ELSEVIER

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

Subharmonicity of the modulus of quasiregular harmonic mappings

David Kalaj^a, Vesna Manojlović^{b,*}

ARTICLE INFO

Article history: Received 29 December 2010

Received 29 December 2010 Submitted by Steven G. Krantz

Keywords:

Quasiregular harmonic mappings Subharmonic functions

ABSTRACT

In this note we determine all numbers $q \in \mathbf{R}$ such that $|u|^q$ is a subharmonic function, provided that u is a K-quasiregular harmonic mappings in an open subset Ω of the Euclidean space \mathbf{R}^n .

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

By $|\cdot|$ we denote the Euclidean norm in \mathbf{R}^n and let Ω be a region in \mathbf{R}^n . In this paper we consider K-quasiregular harmonic mappings, where $K \geqslant 1$. We recall that a harmonic mapping $u(x) = (u_1(x), \dots, u_n(x)) : \Omega \to \mathbf{R}^n$ with formal differential matrix

$$Du(x) = \left\{ \partial_i u_j(x) \right\}_{i, i=1}^n$$

is K-quasiregular if

$$K^{-1} |Du(x)|^n \leqslant J_u(x) \leqslant Kl(Du(x))^n$$
, for all $x \in \Omega$, (1.1)

where J_u is the Jacobian of u at x,

$$|Du| := \max\{|Du(x)h|: |h| = 1\},\$$

and

$$l(Du) := \min\{|Du(x)h|: |h| = 1\}.$$

See [7, p. 128] for the definition of quasiregular mappings in more general setting. A quasiregular homeomorphism is called quasiconformal.

Let $0 < \lambda_1^2 \le \lambda_2^2 \le \dots \le \lambda_n^2$ be the eigenvalues of the matrix $Du(x)Du(x)^t$. Here $Du(x)^t$ is the transpose of the matrix Du(x). Then

$$J_u(x) = \prod_{k=1}^n \lambda_k,\tag{1.2}$$

$$|Du| = \lambda_n \tag{1.3}$$

E-mail addresses: davidk@t-com.me (D. Kalaj), vesnam@fon.rs (V. Manojlović).

^a University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjski put b.b., 8100 Podgorica, Montenegro

^b University of Belgrade, Faculty of Organizational Sciences, Jove Ilića 154, Belgrade, Serbia

^{*} Corresponding author

and

$$l(Du) = \lambda_1. \tag{1.4}$$

For the Hilbert–Schmidt norm of the matrix Du(x), defined by

$$||Du(x)|| = \sqrt{\text{Trace}(Du(x)Du(x)^t)}$$

we have

$$||Du(x)|| = \sqrt{\sum_{k=1}^{n} \frac{\partial u}{\partial x_k} \bullet \frac{\partial u}{\partial x_k}} = \sqrt{\sum_{k=1}^{n} \left| \frac{\partial u}{\partial x_k} \right|^2}$$
 (1.5)

and

$$||Du(x)|| = \sqrt{\sum_{k=1}^{n} \lambda_k^2}.$$
 (1.6)

Here • denotes the inner product between vectors. From (1.1), for a quasiregular mapping we have

$$\frac{\lambda_n}{\lambda_k}, \frac{\lambda_k}{\lambda_1} \leqslant K, \quad k = 1, \dots, n. \tag{1.7}$$

It is well known that if $u = (u_1, ..., u_n)$ is a harmonic mapping defined in a region Ω of the Euclidean space \mathbb{R}^n , then $|u|^p$ is subharmonic for $p \ge 1$, and that, in the general case, is not subharmonic for p < 1. Let us prove this well-known fact. If u is harmonic, then by a result in [4, Lemma 1.4] (see also [3, Eqs. (4.9)–(4.11)])

$$\Delta |u| = |u| \left\| D\left(\frac{u}{|u|}\right) \right\|^2.$$

So $\Delta |u| \geqslant 0$ for those points x, such that $u(x) \neq 0$. If u(a) = 0, then we consider the harmonic mapping $u_m(x) = u(x) + (1/m, 0, \dots, 0)$. Then $u_m(a) \neq 0$, and $\Delta |u_m(x)| \geqslant 0$ in some neighborhood of a. It follows from the definition of subharmonic functions that the uniform limit of a convergent sequence of subharmonic functions is still subharmonic. Since $|u_m(x)| \to |u(x)|$, it follows that |u| is subharmonic in a. Since the function $g(s) = s^p$, is convex for $p \geqslant 1$, we obtain that $|u|^p$ is subharmonic providing that u is harmonic. (For the above facts we refer to [2, Ch. 2].)

Recently, several authors have proved the following two propositions, which are the motivation for our study.

Proposition 1.1. (See [5].) If f is a K-quasiregular harmonic map in a plane domain, then $|f|^q$ is subharmonic for $q \ge 1 - K^{-2}$.

Proposition 1.2. (See [1].) If f is a K-quasiregular harmonic map in a space domain, then $|f|^q$ is subharmonic for some $q = q(K, n) \in (0, 1)$.

This paper is continuation of [1] in which Proposition 1.1 was extended to the n-dimensional setting. In [1] the authors prove only the existence of an exponent $q \in (0,1)$ without giving the minimal value of q. Here we improve Proposition 1.2 by giving the optimal value of q. Our proof is completely different from those given in [1] and [5]. Moreover for the first time we consider the case q < 0.

Our proof is based on the following well-known explicit computation.

Proposition 1.3. (See [6, Ch. VII 3, p. 217].) Let $u = (u_1, \ldots, u_n) : \Omega \to \mathbf{R}^n$, be harmonic, let $\Omega_0 = \Omega \setminus u^{-1}(0)$, let $q \in \mathbf{R}$. Then for $x \in \Omega_0$

$$\Delta |u|^{q} = q \left[|u|^{q-2} \sum_{k=1}^{n} |\nabla u_{k}|^{2} + (q-2)|u|^{q-4} \sum_{k=1}^{n} \left(u \bullet \frac{\partial u}{\partial x_{k}} \right) \right].$$

Proof. Write $v := |u|^q = (u_1^2 + \dots + u_n^2)^p$, for p := q/2. A direct computation gives

$$v_{x_1} = p(u_1^2 + \dots + u_n^2)^{p-1} \cdot (2u_1u_{1x_1} + \dots + 2u_nu_{nx_1})$$

= $q(u_1^2 + \dots + u_n^2)^{p-1} \cdot (u_1u_{1x_1} + \dots + u_nu_{nx_1}),$

and further

$$v_{x_1x_1} = q \left\{ 2(p-1) \left(u_1^2 + \dots + u_n^2 \right)^{p-2} \cdot (u_1 u_{1x_1} + \dots + u_{nx_1})^2 + \left(u_1^2 + \dots + u_n^2 \right)^{p-1} \cdot \left[u_1 u_{1x_1x_1} + (u_{1x_1})^2 + \dots + u_n u_{nx_1x_1} + (u_{nx_1})^2 \right] \right\}.$$

Therefore

$$\begin{split} & \Delta v = v_{x_1x_1} + \dots + v_{x_nx_n} \\ & = q \left\{ |u|^{q-2} \left[(u_1 \Delta u_1 + \dots + u_n \Delta u_n) + \left(\sum_{k=1}^n u_1_{x_k}^2 + \dots + \sum_{k=1}^n u_n_{x_k}^2 \right) \right] + (q-2)|u|^{q-4} \sum_{k=1}^n \left(\sum_{j=1}^n u_j u_{jx_k} \right)^2 \right\} \\ & = q \left\{ |u|^{q-2} \left(\sum_{k=1}^n u_1_{x_k}^2 + \dots + \sum_{k=1}^n u_{nx_k}^2 \right) + (q-2)|u|^{q-4} \sum_{k=1}^n \left(\sum_{j=1}^n u_j \cdot \frac{\partial u_j}{\partial x_k} \right)^2 \right\} \\ & = q|u|^{q-4} \left\{ |u|^2 \sum_{j=1}^n \left(\sum_{k=1}^n u_j_{x_k}^2 \right) + (q-2) \sum_{k=1}^n \left(\sum_{j=1}^n u_j \cdot \frac{\partial u_j}{\partial x_k} \right)^2 \right\} \\ & = q|u|^{q-4} \left\{ |u|^2 \sum_{j=1}^n |\nabla u_j|^2 + (q-2) \sum_{k=1}^n \left(u \bullet \frac{\partial u}{\partial x_k} \right)^2 \right\}. \quad \Box \end{split}$$

2. Main result

Theorem 2.1. Let u be K-quasiregular harmonic in $\Omega \subset \mathbb{R}^n$. Then the mapping $g(x) = |u(x)|^q$ is subharmonic in

- (1) Ω for $q \ge \max\{1 \frac{n-1}{K^2}, 0\}$; (2) $\Omega \setminus u^{-1}(0)$, for $q \le 1 (n-1)K^2$.

Moreover for $1-(n-1)K^2 < q < 1-\frac{n-1}{\nu^2}$, there exists a K-quasiconformal harmonic mapping such that $|u|^q$ is not subharmonic.

Remark 2.2. If n=2 then $1-\frac{n-1}{\kappa^2}=1-K^{-2}$. Thus Theorem 2.1 is an extension of Proposition 1.1.

Remark 2.3. In the case $1 \le K \le \sqrt{n-1}$ the function $|u|^q$ is subharmonic for all q > 0.

Proof of Theorem 2.1. Let us fix such a map $u: \Omega \to \mathbb{R}^n$ and set $\Omega_0 = \Omega \setminus u^{-1}\{0\}$. We have to find all positive real numbers qsuch that $\Delta |u|^q \ge 0$ on Ω_0 . Since u is quasiregular, the set $Z = \{x \in \Omega_0: \det Du(x) = 0\}$ has measure zero (see [7]), it is also closed since u is smooth. In particular, $\Omega_1 = \Omega_0 \setminus Z$ is dense in Ω_0 and thus it suffices to prove that $\Delta |u|^q \geqslant 0$ on Ω_1 . From Proposition 1.3, we obtain

$$\Delta |u|^{q} = q \left[|u|^{q-2} \|Du\|^{2} + (q-2)|u|^{q-4} \left| \sum_{j=1}^{n} u_{j} \nabla u_{j} \right|^{2} \right].$$
 (2.1)

So we find all real q such that

$$q\left(|u|^{q-2}\|Du\|^2+(q-2)|u|^{q-4}\left|\sum_{j=1}^n u_j\nabla u_j\right|^2\right)\geqslant 0.$$

If $q \ge 2$, then $\Delta |u|^q \ge 0$. Assume that $q \ge 0$ and q < 2 such that

$$\left|\sum_{i=1}^n u_j(x) \nabla u_j(x)\right|^2 \leqslant \frac{1}{2-q} \left|u(x)\right|^2 \left\|Du(x)\right\|^2, \quad x \in \Omega_1.$$

After normalization, we see that it suffices to find all constants q < 2 such that

$$\sup_{z \in S^{n-1}} \left| \sum_{j=1}^{n} z_j \nabla u_j(x) \right|^2 \leqslant \frac{1}{2-q} \|Du(x)\|^2, \quad x \in \Omega_1.$$
 (2.2)

Let $0 < \lambda_1^2 \leqslant \lambda_2^2 \leqslant \cdots \leqslant \lambda_n^2$ be the eigenvalues of the matrix $Du(x)Du(x)^t$. Then

$$\sup_{z \in S^{n-1}} \left| \sum_{i=1}^{n} z_{j} \nabla u_{j}(x) \right|^{2} = \lambda_{n}^{2}, \tag{2.3}$$

$$\inf_{z \in S^{n-1}} \left| \sum_{j=1}^{n} z_j \nabla u_j(x) \right|^2 = \lambda_1^2$$
 (2.4)

and

$$||Du(x)||^2 = \sum_{k=1}^n \lambda_k^2.$$
 (2.5)

Because u is K-quasiregular from (1.7) we have

$$\frac{\lambda_n}{\lambda_k} \leqslant K, \quad k = 1, \dots, n - 1. \tag{2.6}$$

Thus (2.2) can be written as

$$\lambda_n^2 \leqslant \frac{1}{2-q} \sum_{k=1}^n \lambda_k^2. \tag{2.7}$$

By (2.5) and (2.6) we get that, the inequality (2.7) is satisfied whenever

$$\frac{1}{1 + \frac{n-1}{\nu^2}} \leqslant \frac{1}{2 - q},\tag{2.8}$$

i.e.

$$\max\left\{0, 1 - \frac{n-1}{K^2}\right\} \leqslant q < 2. \tag{2.9}$$

If q < 0, then we should have

$$\inf_{z \in S^{n-1}} \left| \sum_{j=1}^{n} z_j \nabla u_j(x) \right|^2 \geqslant \frac{1}{2-q} \|Du(x)\|^2, \quad x \in \Omega_1,$$
(2.10)

i.e.

$$2 - q \geqslant \sum_{k=1}^{n} \frac{\lambda_k^2}{\lambda_1^2}.$$

Because u is K-quasiregular from (1.7)

$$\frac{\lambda_k}{\lambda_1} \leqslant K, \quad k = 2, \dots, n. \tag{2.11}$$

Thus if

$$q \le 1 - (n-1)K^2,\tag{2.12}$$

then (2.10) holds. To finish the proof we need the following lemma.

Lemma 2.4. For any $1 - (n-1)K^2 < q < 1 - \frac{n-1}{K^2}$ there is a (linear) harmonic K-quasiconformal mapping u such that $|u|^q$ is not subharmonic.

Proof. Assume first that q > 0. We will consider linear mapping $u : \mathbf{R}^n \to \mathbf{R}^n$ defined by

$$u(x_1, \dots, x_{n-1}, x_n) = (x_1, \dots, x_{n-1}, Kx_n), \tag{2.13}$$

where $K \ge 1$. It is obviously harmonic and K-quasiconformal. If we put this mapping in formula (2.1) we get

$$\left[(n-1) + K^2 \right] |u|^2 + (q-2) \left| \sum_{j=1}^{n-1} x_j e_j + K^2 e_n x_n \right|^2 \geqslant 0$$

which is equivalent to

$$(n-1+K^2)\left[\sum_{n=1}^{j-1}x_j^2+K^2x_n^2\right]+(q-2)\left|\sum_{j=1}^{n-1}x_je_j+K^2e_nx_n\right|^2\geqslant 0.$$

By choosing $x_1 = \cdots = x_{n-1} = 0$ and $x_n = 1$, we obtain

$$(n-1+K^2)K^2 \ge (2-q)K^4$$

which is equivalent to

$$q \geqslant 1 - \frac{n-1}{K^2}$$
.

For q < 0 we consider the linear mapping $u : \mathbf{R}^n \to \mathbf{R}^n$ defined by

$$u(x_1, \dots, x_{n-1}, x_n) = (x_1, \dots, x_{n-1}, x_n/K).$$
 \Box (2.14)

To finish the proof we only need to take $\tilde{u} = u|_{\Omega}$, where u is defined in (2.13) respectively in (2.14). \square

Acknowledgment

We thank the referee for providing constructive comments and help in improving the contents of this paper.

References

- [1] M. Arsenović, V. Božin, V. Manojlović, Moduli of continuity of harmonic quasiregular mappings in Bⁿ, Potential Anal., doi:10.1007/s11118-010-9195-8, in press.
- [2] W.K. Hayman, P.B. Kennedy, Subharmonic Functions, I, Academic Press, London, New York, 1976, xvii+284 pp.
- [3] D. Kalai, A priori estimate of gradient of a solution to certain differential inequality and quasiconformal mappings, arXiv:0712.3580v3, 24 pp.
- [4] D. Kalaj, On the univalent solution of PDE $\Delta u = f$ between spherical annuli, J. Math. Anal. Appl. 327 (1) (2007) 1–11.
- [5] V. Kojić, M. Pavlović, Subharmonicity of |f|^p for quasiregular harmonic functions with applications, J. Math. Anal. Appl. 342 (2008) 742–746.
- [6] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., vol. 30, Princeton University Press, Princeton, NJ, 1970, xiv+290 pp.
- [7] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math., vol. 1319, Springer, Berlin, 1988.