New Education Perspectives – How to Profile Experts for a Digital Economy Era

Ivan Luković, University of Belgrade, Faculty of Organizational Sciences, Belgrade, Serbia

University of Belgrade

Facts & Figures

- More than 200 years of tradition
- 100 000+ students
- 342 study programs
- 64 study programs in English and French
- 31 Faculties
- II Research Institutes + 12 Centers
- University Library with 3 500 000 volumes
- One of the most influential in the whole Balkans region

FON is accredited and matched for the fields:

INFORMATION SYSTEMS AND TECHNOLOGIES

MANAGEMENT AND ORGANIZATION

50 YEARS OF TRADITION

6000+ STUDENTS

26 STUDY PROGRAMS

170+
FACULTY STAFF
MEMBERS

19
DEPARTMENTS

2301

Bachelor studies

For 980 places

More than

Master studies

For 660 places

- Represents the place where students and mentors meet in order to share knowledge and skills through research and development projects of the faculty with partner organizations
- Venture an Idea Route2Launch program, initiated in 2022: mentorship program for students' startups

Research Interests

Mision

 To be ready and responsible for solving complex System Engineering problems by applying highly formalized approaches and abstraction

Two main research directions

- Information / Software system development, Domain Specific Modeling and Languages
- Business Inteligence, Data Warehouse, Data Mining, Data Science

Research Efforts

Information / Software system development, Domain Specific Modeling and Languages

- Understanding meta-meta paradigms and models
- Creating meta-models and languages in various domains
- Software development methods, techniques and tools
- Model transformations and software generation
- Applications in IS, MDSD, and Industry 4.0 domains

Business Intelligence, Data Warehouse, Data Mining, Data Science

- Performing quantitative data analyses in various domains
- Understanding Mathematics and Formal Approaches
- Understanding all the required BI and SE technologies
- Contributions in Educational Data Mining and Health Care Systems

IIS*Case Toolset

- "Ideal" methods and techniques to develop Information Systems (ISs) are still far from obvious
 - Despite the constant growth of information technologies, as well as
 - Their enriching ISs with novel capabilities
- There are various approaches that may be applied to improve the process of IS development
- Our focus is on the usage of Model Driven (MD) approaches and Domain Specific Languages (DSLs)
- We have created an approach and Model Driven Software Development (MDSD) tool
 - that provides IS modeling and prototype generation

IIS*Case Toolset

Integrated Information Systems CASE Tool Set (IIS*Case)

- Conceptual modeling of db schemas, transaction programs, and business applications of an IS
- Automated design of relational db subschemas in 3NF
- With special care about several types of constraints
- Automated integration of subschemas into a unified db schema in 3NF
- With special care about check and extended check constraints
- Automated generation of SQL/DDL code for various DBMSs
- Conceptual design of common user-interface (UI) models
- Automated generation of software application prototypes
- Support for Reverse Engineering and Reengineering

IIS*Case Toolset

Approach and MDSD tool - Form Type Concept

- A model of a user document in an application domain
- usually, corresponds to a screen or report form of the IS transaction program
- A specification at the schema abstraction level
- strict structuring rules are defined
- A tree structure of component types with attributes and constraints
 - like an XML Schema specification
- Used by a designer to specify
 - display properties of a transaction program form
 - behavior (allowed operations) of a transaction program
 - initial sets of attributes and database (db) schema constraints

MDSD in Industry 4.0

AnyMap Tool

- An approach and a framework for the easy integration of technical spaces
 - that heavily relies on DSMLs and MDE
 - Developed in collaboration with University of Leipzig, Software and System Integration Group
 - An application domain: integration of devices and information systems

Multi-Level Production Process Modeling Language (MultiProLan)

- A DSML for production process modeling in the era of Industry 4.0
 - process models independent of a production system
 - automatic generation of executable resource instructions, contributing to the production flexibility
 - automatic generation and update of the manufacturing documentation
 - creation and management of numerous product and process variations

Data Science Research Efforts

Comparing Data Sets Using Graphs

- Applications in Educational Data Mining
 - Analysis of students' performance in regard with seat selection stability and gender at the programing courses
 - A model for identification of performance indicators and quantitative analysis of Serbian academic institutions ERASMUS KA2 / Project PESHES
 - Simultaneous multiple program representations in early education
- Applications in Health Care Systems
 - Discovering a predictive model of Early Childhood Caries (ECC)
- Applications in Agriculture
 - Humidity level prediction in soil in the irrigation systems

Recent Research Efforts

Applications in Educational Data Mining

- Dynamic assessment and evaluation of learning outcomes, and
- Development of an educational recommender system for a generation and reconfiguration of different learning trajectories

Applications in Agriculture

 Development of a prediction system for effective plant sowing and harvesting scenarios in agriculture

Applications in Big Data Analytics

- Development of a model for the evaluation of big data analytics maturity of companies, and
- Development of a recommender system for the improvement of big data analytics capabilities of companies

Agenda

- Motivation
- Findings
- New Education Perspectives
- Final Notes

Current state of data and knowledge management in modern business

- Acquisition and recording of enormous amounts of data
- Practically, exponential growth of the amount of collected data
- 15 petabytes of new information is generated every day
 - eight times more than the combined information in all the libraries in the U.S.
 - about 80% of the data generated everyday is textual and unstructured data
 - Ref: [Chiang, 2012]
- We are facing with the Age of Big Data

- Current state of data and knowledge management in modern business
 - Data are a great value in support of reaching the business goals
 - Big Data is the next frontier for innovation, competition, and productivity
 - Ref: [McKinsey 2011]
 - There is a clear recognition of needs for generating corporate knowledge from data showed by company management in well-matured companies
 - by means of quantitative, analytical methods
 - so as to be effectively used for decision process and company management

- Current state of data and knowledge management in modern business
 - There is a clear recognition of significant, but unexploited worth ingrained in stored data
 - Data operationally used in a short time frame, and then archived
 - Tremendous amounts of data are available, while many institutions fail to make efficient use of the huge amount of data available, or look for patterns
 - Simply because the business appetite for doing so didn't exist
 - Ref: [Tulasi 2013], [Gartner 2011]
 - The main obstacle to use advanced data analytics is the lack of understanding how to apply it
 - Survey presented in Ref: [ADA 2019]

A great discrepancy problem: business needs vs. IT capabilities

- Significant needs for generation of corporate knowledge from data, on one hand side
- Inability of modern software products to effectively address these needs, on the other hand side
 - despite that huge amounts of data already exist
 - modern IT tools provide excellent technical capabilities
- A new form of Software Crisis
 - Never ended and present even for decades!
- We can call such phenomenon a Big Data Crisis

- Main Causes of Big Data Crisis
 - (A) Unsatisfactory level of organization maturity regarding the capacities for
 - information management and corporate knowledge management
 - business processes and institutionalization
 - quality management
 - (B) Unsatisfactory level of accumulated knowledge in a problem domain
 - (C) Unsatisfactory level of accumulated knowledge in a domain of computer science, software engineering, and data science
 - for development and formal specification of models for software products
 - aimed at generation of company knowledge and decision support

Addressing Big Data Crisis Causes

- Strategic and long-life task
 - Effective by simultaneous addressing all its significant causes
- Addressing (B) and (C) causes is an important endeavor related to the formal academic education

- Addressing Big Data Crisis Causes
- Endeavor related to the formal academic education
- Strong motivators to raise the level of
 - Interdisciplinarity and multidisciplinarity in profiling students' knowledge
 - Abstraction and formalization skills
 - Quantification, metrics, and analytical skills
 - Specification, implementation, and integration skills
 - Management, communication, and soft skills
 - Problem domain skills
 - Ref: [Luković 2020]

Agenda

- Motivation
- Findings
- New Education Perspectives
- Final Notes

Always hot issues in CSI&SE

- Computing, Computer Science (CS) &
- Informatics (I) &
- Software Engineering (SE)
- In what extent is it:
 - "self-contained", interdisciplinary oriented, or applied?
- What is a level of overlapping with other disciplines?
- How to constitute high quality study programs
 - to meet the balance between two extremes
 - to satisfy current and future needs of industry

- What are the industry needs today / in future?
- A common property of
 - Well-developed IT HR market
 - Under-developed / developing IT HR market

As a rule, it seems that interdisciplinary oriented professionals are always welcomed and better positioned!

- What are the industry needs today / in future?
- Significant changes at the technology-related job market
 - over recent years
 - mainly due to technological advances
 - pushed industry toward new demands for skilled professionals
- A gap between industry needs and professional profiles
 - available in the job market
 - difficulties to find employees who meet the required profile
 - resulting in financial loss
 - extra training expenses
 - Ref: [Goulart 2021]

- Absence of almost any high education strategy leads to:
- → Total leaving the academy to the operational market laws
- \Rightarrow Paradox
 - We incline to creating more "self-contained" courses, and consequently almost "pure" professionals
 - the culture of interdisciplinary orientation is usually poorly developed
 - interdisciplinary education is most likely in experiment phase
 - no consensus how to evaluate the outcome of interdisciplinary education
 - Ref: [Yao 2019]
- However, interdisciplinary oriented professionals are better positioned
 - the culture of interdisciplinary orientation is to be nurtured from "early ages"

One more paradox experienced

- Many students and even lecturers believe that IT employers will give a job, project or money to CSI&SE professionals for the following reasons:
 - They require high-educated or well-skilled HR
 - for example, because "we are particularly good programmers, or software engineers"
 - "We can resolve them a problem that they currently have"
- However, the reality is far from such believe
 - the employers search for those professionals that can recognize and address exactly their complex requirements or wishes
 - they need a complete, "packed", and optimized solution
 - as fast as possible, as cheap as possible
 - without any care if you are a perfect mathematician, programmer or economist

Traditional taxonomy of education and research areas

- In some countries (e.g. in Serbia)
- Very rigid
- Commonly applied in the academic accreditation process
- Science and mathematics
- Engineering and technology
- Social science and humanities
- Medicine

Current state of CSI&SE

- In general, three categories of CSI&SE study programs, as a support for data science
- Specific CSI&SE programs
 - At faculties of CSI&SE or (electrical) engineering
- Programs in Mathematics / Applied Mathematics (AM)
 - At faculties of sciences
- Programs in Economics, Business Administration and Management (EBAM)
 - Business informatics at faculties of economics, management or business administration

- Current state of CSI&SE
 - Three typical patterns of students' behavior
 - come from longtime experiences collected in lecturing in the area of CSI&SE, from programs of all the three types
- Behavioral patterns of "not joinable worlds"
 - (A) CSI&SE students
 - (B) AM students
 - (C) EBAM students

Academic education for Digital Economy

- The same patterns are general not just for Data Science
 - Digital Transformation (DT) a movement to Digital Economy (DE)
 - Driven by changes in
 - Business models
 - Culture
 - Behavior of individuals
 - How technology is driving and driven by these changes
 - It is much more driven by the first three factors, supported by IT
 - as it has been driven by advancements in technologies themselves

Strategy, Not a Technology, Drives Digital Transformation

Ref: [Kane 2015]

Academic education for Digital Economy

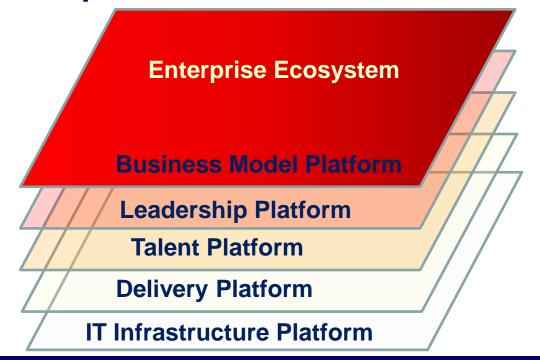
Open questions

- In such circumstances, who will maintain the "interfaces" between various disciplines?
- Therefore, we need to systematically educate interdisciplinary oriented professionals
 - capable of creating interconnections between various disciplines
 - with a satisfactory deep level of knowledge of details
- Can high education in CSI&SE address this issue successfully?
 - Personal view (2013): the best chances are for such orientation
 - both in the areas of business and organization systems and scientific computations

Academic education for Digital Economy

- Can high education in CSI&SE address this issue successfully?
- ChatGPT (2024):
 - Education in CSI&SE can be closely related to digital manager skills in several ways
 - Strong technical foundation and problem-solving mindset are crucial for effective digital management
 - By aligning the technical expertise from CSI&SE education with the strategic and operational skills required for digital management, professionals can effectively lead DT initiatives and drive organizational success in the digital age
 - By evolving the classical education approaches in CSI&SE
 - Ability to better prepare graduates for the multifaceted role of digital managers in modern companies
 - Equipping them with business acumen, and leadership skills required to drive DT and innovation

Agenda


- Motivation
- Findings
- New Education Perspectives
- Final Notes

New Education Perspectives for DE

Movement to DE by deployment of DT principles

- Creates a power for organization (disruptive) transformations
- Scaling from digital experiments and pilots to digital best practices
- Development of new digital platforms strong requirement
 - Ref: [Kočović 2019]

New Education Perspectives for DE

- Development of new digital platforms
 - Strong demands for DE experts of a new profile
 - Capable of high-quality support of the DT process
 - Workforce skills the most difficult barrier for building organizational capabilities for DT
 - Ref: [Synergy 2019]
- Academic Education should be subjected to the DT process
 - To come to the strategic goals
 - necessary to support movement to DE and effective production of Digital Managers
 - Overcome Digital Talent Gap
 - Transformations to come the new digital 5-layered platform
 - Adjusted priorities of academic education and training of teachers
 - Ref: [Azoev 2019]

New Education Perspectives for DE

Academic Education

- The first-class entity for profiling DE experts Digital Managers
- It should be combined with additional ways of education
 - short courses, trainings of various forms, company schools / universities
- Priority: Integration of university and corporate education
 - corporate universities provide ultra-modern, but not systematic enough and fundamental education
 - classical universities are still far from modern society education and new teaching technologies
- Priority: Universities become drivers of DT of society and economy
 - universities, their technology parks, and business incubators together with teachers are to contribute to the development of (youth) startups
 - [Kovalev 2018]

Curricula Transformation Approaches

Starting with a CSI&SE curriculum

- produce highly technically proficient digital managers
- who can bridge the gap between technology and business

Starting with an EBAM curriculum

- produce managers with strong strategic and operational skills
- who can understand and leverage technology

Hybrid or Integrated approach

- Create a curriculum from scratch
- Unify existing CSI&SE, EBAM, and possibly AM curricula

Outputs:

- interdisciplinary programs, joint, double, or dual degrees
- collaborative courses

General requirements to the transformed CSI&SE curriculum

- Interdisciplinary Curriculum

- Traditional CSI&SE programs focus heavily on engineering and tech subjects
- Integration with business management, digital marketing, and leadership courses
- Integration with mathematics (algebra, discrete math, probability theory) and statistics
- More holistic educational experience
- Engineering and CSI&SE
 - the fields where interdisciplinary and multidisciplinary education has room to grow
 - Ref: [Nambisan 2017], [Heikkinen 2018]

Project-Based Learning

- Not only theoretical knowledge and isolated coding projects
- Real-world project-based learning
- Work on multidisciplinary teams, simulating the collaborative environment
 - Ref: [Helle 2006]

General requirements to the transformed CSI&SE curriculum

- Soft (Non-Cognitive, Metaskills) Skills Development
 - Focus not on technical skills only
 - Incorporating soft skills training, such as communication, teamwork, leadership
 - Emphasizing effective communication, conflict resolution, team management

Skills for DT era

- Entrepreneurial vision, creative ability, holistic vision, focus on collaboration
- Ethics and social responsibility
- Codes and programming
 - Ref: [Goulart 2021], [Robles 2012], [Keegan 2001]

Industry Partnerships and Internships

- Strengthen partnerships with tech companies and startups
- Internships, co-op programs, collaborative projects
- Experience and networking opportunities

General requirements to the transformed CSI&SE curriculum

- Continuous Learning and Adaptation
 - Not just fixed curriculum with a static set of courses
 - Culture of continuous learning and adaptability to the team-work
 - Flexibility in offering elective courses on emerging technologies
 - Providing access to online resources
 - Encouraging participation in workshops and conferences
- Entrepreneurship and Innovation
 - Courses on entrepreneurship, innovation management, and startup ecosystems
 - Inspire students to think creatively and rationally, and take risks
 - Allowing staying ahead of digital trends and implementing cutting-edge solutions

- General requirements to the transformed CSI&SE curriculum
 - Analytical Thinking and Data-Driven Decision Making
 - Not only coverage of data structures and algorithms with limited application to business contexts
 - Advanced courses in data analytics, machine learning, business intelligence, decision theory, operational research, optimization methods, stochastic processes
 - Emphasizing applications in strategic decision-making
 - User Experience (UX) and Design Thinking
 - Integrate UX design, HCI, visualization methods, and design thinking courses
 - Emphasize the user-centric product development

General requirements to the transformed CSI&SE curriculum

- Cybersecurity and Compliance
 - Foster cybersecurity education and culture
 - Include topics on regulatory compliance, risk management, and ethical considerations in digital management
 - Ref: [McCrohan 2010]

Mentorship and Networking

- Mentorship programs to connect students with industry professionals and alumni
- Provide a guidance and career advice

Curricula General Structure Areas

Mathematics
Statistics,
Science
(MSS)

Digital Manager / Engineer

Humanities, Soft Skills (HSS)

Computer Science, Engineering (SE), Data Science (CSED) Business,
Social Science,
Economics
(BSE)

Curricula General Structure

Body of Knowledge – General Categories

- a not necessarily complete list of offered knowledge
- Computer Science, (Software) Engineering, Data Science
 - All core CSI&SE disciplines
 - Algorithms, Computational Intelligence and Machine Learning, HCI, Software Engineering, Information Systems, DevOps, Cyber Security
 - UX and Requirements Engineering, System Engineering, Decision Engineering
 - Formal Methods, Domain Specific Modeling and Languages, Model-Driven Engineering, Conceptual Modeling, System Thinking

- (Applied) Mathematics, Statistics, Science

- Calculus, (Linear) Algebra, Discrete Mathematics, Graph Theory, Combinatorics, Logic, Probability and Statistics, Stochastic Processes, Operational Research, Optimization Methods, Data Series Processing
- Physics or relevant science disciplines for a problem domain

Curricula General Structure

Body of Knowledge – General Categories

- a not necessarily complete list of offered knowledge
- Business, Social Science, Economics
 - Domain knowledge and Customer Experience (CX)
 - Focus areas across physical and social sciences
 - (Quantitative) Finance, Financial Engineering, Marketing, Fundamentals of Economics
 - Organization Design, Management, Strategic Thinking

- Humanities, Soft Skills

- Communication, Critical thinking, Adaptability, Problem-solving, Leadership, Creativity, Innovation
 - Ref: [Synergy 2019], [Capgemini 2013]

Overcoming Digital Talent Gap

- Recognized skills of Digital Manager / Digital Engineer
 - Analytics, Big data
 - Digital strategy, Financial Modeling
 - Digital marketing
 - Security, privacy, risk, compliance
 - Smart product development
 - Software development
 - Web/mobile development
- Critical skills gaps for DT identified
 - Ref: [Synergy 2019]

Soft Skills in Overcoming Digital Talent Gap

Altro-centric leadership

- An other-centered leadership style, adaptive leadership
- Mandatory to support DT as a disruptive process
- Increasingly important soft skills
 - empathy, humility, integrity and compassion, integrity, creativity
 - human–ethical sense of judgement to Al's data-driven information and judgments
 - Managers' focus on
 - coaching, motivating and empowering employees
 - Engineers' focus on
 - algorithmic management practice, particularly supported by AI and GAI methods
 - · handle quantifiable managerial tasks and quantitative performance evaluation
 - Ref: [Henderikx 2022]

Soft Skills in Overcoming Digital Talent Gap

- Majority of executives consider soft skills increasingly important
- There are studies suggesting that both soft and hard skills are needed

Key leadership skills

- communication skills, language knowledge, organizational skills
- subject-specific knowledge
- digital literacy, self-reflection

Executives are to be

- emphatic, open-minded, flexible, motivated, and stress tolerant
 - Ref: [Klus 2020], [Klus 2021]

Soft Skills in Overcoming Digital Talent Gap

Behavioral leadership skills

- motivational skills, team-building skills, and emotional intelligence
- remain core abilities of managers
 - Ref: [Kluz 2016], [Henderikx 2022]

Digital Intelligence (DI)

- All employees, including managers, **should develop DI** as an ability to
 - learn digital technologies
 - deal with digital technologies appropriately
 - read, decode and manipulate digital information
 - acquire and apply new knowledge and skills connected to digital technologies to
 - address insights and openness
 - improve operational efficiency and outcomes
 - Ref: [Boughzala 2020], [Henderikx 2022]

CIO Skills in Overcoming Digital Talent Gap

- CIOs gain new roles in DT process
 - Ref: [Kočović 2019]

Past	Future
Focus on IT outcomes	Focus on business outcomes
Sequencing of operations	Creating collaborative agenda
Support	Overcoming the unconquerable
Costs control	Developing of the income plan
Process Reingeneering	Data utilization
Outsourcing	Design of business
Focus on functions	Focus on platforms
Searching for parity	Searching for differentiation
In the scope of IT sector	Everywhere in the organization
Focus on IT risks	Focus on business risks

Digital Manager / Engineer Roles

- Some possible 'LEGO' business roles of interest
 - Digital Product Manager
 - Digital Business & Finance Manager
 - Digital Sales & Marketing Manager
 - Digital UX / CX Engineer
 - Digital Operations Engineer
 - Business Analyst
 - ML Engineer, Data Scientist, Data Analyst
 - System (Design) Engineer
 - Data Engineer
 - Cyber Security Engineer
 - DevOps Engineer, Software Engineer

Agenda

- Motivation
- Findings
- New education perspectives
- Final Notes

Final Notes

- Addressing Big Data Crisis Causes and challenges of DT
 - Strategic and long-life task
- Facing the era of Digital Economy requires
 - A new profile of Digital Manager / Digital Engineer
 - Significantly transformed formal, academic education
- A new and more effective form of academic education is
 - inline with the DT principles
 - with clearly defined education (business) strategy
 - well combined with high quality alternative forms of education
 - evident multidisciplinary / interdisciplinary orientation
 - implemented through highly flexible education models and curricula structures

Final Notes

- Highly flexible education models and curricula structures
 - Support of all four curricula areas: MSS, CSED, BSE, HSS
 - In a designed % of share in the whole structure
 - At all study levels (including B.Sc., M.Sc., Ph.D. studies)
 - % of share may vary slightly
 - customized to the general roles of Digital Manager and Digital Engineer
 - Curricula areas are mandatory rather than sole courses
 - Very few mandatory courses, e.g. max. 1 per each semester
 - Selection of a great no. of courses in each of the four mandatory areas
 - Students are forced to select courses from each of the mandatory areas
 - in a designed extent
 - Students are rather free what courses to select from each mandatory area

Final Notes

- Highly flexible education models and curricula structures
 - Classification of courses according to the level of rigor and prerequisites
 - Basic, Intermediate, Advanced
 - Prerequisites for each intermediate and advanced courses are clearly defined
 - with no sharp requirements
 - Students are forced to select courses of all three levels, in a designed extent
 - 'Default' profiling of students
 - By the Matrix Business Roles / Curricula Areas
 - The matrix cells are organized in various ways
 - recommended numbers (or %s) of basic, intermediate, and advanced courses in the area
 - recommended individual courses appropriate to a business role
 - recommended %s of share of each of the four curricula areas
 - Proactive mentorship of students in their profiling

- [Chiang, 2012] Chiang, R.H.L., Goes, P., Stohr, E.A.: Business intelligence and analytics education, and program development: a unique opportunity for the information systems discipline. ACM Trans. Manag. Inf. Syst. 3(3). (2012)
- [McKinsey 2011] McKinsey Global Institute: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey. (2011)
- [Tulasi 2013] Tulasi, B.: Significance of big data and analytics in higher education. Int. J. Comput. Appl. 68(14), 21–23. (2013)
- [Gartner 2011] Gartner (Analysts: Genovese, Y., Prentice, S.): Pattern-Based Strategy: Getting Value From Big Data. ID: G00214032. (2011)
- [ADA 2019] Survey on Stakeholders in Serbia A report in the Advanced Data Analytics in Business (ADA) ERASMUS+ project No. 598829-EPP-1-2018-1-RS-EPPKA2-CBHE-JP.
- [Luković 2020] Luković, I.: Issues and Lessons Learned in the Development of Academic Study Programs in Data Science. 21st International Conference DAMDID 2019, Proceedings, Springer Nature, CCIS 1223, DOI: 10.1007/978-3-030-51913-1_15. (2020)
- [Goulart 2021] Goulart, V. G., Liboni, L. B., & Cezarino, L. O.: Balancing skills in the digital transformation era: The future of jobs and the role of higher education. Industry and Higher Education, 36, 118 – 127. (2021)

- [Yao 2019] Yao, Y., Qi, P., Zhu, Y.: Research on Interdisciplinary Education in Digital Economy, Advances in Social Science, Education and Humanities Research, volume 376, DOI: 10.2991/sschd-19.2019.32. (2019)
- [Kane 2015], Kane, G. C., Palmer, D., Phillips, A. N., Kiron, D., Buckley, N.: Strategy, not Technology, Drives Digital Transformation. Research Report by MIT Sloan Management Review and Deloitte University Press. (2015)
- [Kočović 2019] Kočović, P.: Serbian CIO Agenda. Union University "Nikola Tesla", Faculty for Information Technologies and Engineering, ISBN 978-86-81400-16-6. (2019)
- [Synergy 2019] Synergy Consulting: The Digital Talent Gap Looking at leaders and laggards based on a global survey of enterprise workforce digital skills readiness. (2019)
- [Azoev 2019] Azoev, G., Aleshnikova, V.I., & Sumarokova, E.V.: Benchmarking of the educational process in the field of digital economy in Russia. Proceedings of the 1st International Scientific Conference "Modern Management Trends and the Digital Economy: from Regional Development to Global Economic Growth" (MTDE 2019). (2019)
- [Kovalev 2018] Kovalev M. M.: Education for the Digital Economy, Cifrovaja transformacija [Digital transformation], 1 (2), pp. 37–42. (2018) (in Russian)

- [Nambisan 2017] Nambisan, S., Lyytinen, K., Majchrzak, A., Song, M.: Digital Innovation Management: Reinventing Innovation Management Research in a Digital World. MIS Quarterly, 41(1), 223-238.
 (2017)
- [Heikkinen 2018] Heikkinen, K., Räisänen, T.: Role of Multidisciplinary and Interdisciplinary Education in Computer Science: A Literature Review. Managing Global Transitions. (2018)
- [Helle 2006] Helle, L., Tynjälä, P., Olkinuora, E.: Project-based learning in post-secondary education theory, practice and rubber sling shots. Higher Education, 51(2), 287-314. (2006)
- [Robles 2012] Robles, M. M.: Executive Perceptions of the Top 10 Soft Skills Needed in Today's Workplace. Business Communication Quarterly, 75(4), 453-465, DOI: 10.1177/1080569912460400. (2012)
- [Keegan 2001] Keegan, A., Turner, J. R.: Quantity versus quality in project-based learning practices. International Journal of Project Management, 19(4), 255-264, DOI:10.1177/1350507601321006. (2001)
- [McCrohan 2010] McCrohan, K. F., Engel, K., Harvey, J. W.: Influence of Awareness and Training on Cybersecurity. Journal of Internet Commerce, 9(1), 23-41, DOI: 10.1080/15332861.2010.487415. (2010)
- [Capgemini 2013] Capgemini Consulting: The Digital Talent Gap Developing Skills for Today's Digital Organizations, URL: https://www.scribd.com/document/340823943/The-digital-talent-gap-Capgeminipdf. (2013)

- [Henderikx 2022] Henderikx M., Stoffers J.: An Exploratory Literature Study into Digital Transformation and Leadership: Toward Future-Proof Middle Managers. Sustainability. 14(2):687, DOI: 10.3390/su14020687. (2022)
- [Klus 2020] Klus, M. F., Müller, J.: Identifying Leadership Skills Required in the Digital Age. SSRN Electronic Journal. (2020)
- [Klus 2021] Klus, M. F., Müller, J.: The digital leader: what one needs to master today's organisational challenges. Journal of Business Economics, 91, 1189 1223. (2021)
- [Kluz 2016] Kluz, A., Firley, M.: How To Be a Leader in The Digital Age. URL: https://www.weforum.org/agenda/2016/05/how-to-be-a-leader-in-the-digital-age/. (2016)
- [Boughzala 2020] Boughzala, I., Garmaki, M., Chourabi, O.: Understanding How Digital Intelligence Contributes to Digital Creativity and Digital Transformation: A Systematic Literature Review. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020; pp. 320–329, URL: https://hdl.handle.net/10125/63779. (2020)

New Journation Perspectives –
Have Profile Experts for a Digital
Economy Era

Ivan Luković, University of Belgrade, Faculty of Organizational Sciences, Belgrade, Serbia

