A Systematic Approach for Converting
Relational to Graph Databases

Marija Đukić, Ognjen Pantelić, Ana Pajić Simović, Stefan Krstović, Olga Jejić

University of Belgrade, Faculty of Organizational Science, Belgrade, Serbia

A

The crucial differences between relational and

graph databases are [12]:

1. Relational database structure is stricter than

graph structure,

2. Relationships in relational systems are

inferred from foreign keys, while graph

models define relationships as elements

with their properties, describing the

relationship in more detail,

3. Graph models support no NULL values;

consequently, non-existing value entries

(properties) are not present,

4. Relational database models have a primary

focus on data, whereas graph models pay

attention to relationships,

5. A relational database supports reading and

writing equally; however, a graph database

is optimized for reading.

Graph databases are well-suited for scenarios

where data exhibits strong relational patterns and

connectivity. Some of the notable use cases

where graph databases are particularly

advantageous are fraud detection,

telecommunication, recommendation engines,

social networks, and supply chain mapping.

A 2011 study [16], conducted on the then-

active 721 million Facebook users, discovered

that an average user had 190 friends. With each

"friendship" connecting two users, the total

number of friendships reached over 70 billion, or

almost 100 per user. Extracting a list of

individuals and their friends using SQL queries

necessitates two JOIN operations. This process

involves generating a resource-intensive

Cartesian product of all possible user pairs and

subsequently filtering out non-friends. Such an

approach is prohibitively costly. Conversely, in a

graph system, the equivalent query seamlessly

connects friends through relationships,

eliminating the need for a Cartesian product.

Graph databases are faster at modeling and

identifying associations between elements as

they do not require expensive join operations.

By exploring the conversion process, the paper

aims to provide insights into and guidance on

how to effectively migrate data from a relational

database to an attribute graph database. The

presented approach ensures that the attributes

associated with tables and relationships from the

relational database are accurately preserved

during the conversion process into the graph

database. This paper outlines the specific steps

and considerations involved in migrating the data

and relationships from a relational model to a

graph model. The data migration from MS

Access to the Neo4j database is implemented as

a practical example of the proposed approach.

By utilizing directed graphs, Neo4j enhances the

expressiveness and efficiency of working with

relational data. Directed graphs differentiate

between the starting and ending points of a

relationship, unlike undirected graphs, where

relationships are defined between two nodes

without specifying which one is the “start”, and

which one is the “end” [6].

The need for database migration between
different systems is expected to grow in the
future. This paper attempts to bridge this gap by
presenting a systematic approach to database
migration that is suitable for future automation.
The proposed approach offers a methodology
that covers various aspects of the migration
process, ensuring that all essential elements are
considered and preserved. Leveraging graph
concepts, it offers dedicated strategies to handle
the conversion process of specific relational
elements, such as associations, specializations,
and many-to-many relationships, ensuring
accurate conversion and better query
performance.

2. RELATED WORK

Researchers have recognized the significance

of having a systematic approach to converting

widely used relational databases into different

database models. This surge is primarily driven

by the growing demand to handle semi-structured

and unstructured data, which traditional relational

databases are not inherently designed to

accommodate. Over the past two decades, there

has been a notable increase in the number of

studies focused on the conversion of relational

databases. In terms of the conversion to a graph-

based NoSQL database, various approaches

were introduced using different starting points.

The entity-relationship (ER) diagram is the

starting point of the conversion process in [1], [9],

and [13]. As for [2], [4], [11], [15], and [17], the

conversion process starts with a relational

database, using a table, tuple, or table record as

a starting point.

In [1], the focus of the conversion process is on
the relationship types that can be found in
relational databases, association and inheritance.
The authors propose transformation rules that
result in each entity being transformed into a
node. The starting node is the entity on the one
side of the relationship (in the case of a one-to-
one relationship, either entity can be the starting
node). The ID of the start node is included as a
node property for the end node. The validation of
the proposed rules is performed by comparing
the number of query outcomes.

The authors of [9] propose an algorithm that
can migrate data by traversing the ER diagram
and using transformational rules. As a result,
each unrelated entity becomes a node. Related
entities are also transformed into nodes, with
foreign keys used to determine the direction of
graph relationships. An approach based on the
ER diagram is also proposed in [13]. The author

defines transformation rules for one-to-one, one-
to-many, and many-to-many relationships.

Two transfer methods for converting relational
to graph databases were proposed in [2]. In the
first transfer method for databases that do not
need normalization, each table row is converted
to a single node. The second transfer method
aims to find functional dependencies and apply
normalization up to 3NF. For that purpose, each
table cell is converted to a node. Both proposed
methods map relationships from a relational
model to relationships in a graph model.

In [4], the authors suggest that data values
most likely to be retrieved together should be
stored in the same node. Therefore, a node can
contain values from different tuples. Foreign keys
are inserted as properties, while relationships are
converted to graph relationships.

The authors of [11] propose a relational-to-
graph data conversion algorithm that can be used
in the preparation of data for graph mining
analysis. The algorithm follows the defined
conversion order, resulting in an undirected
graph whose connectedness and acyclicity
depend on the relational database structure and
the data contained within. Table tuples are
converted to either nodes or relationships, with
foreign keys becoming relationships. Attributes
that are not part of any key are converted to
either node or relationship properties.

An automated mechanism for the automatic
conversion of relational databases to graph
databases is presented in [15]. The relational
database schema needs to be in the 5th normal
form for the mechanism to be applied.

In [17], the authors studied the hierarchical
legal document system. Using relational tables as
a starting point, they propose an approach to
migrating hierarchical data from relational to
graph databases.

The authors of [5] draw an ER diagram for the
relational database to complete the mapping
between metadata. Firstly, tables are mapped
into graph nodes. Later in the process,
relationships are mapped to graph relationships
through the “direct construction method” or by
creating a connection table.

The aforementioned studies used the ER
diagram or a relational database as a starting
point and proposed transformation rules that
addressed various types of relationships. This
paper introduces a method of transforming a
relational database into a graph database,
starting with the relational model. The proposed

approach focuses on the migration of keys,
aiming to preserve all relationship types during
migration.

3. THE APPROACH

The conversion process can be structured into

three distinct phases: (1) preparation, (2) loading

data and generating relationships, and (3)

optimizing the graph database.

The approach focuses specifically on the

migration of primary and foreign keys during the

database transformation process. It emphasizes

the significance of these key attributes and

provides insights into their preservation and

handling during the migration. By specifically

targeting these key attributes, the approach

narrows down the scope of the migration process

and delves into their translation and integration

into the new database system.

This section provides both a formal and a

graphical representation. The graphical

representation of the entire approach can be

seen in Figure 1.

A. Preparation

As a prerequisite to data migration, the

relational database needs to be examined and, if

necessary, modified. The graphical

representation of the Preparation phase can be

seen in Figure 2. The Preparation phase includes

the following steps:

1. Examine the relational database for
normalization – to preserve the data and
complex relationships among the data, the
approach applies the concept of
normalization. By applying normalization,
the proposed approach ensures that the
relational data is structured in a way that
accurately represents the relationships
among different tables. This step helps to
eliminate data redundancy and improve
the overall integrity of the data.
Denormalized tables contain derived
foreign keys that violate data integrity. To
preserve the consistency of redundant
data, the implementation of constraints at
the procedural level is required (triggers).
Normalization of tables eliminates the need
for trigger migration.

Figure 1 Graphical representation of the proposed approach

2. Remove duplicates and calculated values -

all duplicate or calculated values added

previously for query optimization should be

removed [13] or ignored.

3. Identify primary and foreign keys - analyze

the database to identify all primary and

foreign keys, as the approach focuses

specifically on the migration of the key

attributes.

4. Identify dependent tables – usually, it can be

inferred simply by observing the keys of a

table (e.g., if a primary key consists of

multiple fields, the tables are most likely

dependable).

5. Identify specialization tables – the

specialization table is recognized based on

its key. The primary key, inherited from the

general table, is also a foreign key,

consisting of the same attributes.

6. Extract the data – a format supported by the

graph database should be used.

B. Loading the Data and Generating Relationships

This step relies on the results from the

previous step to properly connect the nodes and

use the potential of the graph system. The

graphical representation of the Load data and

generate relationships phase can be found in

Figure 3. The steps of the Load data phase are:

1. Load the data - each relational database

table should be loaded into the graph

system using available functions.

2. Map the tables - a new node should be

generated for each record of the table.

Each node should be enriched with a label

of the same name as the table from which

the data in the node came.

3. Map the specialization tables - data from

specialization tables should be stored as

nodes with multiple labels. The first label

should show the general table from which

the node’s data is taken. The other label

should show which specialized table the

data is taken from.

Specialization is needed in relational

models because each record in a given

table needs to have the same columns.

However, this is not the case in graph

systems for nodes with a given label. As

graph systems allow elements under the

same label to have different properties, the

proposed approach suggests mapping

records of specialization tables into nodes

with multiple labels.

4. Map one-to-one and one-to-many

relationships – these types of relationships

should be mapped first. In this step,

relationships between basic tables are

mapped into graph model relationships.

Basic tables are not dependent on other

tables. Relationships connecting tables

that depend on only one other table are

mapped next. Foreign keys should be used

to form directional relationships between

the nodes.

Figure 2 Graphical representation of the Preparation phase

Figure 3 Graphical representation of the Load data and generate relationship phase

5. Map the association tables - records of

tables created as a result of many-to-many

relationships should be mapped as nodes.

Association tables can be dependent on

two or more tables and reference or be

referenced by other tables. This makes the

records of association tables unsuitable to

be transformed into relationships inside

graph systems. The records in these

tables, therefore, are stored as nodes.

C. Optimizing the Graph Database

Some of the elements from the relational

database should be removed in the following

steps. They were needed in the relational model

and the earlier steps of the conversion process,

but have no purpose onward. Figure 4 graphically

describes the final phase of the approach – the

optimization phase. The steps of the Optimization

phase are as follows:

1. Remove foreign keys – foreign key attributes

are no longer necessary in the graph

model because of the actual relationships

that exist between nodes.

2. Remove technical primary keys - all

technical primary keys should be removed

as well, as the graph model will provide

those on its own [10].

3. Add unique value restrictions - this restriction

can be added both before and after the

data import. The restriction will fail to be

set if any of the required data is not unique.

4. Split lists of properties into individual nodes –

following the suggestion form [13], lists of

properties should be split into individual

nodes.

4. THE APPROACH IN ACTION

The proposed approach was tested using

Microsoft’s Northwind sample database [8]. This

paper outlines the specific steps involved in

migrating the data and all types of relationships

from the MS Access relational model to the graph

model implemented in Neo4j, as a practical

example. For research purposes, the authors

scaled the Northwind database model and chose

the entities that are crucial for the graph model.

The description of the approach given in the

previous section (Section 3) will be adhered to in

this section.

A. Preparation

The steps given in Figure 2 and described in

Section 3A are explained in the Northwind

database.

1. The database is normalized to avoid

redundant data.

2. The database contains no duplicate values.

3. Primary and foreign keys are available as

table metadata. Neo4j recommends

distinguishing between natural primary

keys and generated or technical primary

keys, which hold no value outside the

database [10].

4. The mapping process of dependent tables

will be shown in the example of the Order

Details table (Figure 7). Order Detail has

its own primary key, which distinguishes it

from association tables. The table can be

mapped to a graph using the Cypher

language code in Listing 1.

Listing 1 Conversion of Order Details to graph

1: match (o: Order),

2: (od:OrderDetails),

3: (p: Product)

4: where o.ID= od.OrderID

5: and od.ProductID = p.ID

6: create (o)-[: details]->

7: (od)<-[:references]-(p)

5. The mapping process of specialization tables

will be shown in the example of the Person

and Employee tables. If a person with ID =

1001 exists as a graph node with a Person

label, it should be enriched with the

corresponding Employee data, and the

Employee label should be added. If a node

does not exist, create the node with the

Employee label and ID = 1001 first. Then

add the Person label and the data.

6. The extraction of the data is performed

through the built-in Microsoft functions.

Figure 4 Graphical representation of the Optimization phase

B. Loading the Data and Generating Relationships

The steps described in Section 3B are

explained in the Northwind database examples.

1. For data loading, the authors used the

built-in function in the Cypher language. The

data was loaded from CSV files, as Neo4j

supports CSV files and provides simple

commands.

2. A new node is generated for each record

in the relational table. Each node is enriched

with a label of the same name as the table

whose data it contains. The Cypher code

used for creating Orders from the file is

given in Listing 2.

Listing 2 Cypher code for Orders node

1: load csv with headers

2: from 'file:///Orders.csv'

3: as row

4: merge (o: Order

5: {orderID: row.orderID})

6: on create set

 7: o.shipName= row.ShipName;

3. The demonstration for specialization will

be based on the simplified example shown

in Figure 5. Attributes from specializations

should be stored together with the attributes

from their general objects. For example, a

person with ID = 1001 should have both a

name and a salary. Cypher language uses a

MERGE statement for this purpose.

Figure 5 Example of specialization table migration - in a
relational database, data is stored in two tables. In the

graph database, a single node can store the same data

If the node with ID = 1001 and the Person

label exists, it will be updated with an

additional Employee label and the Salary

property. The Cypher language code in

Listing 3 can be used.

Listing 3 Cypher code for existing Person node

1: load csv with headers

2: from

3: 'file:///Employee.csv'

4: as row fieldterminator ';'

5: merge (pers: Person

6: {ID: row.ID})

7: on match set

8: pers.Salary = row.Salary,

9: pers: Employee

10: on create set

11: pers.Salary = row.Salary,

12: pers: Employee

If the node with ID = 1001 and the Person

label does not exist (Employee file is read

before Person file), the new node will be

created. The node will contain ID = 1001,

Person label, Employee label, and both the

Name and Salary properties. The Cypher

language code in Listing 4 can be used.

Listing 4 Cypher code for new Person node

1: load csv with headers

2: from 'file:///Person.csv'

3: as row fieldterminator ';'

4: merge (p: Person

5: {ID: row.ID})

6: on match set

7: p.PersName=row.PersonName

8: on create set

9: p.PersName=row.PersonName

Figure 6 shows the data used. Both the

tables (relational model) and the nodes

(graph model) are displayed. The graph

shows four nodes with the Person label and

two of them with the Employee label (in

orange).

Figure 6 Data for the specializations in the relational (left) and
the graph (right) model

4. Foreign keys have been imported as

regular properties. Now they can be used to

properly connect the right nodes and

implement relationships (Listing 5).

Listing 5 Connecting node Customer and node Order

1: match (c:Customer),(o:Order)

2: where c.ID = o.CustomerID

3: create (c)-[:orders]->(o)

5. The records of association tables are

stored as nodes, not relationships. The

association tables can reference or be

referenced by two or more other tables. In

Neo4j, relationships are formed between two

nodes, and cannot be referenced. If the

association tables were forced into

becoming relationships, all table references

beyond the first two would have to be stored

as properties reminiscent of foreign keys. As

this is not strictly according to the graph

paradigm, it could create problems if keys

are dropped while tables referencing them in

the relational model endure.

The Employee Privileges is the only true

association table. Order Details can be

interpreted as an association table, the

difference being that it has its own primary

key (Figure 7). The proposed approach

works with both types without the need for

adaptation. Employee Privileges table can

be converted using Cypher language code in

Listing 6.

Listing 6 Conversion of EmpoyeePrivileges

1: match (e: Employee),

2: (ep: EmployeePrivileges),

3: (p: Privileges)

4: where e.ID= ep.EmployeeID

5: and ep.PrivilegeID =

6: p.PrivilegeID

7: create (e)-[:privileges]->

8: (ep)<-[:references]-(p)

Figure 7 Example of association table - Employee
Privileges and dependant table – Order Details

C. Optimizing the Graph Database

The optimization process includes the following

steps:

1. All properties representing foreign keys can

be deleted. They are already used to

properly connect the right nodes and are no

longer needed. When a new node is created

for each record in the table Orders, foreign

keys (Customer ID, Shipper ID) are deleted.

2. Neo4j distinguishes between natural

primary keys and technical primary keys. As

the graph model provides the technical

primary keys, all technical keys are

removed. Upon converting each record of

the dependent table Order Details to a node,

the technical primary key (ID) is deleted.

3. The ID properties have unique values, so

unique value restrictions are added. The

following Cypher code can be used to add a

unique value constraint to the OrderID of the

Order node (Listing 7).

Listing 7 Cypher code for unique constraint

1: create constraint orderCon

2: on (o: Order)

3: assert o.OrderID is unique

4. Splitting the list of properties into individual

nodes is not required.

5. COMPARATIVE ANALYSIS WITH EXISTING

APPROACHES

To provide a more in-depth analysis, the
authors have compared the proposed approach
to several previous studies. More recent studies
relevant to this research were taken into
consideration. The basis of the comparison
(shown in Table 1) is the number of relationship
types for which a conversion method was
provided in each approach.

Existing studies oftentimes use an ER model
as a starting point for the conversion process. In
many cases, the model does not exist or has not
been accurately transferred to the relational
schema. In some instances, technical primary
keys are added, or the rules for constructing the
relational model are not strictly followed. This
could lead to unreliable conversions from a
relational to a graph system. To address the
above issue, the authors of this paper propose a
conversion method that does not rely on the ER
model.

Table 1 Comparison with existing studies

(Y – a rule for the relation type conversion is proposed)

RDB relationship

O
n
e
-t

o
-o

n
e

O
n
e
-t

o
-m

a
n
y

M
a
n
y
-t

o
-m

a
n
y

S
p
e
c
ia

liz
a
ti
o
n

Proposed Y Y Y Y

[1] Y Y Y Y

[5] Y Y Y -

[9] Y Y Y -

[17] Y Y Y -

Table 1 presents the comparison between the
proposed approach and the previous studies. It

demonstrates that the proposed approach covers
a greater number of relationship types compared
to studies referenced as [5], [9], and [17].
Additionally, compared to the study [1], the
proposed approach handles the migration of
specializations and many-to-many relationships
differently. This section provides a detailed
breakdown of the differences observed in each
step of the conversion process among the
mentioned approaches.

A. Preparation

Before migrating the data, it is important to
examine the relational database and make any
necessary modifications. As preparation for data
migration, [5] creates an ER diagram to complete
the mapping between metadata, that is, sorting
out the relationships between tables. [17] focuses
on eliminating data with default values and
converting denormalized and duplicated data into
separate nodes. In contrast, studies [1] and [9]
conduct no specific preparation activities before
data migration. It is unclear from the information
provided whether these studies directly migrate
the data as it is or if they employ other methods
for preparation that are not mentioned.

In the proposed approach, the authors include
table normalization as the first step in the
preparation phase to preserve data integrity and
prevent data loss. This helps in optimizing the
structure of the tables by eliminating redundancy
and ensuring data consistency. Furthermore, the
proposed approach involves removing calculated
values used for query optimizations. This step
simplifies the data migration process by focusing
on the key attributes for migration. As the authors
propose the migration based on key attributes,
primary and foreign keys should be identified,
followed by dependent tables and specializations.

B. Loading the Data and Generating Relationships

The migration process to the graph system

relies on the outcomes of the Preparation phase.

1. Load the data – no specific distinction was

identified between the compared approaches

for this step of the conversion process.

2. Map the tables – in studies [1] and [9], a new

node is generated for each entity in the ER

model during the migration process. However,

[9] migrates entities that do not reference any

other entities first, followed by entities that

reference only the already migrated entities,

and so on. This sequential approach helps in

managing dependencies between entities

during the migration. But it also introduces the

challenge of circular references. If entity A

references entity B, which in turn references

entity C, and entity C references entity A,

none of these entities can be imported due to

the circular reference. Overcoming this issue

would require an algorithm that detects and

resolves circular references, which adds

complexity to the migration process.

In contrast, the approach proposed in this

paper avoids situations where data cannot be

imported due to circular references or when a

node needs to be connected to another node

that does not exist yet. This is achieved by

loading the data before the connection

process, ensuring that all required nodes are

available for establishing relationships.

In studies [5] and [17], a new node is

created for each record in the relational table,

and the table columns are transferred as node

properties. The label of the node corresponds

to the name of the table.

The mentioned studies have different

approaches to node creation and relationship

establishment during the migration process.

The proposed approach in this paper takes a

specific stance on avoiding circular references

and ensures the data is loaded before the

connection process. Studies [5] and [17] share

similarities with the proposed approach in

terms of node creation.

3. Map the specialization tables – Studies [5],

[9], and [17] do not explicitly describe any

specific conversion activities for handling

specializations in the migration process. It

remains unclear whether these studies

migrate specialization tables or entities in a

similar manner as other tables or if they

employ alternative methods for conversion

that are not mentioned.

In study [1], a node is created for each

participating entity, with the general entity

becoming a start node and the specialized

entity becoming an end node. The ID of the

start node is included as a node property in

the end node. This approach does not fully

utilize the capabilities of graph systems but

instead adheres to the limitations of the

relational system. Specializations are used

when some tables of the same group have

some varying columns; for example, each

person has an ID and a name, but only some

(employees) have a salary. Storing this data in

a single table would result in many columns

with missing values, which is inefficient. Graph

systems do not have such limitations, as

graph nodes with the same label can have

different properties. Based on this

understanding, the authors of this paper

propose mapping specialization tables into

nodes with multiple labels, thus maximizing

the benefits of graph systems in terms of data

representation and efficiency. Each node

contains two labels: the label of the

specialized node and the label of the general

node. Following the example from Section 4B,

this approach generates a single node with

two labels (Person and Employee) instead of

having a Person node connected to an

Employee node representing a single person.

4. Map one-to-one and one-to-many

relationships - in [1], each entity is converted

to a node, with an entity that has a minimum

cardinality of 0 (one-to-one relationship) or an

entity that is on the one side (one-to-many

relationship) becoming the start node. The ID

of the start node is then included as a node

property in the end node. Similarly, in study

[9], a node is created for each entity, and

foreign keys are used to connect the nodes

and determine the direction of the

relationships in the graph.

In [17], foreign keys are utilized to form

relationships between nodes and removed

afterward. Study [5] employs a similar

conversion method to the approach proposed

in this paper. A foreign key is used to create a

directional relationship between the nodes in

the graph. This ensures that the relationships

between the entities in the relational model

are accurately represented in the graph

system.

5. Map the association table - In study [1], the

conversion of a many-to-many relationship

follows a similar principle as the one-to-many

relationship. However, the relationship itself is

represented as a relationship property

between the nodes in the graph system. In

study [9], the approach for handling many-to-

many relationships involves creating a node

for each entity and connecting them with two

relationships in different directions.

The association table resulting from a many-

to-many relationship is transformed into a

graph relationship in study [17]. Study [5]

proposes a method similar to [17], with the

addition of an intermediate step. A connection

table based on foreign keys is created,

serving as an intermediate step in establishing

the relationships between nodes.

The aforementioned approaches retain the

information from the many-to-many

relationship as a relationship property.

However, this paper suggests that mapping

records of many-to-many relationship tables

as nodes would be a more practical approach.

True association tables, which solely

represent many-to-many relationships, are

uncommon. In many cases, these tables have

technical primary keys (such as an ID or a

counter) and are not directly dependent on

any other tables. Therefore, mapping their

records as nodes provides a more

straightforward representation in the graph

system and avoids potential future-proofing

issues if the business requirements change

and additional connections are needed.

C. Optimizing the Graph Database

In the conversion process from a relational

model to a graph model, it is common to identify

relational model elements that are no longer

necessary and should be removed. The

approaches discussed in studies [5] and [17]

address this optimization step, while studies [1]

and [9] mention no specific optimization activities

after data migration.

In study [5], foreign keys are utilized to

establish directional relationships between

different nodes in the graph model. During the

conversion process, technical primary keys are

removed, while natural primary keys are used to

name the nodes in the graph. Once all the nodes

and relationships have been converted, unique

value constraints are added to certain fields.

Similarly, in study [17], unique constraints are

added for the natural primary keys during the

migration process, while all technical primary

keys are removed. After forming the relationships

in the graph system using foreign keys, the

foreign keys themselves are removed.

In the proposed approach, the authors suggest

removing foreign key properties when they are no

longer required in the graph model, as the actual

relationships between nodes define the

connections. Additionally, the authors

recommend removing all technical primary keys,

as the graph model provides those on its own.

However, it is important to maintain unique value

restrictions for the ID properties, as they should

still have unique values to ensure data integrity.

Furthermore, if necessary, lists of properties can

be split into individual nodes, which can enhance

the graph model's flexibility and efficiency.

Overall, the proposed approach focuses on

optimizing the graph model after data migration

by removing unnecessary elements such as

foreign keys and technical primary keys. This

allows for a more streamlined and efficient graph

model while still maintaining data integrity and

uniqueness through appropriate constraints.

6. EXPERIMENTAL RESULTS

The presented approach was tested using
Microsoft’s Northwind sample database. The
objective was to migrate both the data and the
relationships from the MS Access relational
model to a graph model implemented in Neo4j.
This practical example served as a validation of
the conversion process.

A. Approach validation

To verify the data integrity of the graph
database after the migration, the results of the
conversion process are compared.

The number of records in relational tables in
the original database is identical to the number of
graph nodes in the converted graph database.

Consistency in the number of records and nodes
demonstrates that the relational data is
successfully converted and represented in the
graph database without loss or distortion. This
validation step provides confidence in the
integrity of the converted graph database and
confirms that the conversion process effectively
maintains the data structure during migration.

To validate the accuracy of data conversion,

data query results between the relational and

graph databases were compared. Two pairs of

equivalent queries were executed in both

databases to verify the consistency of the results.

The first pair of queries is presented in Listing

8 and Listing 9. The corresponding results are

presented in Figure 8. Listings showcase the

executed queries, highlighting their equivalence

between the relational and graph databases.

Listing 8 SQL code of the first validation query

1: SELECT c.ID, o.ID, od.ID

2: FROM Customer c INNER JOIN Order o

3: ON c.ID = o.CustomerID INNER JOIN

4: OrderDetails ON o.ID = od.OrderID
5: ORDER BY c.ID, c.ID, od.ID;

Listing 9 Cypher code of the first validation query

1: match (c:Customer)-[]->(o:Order)

2: -[]-> (od:OrderDetails)

3: return c.ID, o.ID, od.ID

4: order by c.ID, o.ID, od.ID

Figure 8 displays the results obtained from

executing these queries, demonstrating matching

outcomes between the two databases. The

queries provide identical results with the same

number of records. The results are sorted so that

the first few tuples can be directly compared

between the databases.

Figure 8 Results from equivalent queries show the same
number of records and the same tuples in the results

In addition, a second pair of queries were

executed to further validate the migration of the

specialization table to the graph. The queries are

presented in Listing 10 and Listing 11. The

respective results are displayed in Figure 9.

Listing 10 SQL code of the second validation query

1: SELECT PersonName, Salary

2: FROM Person INNER JOIN Employee

3: ON Person.ID = Employee.ID;

Listing 11 Cypher code of the second validation query

1: match (e: Employee)

2: return e.PersonName, e.Salary

Figure 9 demonstrates that the results of the

queries in both databases are identical, resulting

in the same number of records. By successfully

reproducing identical results for the queries

related to the specialization table, the approach

demonstrates its capability to handle and

preserve specialized attributes during the

conversion process.

Figure 9 Results from equivalent queries show the same
number of records in the results

The execution of equivalent queries resulted in
identical outcomes, confirming that the data
details were accurately preserved during the
transfer from the relational database to the graph
database.

B. Comparison of query performance

To provide a comprehensive analysis, the
authors compared the approach proposed in this
paper to the approaches presented in previous
work, specifically the approaches described in [1]
and [5]. The approach discussed in [5] was
selected as the most recent work in the field at
the time of the study. Similar to the proposed
approach, [1] offers conversion methods covering
all relationship types. However, it addresses
associations and specializations distinctively.
This approach was selected to evaluate how
variations in handling associations and
specializations impact the performance of the
generated graphs.

 Table 2 displays the size of the generated
graphs, quantified in terms of the number of

nodes. By adhering to the proposed approach, a
notably higher number of nodes are generated.
This discrepancy arises from the conversion of
association tables.

Table 2 Size of generated graphs

Approach This paper [1] [5]

Number of nodes 319 260 260

To facilitate the comparison between the
approaches, the authors utilized the Northwind
database available to them. Equivalent queries
were executed on the resulting graphs generated
by each approach to assess their performance
and correctness. The initial testing query,
displayed in Listing 12, is taken over from [5].
Subsequently, the second testing query, which
relates to the dependent table Order Details, is
showcased in Listing 13. The third testing query,
referring to the specialization table Employee, is
exhibited in Listing 14. The chosen queries serve
the purpose of assessing the performance of the
approach on different types of relational
elements, considering the distinct guidelines
provided by the approach for converting
association and specialization tables. By
executing this query on all graphs, the authors
were able to compare the query results and
evaluate the performance of each approach in
terms of data retrieval.

Listing 12 The first testing query

1: match (p: Product{Category:

2: "Produce"})<--(s:Supplier)

3: return distinct

4: s.Company as ProduceSuppliers

Listing 13 The second testing query for Order Details node

1: match(o:Order)-[]->(od:OrderDetail)

2: <-[]-(p:Product)

3: where p.ProductName="Coffee"

4: return p.ProductName,

5: sum(od.Quantity)

Listing 14 The third testing query for Employee node

1: match (emp: Employee) where

2: emp.JobTitle='Sales Representative'

3: return emp.LastName, emp.FirstName,

4: emp.Salary

All approaches demonstrated identical query

execution time of 2ms for the first query. This
finding indicates that the proposed approach
exhibits equally good performance compared to
the approaches described in [1] and [5].

The second and third testing queries revealed
better performance of the proposed approach. As
depicted in Table 3, the execution time for these
queries using the proposed approach was shorter
in comparison to the approaches outlined in [1]
and [5]. This finding underscores that the
proposed approach leverages graph concepts,
leading to enhanced performance outcomes.

Table 3 Query execution time (in ms) for the proposed
approach and approaches presented in [1] and [5]

Approach / Query (1) (2) (3)

This paper 2 4 2

[1] 2 5 3

[5] 2 5 3

The distinguishing factor of the presented

approach is its conversion process, as
highlighted in Section 5 of the paper. The authors
propose a more straightforward representation of
association tables in the graph system to address
potential future-proofing issues. By avoiding the
mapping of association tables as relationships
with relationship properties, the approach
ensures that any future changes in business
requirements, such as the need for additional
connections, can be accommodated more easily.

On the other hand, the approach described in
[5] does not explicitly discuss any specific
conversion activities for handling specializations
in the migration process. In contrast, the
proposed approach in this paper leverages the
capabilities of graph systems by mapping
specialization tables into nodes with two labels:
one label representing the specialized node and
another label representing the general node.

7. CONCLUSION

Considering the increasing volume of data and

its dense connections, the need for efficiently and

effectively migrating data from relational to graph

systems is ever more present.

The proposed approach offers a method of

transforming a relational database into a graph

database without the need to consult a common,

more abstract ER model. In many cases, the

model does not exist or has not been accurately

transferred to the relational schema.

A notable advantage of the proposed approach

is its distinct method of converting relational

model elements to a graph database. It leverages

graph concepts by allowing nodes with the same

labels to have different attributes, connections,

and even multiple labels. This flexibility is not

possible in traditional relational models.

Moreover, the approach considers the specific

characteristics of various relational elements,

such as associations, specializations, and many-

to-many relationships. It provides dedicated

strategies to handle these elements during the

conversion process, ensuring a comprehensive

and accurate conversion.

The performance and accuracy of the
compared approaches were evaluated by
executing equivalent queries on the generated
graphs. The queries were chosen considering the
distinct guidelines for converting association and
specialization tables. The results showcase
identical results and better performance of the
proposed approach compared to other

approaches, evident in shorter query execution
times. The validation and comparison process
confirmed the successful preservation of data
during the conversion, showcasing the feasibility
and enhanced performance of the proposed
approach.

A. Future Work

To validate the proposed approach, the
authors employed experimentation by comparing
the query results obtained from the original
database with the query results obtained from the
target database format. This comparison helped
assess the effectiveness of the proposed
approach in maintaining the integrity of the data
throughout the migration process. As a direction
for future work, the authors consider validating
the conversion process through formalization
techniques.

Another area of future research involves
extending the application of the proposed
approach beyond the conversion from MS
Access to Neo4j. The intention is to demonstrate
the feasibility and effectiveness of the approach
by applying it across a wider range of relational
and graph databases. This will further emphasize
that the proposed approach is not dependent on
any particular database system and can be
successfully adapted to various environments.

An additional area of future investigation is
mapping data from various structured formats,
such as XML, JSON, texts, or documents. This
research would aim to extend the versatility and
adaptability of the proposed approach. As a
further extension of the proposed approach, the
inclusion of application-specific logic is
considered, namely business logic and triggers.

The successful preservation of data details
indicates the potential for automation in the
migration process, aiming to minimize the need
for extensive human involvement and improve
efficiency. The authors will attempt to fully
automate the approach so that no human
intervention is required. The next step is to
automate the extraction of table metadata and
use it to efficiently load, connect, and optimize
the data.

REFERENCES
[1] ALOTAIBI, Obaid; PARDEDE, Eric. Transformation of

schema from relational database (RDB) to NoSQL
databases. Data, vol. 4, no. 4, p. 148, 2019.

[2] ALTIN, Ramazan; KINACI, A. Cumhur. Analyzing The
Encountered Problems and Possible Solutions of
Converting Relational Databases to Graph
Databases. Journal of Advanced Research in Natural
and Applied Sciences, vol. 8, no. 2, p. 281-292, 2022.

[3] CODD, Edgar F. A relational model of data for large
shared data banks. Communications of the ACM, vol.
13, no. 6, pp. 377–387, 1970.

[4] DE VIRGILIO, Roberto; MACCIONI, Antonio;
TORLONE, Riccardo. Converting relational to graph
databases. In: First International Workshop on Graph
Data Management Experiences and Systems. p. 1-6,
2013

[5] FENG, Hui; HUANG, Meigen. An Approach to
Converting Relational Database to Graph Database:
from MySQL to Neo4j. In: 2022 IEEE 2nd International
Conference on Power, Electronics and Computer
Applications (ICPECA). IEEE, p. 674-680. 2022.

[6] Gabrovšek, P; Mihelič, J. Graph Covering and Subgraph
Problems. IPSI Transactions on Internet Research,
2019.

[7] IBM, “Structured vs. unstructured data: What's the
difference?,” IBM. [Online]. Available:
https://www.ibm.com/cloud/blog/structured-vs-
unstructured-data. [Accessed: 17-Dec-2022].

[8] Microsoft, “Get the sample SQL Server databases for
ADO.NET code samples - ADO.NET,” Get the sample
SQL Server databases for ADO.NET code samples -
ADO.NET | Microsoft Learn, 21-Sep-2022. [Online].
Available: https://docs.microsoft.com/en-
us/dotnet/framework/data/adonet/sql/linq/downloading-
sample-databases. [Accessed: 14-Dec-2022].

[9] NAN, Zhihong; BAI, Xue. The study on data migration
from relational database to graph database. In: Journal
of Physics: Conference Series. IOP Publishing, vol.
1345, no. 2, p. 022061, 2019.

[10] Neo4j, “Model: Relational to graph - developer guides,”
Neo4j Graph Data Platform. [Online]. Available:
https://neo4j.com/developer/relational-to-graph-
modeling/. [Accessed: 28-Dec-2022].

[11] OREL, Ognjen; ZAKOŠEK, Slaven; BARANOVIČ, Mirta.
Property oriented relational-to-graph database
conversion. automatika, vol. 57, no. 3, pp. 836–845,
2016.

[12] POKORNÝ, Jaroslav. Integration of relational and graph
databases functionally. Foundations of computing and
decision sciences, vol. 44, no. 4, p. 427-441, 2019.

[13] Ramachandran, S. Graph database theory. Comparing
graph and relational data models, LambdaZen, 2015.

[14] Rodrigues, Cajetan; Jain, Mit Ramesh, Khanchandani,
Ashish. Performance Comparison of Graph Database
and Relational Database. 2023.

[15] SHAHZAD, Ahmad; COENEN, Frans. Automated
Generation of Graphs from Relational Sources to
Optimise Queries for Collaborative Filtering. DBKDA
2020.

[16] UGANDER, Johan, et al. The anatomy of the facebook
social graph. arXiv preprint arXiv:1111.4503, 2011.

[17] UNAL, Yelda; OGUZTUZUN, Halit. Migration of data
from relational database to graph database.
In: Proceedings of the 8th International Conference on
Information Systems and Technologies, p. 1-5, 2018.

Marija Đukić is a Teaching Associate at the University of
Belgrade, Faculty of Organizational Sciences. Her areas of
research are business analytics, ERP systems, and process
mining (corresponding author – e-mail:
marija.djukic@fon.bg.ac.rs).

Ognjen Pantelić is an Associate Professor at the University
of Belgrade, Faculty of Organizational Sciences. His areas of
research are ERP systems and process mining (e-mail:
ognjen.pantelic@fon.bg.ac.rs).

Ana Pajić Simović is a Teaching Assistant at the University
of Belgrade, Faculty of Organizational Sciences. Her areas of
research are relational databases, ERP systems, business
process modeling, and process mining (e-mail:
ana.pajic.simovic@fon.bg.ac.rs).

Stefan Krstović is a Teaching Assistant at the University of
Belgrade, Faculty of Organizational Sciences. His areas of
research are databases and process mining (e-mail:
stefan.krstovic@fon.bg.ac.rs).

Olga Jejić is a Teaching Assistant at the University of
Belgrade, Faculty of Organizational Sciences. Her areas of
research are event sourcing, event and relational databases,
business process modeling, and process mining (e-mail:
olga.jejic@fon.bg.ac.rs).

