Faculty of Sciences and Mathematics, University of Nis, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

Filomat 25:1 (2011), 1-19 DOI: 10.2298/FIL1101001S

ON TRACES OF ANALYTIC @, TYPE SPACES,
MIXED NORM SPACES AND HARMONIC
BERGMAN CLASSES ON CERTAIN POLYDOMAINS

Romi F. Shamoyan and Olivera R. Mihié!

Abstract

In this paper, we introduce new @, type spaces and mixed norm analytic
function spaces on polyballs and describe completely their traces on unit ball.
Complete descriptions of traces of harmonic Bergman classes on products of
unit balls of R™ and products of Riﬂ halfspaces will be also provided.

1 Introduction and preliminaries

The goal of this paper is to give complete descriptions of traces of certain @, type
spaces and mixed norm spaces of analytic functions in polyballs. In recent years
many papers were devoted to the study of @, type spaces on the unit disk and the
unit ball (see, for example, [7], [11], [21], [22], [23] and the references there). The
mixed norm classes in polyballs that we introduce and study in this paper have their
origins in real analysis where they were investigated intensively for many years (see
e.g. [3], [9], [10], [20]). They also can serve as an example of direct generalizations
of well-studied analytic Bergman classes in the polydisk and in the unit ball at
the same time (see [23], [7]). We also observe that for n = 1 the mentioned trace
problem completely coincide with the well known problem of diagonal map which
previously has been considered by many authors [5], [7], [8], [12], [13], [14]. Various
applications of theorems of the diagonal map are well known [2], [7], [15]. This
paper can be considered as a continuation of [16] and [17] where we considered and
solved such a trace problem for classical Bergman classes in polyballs and some new
function classes defined with the help of the Luzin area operator and the Bergman
metric ball. Basic properties of the so called r-lattice in the Bergman metric ball
can be found in [23] and are playing an important role in all our proofs. At the end
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of paper, the complete descriptions of traces of harmonic functions on the products
of unit balls of R” will be also provided.

Throughout the paper, we write C' (sometimes with indexes) to denote a positive
constant which might be different at each occurrence (even in a chain of inequalities)
but is independent of the functions or variables being discussed.

Let C denote the set of complex numbers and let C* = C x --- x C denote
the Euclidean space of complex dimension n. The open unit ball in C" is the set
B, = {z € C" : |z] < 1}. We denote by H(B,,) the space of holomorphic functions
on the open unit ball in C™. Moreover, let dv denote the Lebesgue measure on B,
normalized such that v(B,,) = 1 and for any a € R, let dv,(2) = co(1 — |2]?)%dv(2)
for z € B,. Here, if a < =1, ¢, = 1 and if « > —1, ¢, = % is the
normalizing constant so that v, has unit total mass. The Bergman metric on B, is

1. 1+ o (w)|
Bz, w) = S log 7— o ()]
where ¢, is the Mobius transformation of B, that interchanges 0 and z. Let
D(a,r) = {# € B, : f(z,a) < r} denote the Bergman metric ball centered at
a € B,, with radius r > 0.
The proofs of the following properties of the Bergman balls can be found in [23]
(see lemmas 1.24, 2.20, 2.24 and 2.27 in [23]).

Lemma 1. (a) There exists a positive number N > 1 such that for any 0 <r <1
we can find a sequence {vg}3>, in By, to be r-lattice in the Bergman metric of By,
This means that B, = U2, D(vg, ), D(v,r/4) N D(vk,r/4) =0 if k # 1 and each
z € By, belongs to at most N of the sets D(vg, 2r).

(b) For any r > 0 there is a constant C > 0 so that & < \11:22215;| < C for all
z € By, and all w,v with B(w,v) <.

(¢) For any o > —1 and r > 0, fD(Z)T)(l — |w|?)*dv(w) is comparable with (1 —
|z[2)Hte for all 2 € B,,.

(d) Suppose r >0 andp > 0 and o > —1. Then there is a constant C' > 0 such that

C
)P < (1__|Zp)n+1+o</Z(%le<w>pdVa<w>v

for all f € H(B,,) and all z € B,.

The following estimate is well-known and will be used often in the paper. For a
proof, see [23], Theorem 1.12. The conclusion about the behaviour of the constants
ast — —1 or s — 0 follows from a careful examination of the above mentioned
proof in [23].

Lemma 2. Suppose that ¢ > 0 and t > —1. Then there are positive constants
C4, Cy such that

I(t+ 1)) TPy T DT
Clu—vw:<Lnu—@wWHHﬂd<)<@<L4wr’
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for all z € B,,. The constants C; and Cs depend on n, c and t and they are bounded
ast— —1 and s — 0.

We also need the following estimate, a proof of which can be found in [11].

Lemma 3. Suppose thatt > —1, s > 0 and 0 < r < n+ 1+1t. Then there is a
constant C' > 0 such that for all w,v € By,

/ (1 — |z[)'dv(2) C
B, 11— (w, 2) [P 1 — (v, 2)|" = (1= [w]?)* [1 = (w,v)|]"
For o > —1 and p > 0 the weighted Bergman space AP consists of holomorphic

functions f in LP(B,,dv,), that is, A? = LP(B,,,dv,) N H(B,). It is well-known
that AP is a closed subspace of L?(B,,,dv,). See [23, Chapter 2] for more details.

Definition 1. Let X and Y be Banach analytic function spaces on the ball and
the polyball so that X C H(By,) and Y C H((B,)™). Then X is called the trace of
Y, if for every function f, f €Y, f(z,...,2) is in X and the reverse is also true, for
every function g, g € X there exists a function f in Y such that f(z,...,2) = g(2)
for all z € B,,.

2 Traces of (), type spaces and mixed norm
analytic function spaces on polyballs

From now on, we fix an integer m > 1. For any two m-tuples of real numbers
a=(ay,...,am), and b = (by,...,by,), we define the integral operator

(1 _ ‘w|2)7n—1+29":1 b;
m

T o [ W)
(Seaf)erersszo) = TL0 - ) L, i s )

where z1,...,z, are in B,, and f is a function in Ll(Bn,dl/_n_l_z;_n:l b;)- Note
that for such f, the function S, f is defined on (B,,)™, the product of m copies of
B,,. The operator S, can be called an expanded Bergman projection in the unit
ball (see [23, Chapter 2]).

The following two propositions study the boundedness of S, from certain LP
spaces on B,, into certain AP spaces of (B,,)". Note that for m =1 and r; =0, j =
1,...,m these assertions are well known (see, for example, [23]).

Proposition 1. Let 1 < p < co. Suppose $1,...,8m > —1 and r1,...,1m > 0 are
such that for each j =1,...,m, we have —pa; < min{s; +1,s;, +1+n—r;} and
ms; +1 < p(mb; —n) —(m—1)(n+1). Denote t = (m—1)(n+1) —|—Z;”:1 sj. Then
there is a constant C > 0 such that

m

/Bn _/BTL(Sa,bf)( Tyeves m)‘ H '_d ( 1) d(m)

iy b= (ug, 2)|™
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11— |w?*
<C [ f(w)f=m
B, Hj:l 11— (uj,w

for all f € LP(B,,,dv:) and uy,. .., um € By.

I dv(w),

Proof. Let q denote the exponential conjugate of p, that is % + % = 1. Choose a
positive number v such that py < min{p(mb; —n) — (m —1)(n —1) —ms; — 1 :
j=1,...,m}. Puta—i(v—%)andﬁ——n—l—l—Z;ﬁ:lbj—ma:—n—l—i—
S bi— —|— =. For each j, choose e; such that

=1
n+1 n+1 . a; +s;+1 pa;+s;+14+npr;
—|—a<ej<7—|—oz+mm{p] J ,pJ J p]}.
myq p p
It is possible to choose such an e; since pa;+s;+1 > 0. Further, let d; = a;+b; —e;
For any measurable function f on B, and z1, ..., z;, € B,, using Holder’s inequality,
we have

(1~ puft) "5
. MO g )
F()I(1 ~ )’

o T L= (ol Rt

1 (1—(zj,w))%
|f(w)|P(1 — |w|2)pﬁ S B (1 . |w|2)mqa . o
: ( B, [[2 11— <Zj»w>|pdjd ( )> 1 </B (1- <Zj,w>)mqe“'d ( )) '

For each j, since mga = g — 1 > —1 and mge; > n + 1 + mga, Lemma 2 shows
that

—

J

ESH

J

1— 2\mqo
/ ( |w| ) du(w) S C(]. _ |Zj|2)n+1+mqa7mqej,
B

(1- <Zj7 w))maes

n

where C' is independent of zq,..., z,. This implies that

|(Sa,bf)(zl, .. Zm)|p S

o MU WEP iy
By, Hj:1|1 (zj,w |pd

Jj=1

Now by Fubini’s theorem

/ / Sanf)(z1,...,2 |pH L ljJLJ mdv(z1) - dv(zn) (1)

— |z p( + )+T’(a ejtaj)+s;
<C/ {H/ = 0) dv(2j) Hf (w)[P(1 = Jw|*)PPdv(w).

e T G )P g, 20T
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For each j, by the choice of e; and ~y, we have p(%;l) +pla—ej+aj)+s; >—1
and r; <n-+1+ p(ntl) +p(a —e; +a;) + s; < pdj. Applying Lemma 3, we have

mq

/ (1—z]? )p(m: L bp(a—ejta;)ts;

dv(z;
= (e ) PO — a2y &)

2\n41+ 2t +p(a—ej+aj)+s;—pd;

<C(1_‘w| ) m (2)
- 11— (uj, w)|™
py—p(mb; —n)+(m—1)(n+1)+(ms;+1)
(1 Jwf?) =
=C

1= (ug, w)|™ ’
where C is independent of w and «;. From (1) and (2) and the fact that

i]n—p(mbj —n)+(m—1)(n+1)+ (ms; +1)

: m
j=1
m m m
= (m—l)(n—i—l)Zsj —p(ij —p—n)+1= (m—l)(n—l—l)—i—Zsj —pB,
Jj=1 J=1 j=1
the conclusion of the proposition follows. O

For the case 0 < p < 1, we have the following result.

Proposition 2. Let 0 < p < 1. Suppose that s1,...,8m > —1 and r1,..., 7 >0
are such that for each j =1,...,m, we have —pa; < min{s; +1,s; + 1 +n —r;}
and sj+1 < pb; —n). Denote t = (m—1)(n+ 1)—1—2;”21 sj. Then there is a constant
C > 0 such that

(12
/ / abf Rlyeeey ® ‘pH ‘1 UJJ,|ZJ |T1d (Zl)dy(zm)

b (= JuP)
<c [ I T, 11— Gy 1

n

for all f € AP(B,,,dvy) and uq, ..., Uy € By,.

Proof. Fix 0 < r <1 and choose {v;}72, to be an r-lattice in the Bergman metric
of B,. This means that B, = U2, D(vg,r) and D(v;,r/4) N D(vg,r/4) = 0 if
k # 1 and there is an integer N > 1 such that each z € B,;, belongs to at most N
of the sets D(vg,2r) (see Lemma 1). For any function f € L'(B,,dv,) and any
Z1y...,2m € By, we have

m

P(1 _ n—1+37", b;
(s )z z)l < [Tl )" / F(w ‘1 ) do(w).

[T5Z, 11— (zj,w)|*tPs

- k= 1D(v ,r)
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By Lemma 1 (b) there is a constant C' > 0 so that for each j = 1,...,m and
k>1, 4 < |L| < C for all w € D(vg,r). Also by Lemma 1 ( fD(vk »(1

|w]|?)™"" 1+ZJ 1% dy(w) is comparable with (1 — |vg|?)=7=1% . Thus we obtain

[(Sapf) (7150 s2m)] <
<o M2 [ lwp = ) aw)
- |]. — <Zj,”[}k>|a3+bj

k=1j=1 D(vg,r)

> — |z 2)% (1 = v 2\ 71 b
<oy TR = 1w < w € Dlwn )

|1 = (25, v) ]9+

Now since 0 < p < 1, using the inequality (z1 +z2+...)? <28 +xb+..., which
is valid for non-negative numbers x1, 2, ..., we get

P
|(Sapf) (21, 2m) H|1_ oY

(2, ) [P TPEIT — (uj, 2;) |79

o m _ paj 2\P2_jL1b;
ZH (A= PP 0 2 D2 ) s w € Dok,

Integrating with respect to dvg, (z1) - - - dvs,, (2m) and using Lemma 3 (note that by
assumption, pa; + s; > —1 and pa; + pb; > n+ 1+ pa; + s; > r;), we obtain

l—z
/ / Sunf)(z1se s |PH|1ijf'zjrjd(zl)---dy(zm)

m n+1+sj—pbj

<3l 1_“}”% o 0 ) s )] w € D(w, 1))
k1 1 )

> (1- |'Uk| m(n+1)+2k 18]

kz ] 1 11— < Vg )| sup{|f(w)|P : w € D(vg, )}

By Lemma 1 (b), 1 — |vg|? is comparable with 1 — |w|? and |1 — (uj,v;)| when
w € D(vg,r). This together with Lemma 1 (d) implies that, if f € H(B,,), then

121%)
/B,L”'/B,LKS“’bf)(Zl’”" |PH |1— ujj,zj ~dv(z1) -+ dv(zm)

(1 — |w|?) D+ s

[T55 11— Cujyw)7s

<CY sup{|f(w)[? tw € D(vk,7)}
k=1

o0

(1 — |w[?)m=D+D+EEL, 55

<cy [ T e e

k=1
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(1 — |w|?)(m=DOHD+E, 55

<C [ |f(w)P 7 —— dv(w).

By H]:l ‘]‘ - <uj7w>‘rj
To derive the last inequality we have used the fact that each z € B,, belongs to at
most N of the sets {D(vg,2r) : k=1,2,...}. O

Remark 1. The condition ms; +1 < p(mb; —n) — (m — 1)(n +1) — n(l — p) is
equivalent to s;+1 < mb;—n. This shows that there is an extra summand n(1—p) in
the condition on the s;’s compared to that in Proposition 1. This extra summand
vanishes when p = 1. Also note that in Proposition 2 we require that f to be
holomorphic, which is not needed in Proposition 1.

Lemma 4. Let 0 < p < oo. Suppose that s1,...,Sy, > —1 are real numbers and let
t=(m-1)(n+1)+ Z;n:l sj. Then there exists a constant C > 0 such that for all

feH((B)™),

LJﬂ%m&W%%@SCLJ~LJﬂmww%JW%@Hmw%@M~

Proof. Let 0 < r < 1 and choose {ux}32, to be an r-lattice in the Bergman metric
of B, as in the proof of Proposition 2. For any integer k > 1, vy(D(ug,r)) is
comparable with (1 —|ug|?)"t1**, which is in turn comparable with (1 — |w|?)" 1+
for any w € D(ux,r) (see Lemma 1). Also, B, = U2 | D(ug,r). Hence we have

/B s 2)Pdvi(z <Z / o 2)Pdvi(z)

uk,r)

<CY (1 —|up>)" M sup{|f(z,...,2)[P : 2 € D(ug,r)}

L

3

(o)
< CZSup{H (1 =125 f (21, 2m) P 21,y 2m € D(ug,7)}-

Using Lemma 1 (d), we see that, for z1,..., 2, € D(ug, ),

m
H |Z | n+1+sj|f(21a-~-azm)|p <

IN

C / / |f(z1, .oy z2m)|Pdys, (z1) - - - dvs,, (zm)

D(z;,r) D(zm,r)

<o f [ )P ()i )
D(ug,27) D(ug,2r)

Therefore [ [f(21,.-.,2m)[Pdvi(2)

oo

SCZ/ / |f(21a7zm)|pdys1(z1)dy8m(zm)
D(ug,2r) D(ug,2r)

k=1
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gCZ/ / |f(z177Zm)|pdV81(zl)dV5m(zm)7
k:l Bn, Bn

where the last inequality follows from the fact that each w € B,, belongs to at most
N of the sets {D(vg,2r) : k=1,2,...}. O

The following result follows directly from Lemma 4 and Propositions 1 and 2
and was obtained by us in [17].

Theorem 1. Let 0 < p < oo. Suppose that si,...,8m > —1 are real num-
bers and let t = (m — 1)(n + 1) + Z;nzl sj. Then AP(B,,dv) is the trace of
AP((Bp)™),dvg, -+ - dvg, ).

Let m > 1 be an integer. Suppose p is a positive Borel measure on (B,)™
and (r1,...,7m,) is a m-tuple of positive real numbers. We say that u is a bounded
(r1,...,7m)-Carleson measure if

p(E(ar) X --- x E(am))
T Jarlyn (1~ fon]™
where E(0) = B,, and for a € B, \ {0}, E(a) = {z € B, : |1 — (z, fa |>| <1—]al}.

The following result is proved in [23] for the case m = 1 but the same proof also
works for m > 1.

sup{( DA, ..., Qm € By}t < 00, (3)

Theorem 2. Let 0 < 7q,...,7m <00 and 0 < r1,...,1y < 00. A positive Borel
measure p on (Bp)™ is a bounded (rq,...,1rm)-Carleson measure if and only if

1_ T
sup{/ / la; )™ du(z1, .oy Zm) 1 1, ... am € By} < oo, (4)

(aj,zj) |7+
Furthermore, the two suprema in (3) and (4) are equivalent.

We now introduce @, type spaces in polyballs. Let 0 < p < oco. For the real num-
bers s1,...,8, > —1and r1,...,7y, > 0, we define M2 . ((B,)™, dvs, ---dvs,,)
to be the space of all measurable functions f on (B,)™ for which the measure
duy = |f|Pdvs, ---dvs,, is a bounded (r1,...,7y,)-Carleson measure. For any f €
ME L (Bn)™,dvs, -+ - dys,, ), we define

pp(Elar) X -+ x E(am))
(1= laa])r -+ (1= |am[)™™ -

It can be checked that when 1 < p < oo, the space MP . ((B,)™, dvs, ---dvs,,)
is a Banach space with the above norm. For 0 < p < 1, it is a complete metric
given by d(f,g) = [IIf — glll>. The space HMZ,__ (Ba)™dvs, -+ dvs,,) is the
intersection of H((B,)™) with MP, . ((Bn)™, dvs, ---dvs,, ).

AP = sup{

ai,...,am € By} < o0.

Proposition 3. Let 0 < p < oo. Suppose that s1,...,8, > —1 and ri,...,7py >0
are such that for each j =1,...,m, we have —pa; < min{s; + 1,8, +1+n —r;}
and ms; +1 < p(mb; —n) — (m —1)(n+ 1) when 1 < p < o0 and —pa; <



On traces of analytic @), type spaces, mixed norm spaces 9

min{s; +1,s; + 1 +n—r;} and s; +1 < pb; —n when 0 < p < 1. Let t =
(m—1)(n+1)+ Z;n:l sj and r = 37" ;. Then Suy is a bounded operator from
HMP(By,dv) into MP, . ((Bn)™, dvs, - dvs,,).

Proof. For j =1,...,m, since —pa; < s; + 1+ n —r;, we can choose 7; > 0 such

that —pa; < s; + 14+ n — (r; + 7;). By Propositions 1 and 2, there is a constant
C > 0 such that for any f € HMP(B,,,dv;) and ug,...,us € By,

— |2
/ / Sapf)(z1,- -, 2m I”H |1_ e il |)T7+T]d (21) - dv(zm)

< C/Bn |f(w)|P T |(11_— |wl\ I)U>|r,-+r,- ()

(uj,

Multiplying both sides with H;.n:l(l — |u;|*)™ we obtain

|1 — (uy, zj) |7+

p 1T (L= 12335 (1 — Juy[*)™ e dv(z
/Bnm/BnKSa’bf)(th’zm)' J];[l o ——dv(z1) - dv(2m)

27’j

Since >77, %2 = 1, applying Holder’s inequality and Theorem 2, we get
m

1—lugl )7 (1 — |w])*
| I dv(w
/B uja |TJ+T7 ( )

m 1 — |u[?) /75 ‘
< P(1 — 2\t ( J d ri/r
<1l [ 1P ey e )

< C’H;nzl(|||f|||p)rj/r = C |||f|I|P, where C is independent of f and wuq,...,up,.
From this and (5), we get

/ / Sapf)(z1,... 2 1:[ 1= |Z i 1::’(1>_ijfj|2)Tj dvs, (z1) - dvs,, (2m)

< AP
for all uy,...,uy, € B,. The statement, then follows from Theorem 2. O
Theorem 3. Let 0 < p < co. Suppose that s1,...,8, > —1 and ry,..., 7y, >0 are
such thatr; <n+14s; forj=1,...,m. Putt = (m )(n+1)+2§n':13j and

r= Z;nzl rj. Then Trace(HMP . . ((Bn)™, dvs, - -dusm)) = HMP (B, dv;).
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Proof. For any a € B, and f € HMP, . ((Bn)",dvy, ---dvs, ), define

(1 — o)™

f(zl,...,zm):f(zl,...,zm)nm (1= (5 a7
j7

Applying Lemma 4 to the function f we get

/ ‘f(z7.__7z)|pwdyt(z)

1= (2, @)[mr+r

n

¢ [ iz |ﬂ1u_z@pwd%@m~w%mwsmww-

By, By,

The last inequality follows from Theorem 2. This shows that the function z —
f(z,...,2) is in HMP(B,,dv;).

On the other hand, for j = 1,...,m, let a; = 0 and b; be large enough so
that the hypotheses of Propositions 1 and 2 are satisfied. Let a = (0,...,0) and
b= (bi,..;bm). Put @ = —n — 1+ 37", b;. Then Proposition 3 together with
the fact that the image of S, is contained H((By)™) show that S = ¢4 S, maps
HMP (B, dv) boundedly into HMPE . ((B,)™,dvs, ---dvs,, ). In addition, for
f € HM?(B,,dv) and z € By,

flw 1—|w|)’***2ﬂd%
/ (z,w))=i=1b
fw)dve (w
:/B 1 _(<Z)w>)1(1+)1+a = f(2):

The last equality follows from [23, Theorem 2.2]. So the conclusion of the theorem
follows. O

(S1)(z,

dv(w)

We now introduce the mixed norm classes in polyballs

A (BY) = {7 € BB gy, o= ([ (=l ([ 1 lzmoa)

am

B, By,
/anq P = [22)) di(20)) 71+ dv (1)) P dv(z)) P < 00},
where 0 < p; < 00, a; > —1, 7 =1,...,m. Note that for n = 1 these classes were

studied in [14]. For m = 1 we have the classical Bergman spaces on the unit ball.
Formally replacing B,, by R we arrive at well studied function classes in R™ (see
3], [4], [10)).

Let LBi--Pm (B]*) denote the space of all measurable functions f : B* — C
such that Hf||A£11 ----- pm < o0. It is not difficult to show that ALv--Pm (B') is a
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Banach space for 1 < p; < o0, ¢ = 1,...,m. Moreover, it can be shown that
AbL-Pm (B) is a complete metric space for 0 <p; < 1,i=1,...,m.

For f € AP Pm (B1), we have the following estimate

yeeOm

‘f(zlvuzm”gc e Z::erv (6)

where z; € B, j =1,...,m. The proof of (6) can be obtained by modification of
standard arguments from [23].

Our intention is to describe the traces of these function spaces. This result also
generalizes our previous mentioned description of the trace of AL (BI") (see [16],
[17]) and for n = 1 it coincides with a theorem from [14].

Theorem 4. Lety = am—i—zyzl(n—i—l—i—aj)?;—"?, aj >—landp; > 1, j=1,...,m.
If f € ABvPm (B then

ALy, Omy

[ VG 2P () < € flLagy

Moreover, Trace(AbL b (Byt)) = Abm(B,,), for 1 <pj <oo, j=1,...,m.

Proof. Note the first assertion of theorem is a direct mixed norm generalization of
Lemma 4 and we will provide only sketch of the proof.

The proof of the first part is based on the following estimate which can be
obtained from Lemma 1 applied (n — 2) times separately by each variable and is
based also on the fact that

Pit1

</Bn 1f (21, 2m) P (1 — |Zi|)°‘idu(zi)) it

is subharmonic by z;41 when other variables are fixed.

o0 oo o0
(Z sup (Z sup (Z sup | f(z1,- -5 2m)|P?
j— z2m €D (ug,, ,21) ka—1 22€D(uk2,2r) k=1 z1E€D (ug, ,21)

(1 — g, [2) )7 (1= Jug,y [2) 22T B2 )T (1 = [, [2) 2T <

AAAAA

<C ||f|27;1 ----- pm < OQ,
aq am
where 0 < p; < o0, a; > —1, 4 = 1,...,m. Taking only those members of this

multidimensional sum that have the same indexes, that is, k; = - - - = k,,,, we arrive
at estimates as follows

o0 m

, 5 m ~ p
sup [ f(z )P (L= )T S CYFI o s 7= D (a + 0+ 1),
k=1 ZED(’U,]C72T) (=31 am




12 Romi F. Shamoyan and Olivera R. Mihi¢

and hence again applying Lemma 1 we finally have

1 G- 2 s, LSCS s (e P (1= |2 < I
L—1 #€D(uk, 2r) al,.am

To prove the reverse estimate we restrict ourselves to the case of the biball, that
is, By X B,. The general case can be considered similarly. The expansion is done
again with the help of the expanded Bergman projection.

For every s > —1, we have as above f(z,z) = g(z), where

g(w)(1 = Jw])*C D=0 D dy (w)
) /B [T5-1 (1= (z5, @) +nt

f(z1,22) =C

by Bergman representation formula (see [23, Theorem 2.11]). Using duality, we

show that f € ARV if g € AP2(B,). Let W € La%,, L+ - =1, i =1,2. Then
/ Jwr,w2) W (wy, we) (1 — Jwi])™ (1 — |ws])*dv(wy, wo) (7)

/ / (wr,ws)] (1 = Jwt )™ (1 = Jeva])°

/ lg(w)[(1 — [w])*C++ D= D dy (w)
B, [T5—1 11— (wj, w)|s+n+t

< Clon) [ lgw](a ~ fulesm o

n

/ / W(ws, wo) (A — [wn )1 (1 — wa)*2di(ws, wa) )y

1 = (@, w) [+ 1 = (g, w) [+ H

f f lI’(whwz (A~ |wi D (1w ])*2dy(w,wa)
B, JB, T (U=(wr,0)) T (1= (wz,w))s i1

Then by first part of theorem

Let F(w1,ws)

q
F( ) Aa22+(n+1+a1)q2 ’ (8)

where & = oy — quon + 8q1, G2 = g — gaap + Sq2. Since it can be easily shown
that if ¥ € LIV% then F(wi,wy) € AL% .

a1, a2
Using the fact that (Lgll’?gQ)

* = L2122 (see [3]), it remains to use in (7) Holder’s
inequality with go and ps and use (8) choosing appropriate s to get what we need,

1,002

f € ABvP2 . We omit calculations. The theorem is proved. O
A complete analogue of the last theorem is also valid for p; <1, j=1,...,m

case.
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-1 )
Theorem 5. Lety = ozm—&—Z;n:l (n—l—l—i—aj)’;—’;‘, aj >—landp; <1, j=1,...,m.
If f e Agll%":n(B,T), then

Moreover, Trace(ARL B (Byt)) = Abm(B,,), forp; <1,j=1,...,m.

5oy Omy

The proof of this assertion is based on representations of bounded linear func-
tionals for analytic mixed norm spaces in polyballs we introduced above for p; <
1, j=1,...,m case. We provided the formulation for completeness of our exposi-
tion. The complete proof of this last will be presented in a separate paper.

We can easily notice that generally sharp trace theorems for analytic spaces we
considered above will be valid for any G domain and any G X --- x G polydomain
for which an appropriate substitution of r-lattice we had above in the ball and
appropriate Bergman type integral representations can be found. By this we mean
substitutions of properties of mentioned r-lattices in the ball we enlisted in text
above that were used by us during the proof of trace theorems in B, X -+ X By,
polyballs.

3 Traces of the harmonic Bergman function spaces
in the unit ball of R” and R"!

In this section we will provide descriptions of traces of products of harmonic Bergman
classes in the unit ball of R” and in R™*!. Since these results are very similar to
those we obtained in holomorphic case we mostly restrict ourselves to formulations
and short sketches of proofs.

Let B be the unit ball in R”, that is B = {& = (z1,...,2,) € R" : |z]| =
(7 |#i?)z <1}, and S*°' = OB = {& = (z1,...,7,) € R : |z| = 1}, and
r=rz',r = |z| € (0,1), 2’ € S"1. We consider as usual the normalized Lebesgue
measure on B as dx = dx; ---dx, or in the sphere coordinates as " 'drdz’, so

that )
/ de = / / r"Ydrds’ = 1.
B 0 Jsn-1

Let h(B) be the space of all harmonic functions on B. We consider Banach Bergman
spaces in B (see [6], [7]),

1
1 P
AL(B) = {f € h(B) : |[fllp.a == ( || iseapa- r)ar“drda:’) < oo},
0 Sn—l
when 1 < p < oocand 0 <a < oo and for p=o0 and 0 < a < co we have

||f||oo,oz ‘= sup |f<x)|(1 - ‘.’L‘|)a < 0.
z€B
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We now introduce a new Q. (z,y) function that serve as a nice substitution of
Bergman kernel for harmonic functions in the unit ball of R™ (see [7]),

Qalz,y) = 2502 ot 14 R4 0/2) 09,

ZT(a+ )Lk +n/2) "7

Note that = ra’ and y = py’, Qa(z,y) = Qa(y, ) and ||Qalla» = 1, where I is

the Gamma function of Euler and zi]f)(y’) is a zonal harmonic of order k, (see [7]).
8223 -
2 W) =20 @y ),
=1

where y*) and y(® are so called spherical harmonics, see [7]. Various nice properties
of spherical harmonics can be found in [18] and [19].

From properties of these spherical harmonics it follows that every harmonic
function in B has an expansion

f@) = fra') = 3 rhey® (),
k=0

where ¢;y*) = Z‘;il c,iyj(k) and Ui"zo{y§k), . ,yé’?} form a orthonormal basis in
L?(S"1) (by dz’ measure), see [19].

We need the following result from [7].
Theorem A. Let 1 <p<oo and 0 < a <oco. If f € AR(B), then

1
f(x) :/O /Sm(l*pz)“Qa(ﬂs,y)f(py’)p”’ldpdy/-

Theorem A provides Bergman type representation for harmonic Bergman spaces
in the unit ball.

In order to get a sharp trace theorem for this case we introduce a modified
Q. function to form an analogue of the expanded Bergman projection we consid-
ered above, that is, Qa(%,y) Let a; > 0 for j = 1,...,m and denote by

A 4, (Bx--x B) the space of all functions f harmonic by each variable in B
such that .
sup [ f(@r,e s wn)| [T J2if?)* < oo
z;€B,i=1,....m i=1
Theorem 6. Let oy > 0 for j = 1,...,m. Then Trace(A3, , (B™)) =
AZ}’L:l @ (B)

Proof. One implication is obvious. We show the reverse by using Theorem A.
Indeed, for g € AR (B) we have f(x,...,z) = g(z) since we put
ja

xl_'_..._i_x

1
fl@n, . o) :/O . Qs( =o)X = p?)P " g(py)dpdy
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where 3 can be large enough. Hence we get obviously

371 + - Bl
WL(BHL) g Bsup / Q )(1 — pQ)ﬁ Z]:1 J
T, €EB 1 .,m Sn

[1(1 - foul)dpdy.

k=1
We need an estimate for the expanded (g kernel. For that reason we apply the
following inequality can be found in [7].

c c(1 — pr)~18} 1
Qoly) < o —ys * rpa —y T T (L= pr)ee
where z =raz’, y=py’, 5> 0.

We will need the following two classical estimates which can be obtained by
direct calculations,

/ de’ < >n—1,pre€(0,1) (10)
n — T
gt rpa’ —y'P (A= pryp—rn =

9)

and
1

/ (1—pr) (1 —=p)Pdp < c(1—r) P 3> 1 a>p+1,prc(0,1). (11)
0

For 7 := L1t where x; € B, |;] < 1, using (9) we have

1
/ Qp(T,y)(1 — p*)P " 2i= % dpdy < I + I + I.
0 Sn

We estimate I and I3. The estimate for I; can be obtained similarly. We have

O e e L
R A CE TS (- g
C/l (1 _ pQ)E—E;."zl ajdp _ C/l (1 _ p)B—Z}L ajdp < c1
0 (M)”ﬁ o (IT7Ly /1~ laslp)t*? — T2 (1= )

)i p)P-Eima
I2<C/ / 1 1 Jdpdy C/ 1 ]dp,
gn-1 |7"px y'|nth 1, pr)BH

T = W, and we continue as for I3.
Note above we used an elementary estimate
(1= r)tdr - c
[Tz (= rpr) = [T, (1 — pp)or—Belt+D)?
t> -1, Y B =1, ap > (t+ )bk, pr € (0,1), k =1,...,m, which follows
directly from Holder’s inequality for m functions. Note we used (12) for f; =

146
Wxﬂ’ = ,6’72?21 g, o = %,k =1,...,m. The theorem is proved. [
k=1

<

(12)
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Let hAZ (B x --- x B) = {f € h(B™):

/B/B"'/B/B\f(xl,...,xm)|p

[Tl (e - )l - dfo|dat - - de, < 00},
k=1
Traces of hA% (B x --- x B) classes for p < oo can be described in a following
manner.
Theorem 7. Letp > 1, meN, a; > -1, j=1,...,m. Then Trace(hA%(Bm)) =

hApZm ops (D), where = (n+1)(m—1).

The proof follows directly from arguments we provided above for holomorphic
case. {D(ay,r)} families from there should be replaced by dyadic cubes {Ag}52 ,,
Ui—y Ak = B such a decomposition can be found in [18], [19] and we should use
the estimate

u(wr < S

s / |u(z)|Pdz, u € h(B), a € R", 0 <p,r < oo (see [1]).
lz—a|<r

As usual, denote by Ri“ the upper half-space in R"t! Ri“ =
{x = (21,...,Zn,Tny1) € R*TL 2,11 > 0}, the Lebesque measure in R™*! will be
denoted by dz = dz'dxy,4 1, do’ = dxy - - dx,.
k+1 . .
Let Q% (x,y) = CkgTﬂP(x/ — Y, Znt1+Ynt1), k> 0 which is defined on R x

xR P(a 2p41) = ——22F——— is a usual Poisson kernel on R, (see
(2 P+a7 1) 2
[7)-

We introduce harmonic Bergman classes on R"*! and on product spaces as
follows. Let 0 < p < 00, a > —1,

AP (Rn'H) = {f is harmonic in Ri"'l :
0= [ [ i) Paidel o < oo,
and AP ((RTT x -+« x RT™1)) = {f is harmonic in R} x .- x R}

/ 1 m P
/ / / / (@), @, @y s ) [P
m

H ok )ordl - dal dak - dall, < oo} (see [7]).

Theorem B. (sec [7]) Let f € AL(RTHY), a > 1, k> %ﬁ“—(n—i—l), 0<p<l1
or k> H'TO‘ —1, 1 < p < oo. Then the following integral representation holds

f) = [, £@Q .0k e
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Theorem B provides Bergman type representation for harmonic Bergman spaces
. +1
in R}

Using this assertion we will get description of traces Bergman type classes on
R % xR We will use expanded projections (integral operators). Expanded
Q" (y, z) kernel in R"*! will have the following form

TEENEY

k o 8’““ H;'nzl(anrl + yfl+1) " ) n+1
Q (y17~~~7ym;x)—ck - A Y eR 3
AP TLTT™ (1 — o712 g y2y5El

Tnt1 Hj:l('x - y1| + (xn-&-l + yn-‘,—l) ) 7m

j=1...,m.

Obviously Q*(y, ..., y,x) = Q¥(x,y), x,y € RY™, (see [7)).
The expanded Bergman projection type operator has the form

(TH Y1y Ym) = /]R"‘*’l f(z)Qk(yl, .. ,ym,x)xﬁﬂdx'dxnﬂ,yj € R,
+

j=1...,m.

We will provide now descriptions of traces of harmonic Bergman classes on products
of R™+1,

Theorem 8. Let0 <p<oo, meN, a; > -1, j=1,...,m. Then

Trace( AL, R x o x RYTH) = AL,

+1
ey g+ (nt+1)(m—1) (Ri )

1reemstt (
Remark 2. We would like to mention finally that sharp trace theorems in harmonic
Bergman spaces we formulated at the second part of our paper can be at least par-
tially extended to mixed norm classes of harmonic functions which can be defined in
appropriate manner as we did in holomorphic spaces case above. The formulations
of these assertions and arguments that are needed for proofs of these assertions are
very close or even repeat those we used in holomorphic case above and we would
like to omit details leaving them to readers.
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