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ON TRACES OF ANALYTIC Qp TYPE SPACES,

MIXED NORM SPACES AND HARMONIC

BERGMAN CLASSES ON CERTAIN POLYDOMAINS

Romi F. Shamoyan and Olivera R. Mihić1

Abstract

In this paper, we introduce new Qp type spaces and mixed norm analytic
function spaces on polyballs and describe completely their traces on unit ball.
Complete descriptions of traces of harmonic Bergman classes on products of
unit balls of Rn and products of Rn+1

+ halfspaces will be also provided.

1 Introduction and preliminaries

The goal of this paper is to give complete descriptions of traces of certain Qp type
spaces and mixed norm spaces of analytic functions in polyballs. In recent years
many papers were devoted to the study of Qp type spaces on the unit disk and the
unit ball (see, for example, [7], [11], [21], [22], [23] and the references there). The
mixed norm classes in polyballs that we introduce and study in this paper have their
origins in real analysis where they were investigated intensively for many years (see
e.g. [3], [9], [10], [20]). They also can serve as an example of direct generalizations
of well-studied analytic Bergman classes in the polydisk and in the unit ball at
the same time (see [23], [7]). We also observe that for n = 1 the mentioned trace
problem completely coincide with the well known problem of diagonal map which
previously has been considered by many authors [5], [7], [8], [12], [13], [14]. Various
applications of theorems of the diagonal map are well known [2], [7], [15]. This
paper can be considered as a continuation of [16] and [17] where we considered and
solved such a trace problem for classical Bergman classes in polyballs and some new
function classes defined with the help of the Luzin area operator and the Bergman
metric ball. Basic properties of the so called r-lattice in the Bergman metric ball
can be found in [23] and are playing an important role in all our proofs. At the end
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of paper, the complete descriptions of traces of harmonic functions on the products
of unit balls of Rn will be also provided.

Throughout the paper, we write C (sometimes with indexes) to denote a positive
constant which might be different at each occurrence (even in a chain of inequalities)
but is independent of the functions or variables being discussed.

Let C denote the set of complex numbers and let Cn = C × · · · × C denote
the Euclidean space of complex dimension n. The open unit ball in Cn is the set
Bn = {z ∈ Cn : |z| < 1}. We denote by H(Bn) the space of holomorphic functions
on the open unit ball in Cn. Moreover, let dν denote the Lebesgue measure on Bn

normalized such that ν(Bn) = 1 and for any α ∈ R, let dνα(z) = cα(1−|z|2)αdν(z)
for z ∈ Bn. Here, if α ≤ −1, cα = 1 and if α > −1, cα = Γ(n+α+1)

Γ(n+1)Γ(α+1) is the
normalizing constant so that να has unit total mass. The Bergman metric on Bn is

β(z, w) =
1
2

log
1 + |ϕz(w)|
1− |ϕz(w)| ,

where ϕz is the Möbius transformation of Bn that interchanges 0 and z. Let
D(a, r) = {z ∈ Bn : β(z, a) < r} denote the Bergman metric ball centered at
a ∈ Bn with radius r > 0.

The proofs of the following properties of the Bergman balls can be found in [23]
(see lemmas 1.24, 2.20, 2.24 and 2.27 in [23]).

Lemma 1. (a) There exists a positive number N ≥ 1 such that for any 0 < r ≤ 1
we can find a sequence {vk}∞k=1 in Bn to be r-lattice in the Bergman metric of Bn.
This means that Bn = ∪∞k=1D(vk, r), D(vl, r/4) ∩D(vk, r/4) = ∅ if k 6= l and each
z ∈ Bn belongs to at most N of the sets D(vk, 2r).
(b) For any r > 0 there is a constant C > 0 so that 1

C ≤ | 1−〈z,w〉
1−〈z,v〉 | ≤ C for all

z ∈ Bn and all w, v with β(w, v) < r.
(c) For any α > −1 and r > 0,

∫
D(z,r)

(1 − |w|2)αdν(w) is comparable with (1 −
|z|2)n+1+α for all z ∈ Bn.
(d) Suppose r > 0 and p > 0 and α > −1. Then there is a constant C > 0 such that

|f(z)|p ≤ C

(1− |z|2)n+1+α

∫

D(z,r)

|f(w)|pdνα(w),

for all f ∈ H(Bn) and all z ∈ Bn.

The following estimate is well-known and will be used often in the paper. For a
proof, see [23], Theorem 1.12. The conclusion about the behaviour of the constants
as t → −1 or s → 0 follows from a careful examination of the above mentioned
proof in [23].

Lemma 2. Suppose that c > 0 and t > −1. Then there are positive constants
C1, C2 such that

C1
Γ(t + 1)Γ(c)
(1− |z|2)c

≤
∫

Bn

1− |w|2)t

|1− 〈z, w〉|n+1+t+c
dν(w) ≤ C2

Γ(t + 1)Γ(c)
(1− |z|2)c

,
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for all z ∈ Bn. The constants C1 and C2 depend on n, c and t and they are bounded
as t → −1 and s → 0.

We also need the following estimate, a proof of which can be found in [11].

Lemma 3. Suppose that t > −1, s > 0 and 0 ≤ r < n + 1 + t. Then there is a
constant C > 0 such that for all w, v ∈ Bn,

∫

Bn

(1− |z|)tdν(z)
|1− 〈w, z〉|n+1+t+s |1− 〈v, z〉|r ≤

C

(1− |w|2)s |1− 〈w, v〉|r .

For α > −1 and p > 0 the weighted Bergman space Ap
α consists of holomorphic

functions f in Lp(Bn, dνα), that is, Ap
α = Lp(Bn, dνα) ∩ H(Bn). It is well-known

that Ap
α is a closed subspace of Lp(Bn, dνα). See [23, Chapter 2] for more details.

Definition 1. Let X and Y be Banach analytic function spaces on the ball and
the polyball so that X ⊂ H(Bn) and Y ⊂ H((Bn)m). Then X is called the trace of
Y, if for every function f, f ∈ Y, f(z, . . . , z) is in X and the reverse is also true, for
every function g, g ∈ X there exists a function f in Y such that f(z, . . . , z) = g(z)
for all z ∈ Bn.

2 Traces of Qp type spaces and mixed norm
analytic function spaces on polyballs

From now on, we fix an integer m ≥ 1. For any two m-tuples of real numbers
a = (a1, . . . , am), and b = (b1, . . . , bm), we define the integral operator

(Sa,bf)(z1, . . . , zm) =
m∏

j=1

(1− |zj |2)aj

∫

Bn

f(w)(1− |w|2)−n−1+
∑m

j=1 bj

∏m
j=1(1− 〈zj , w〉)aj+bj

dν(w),

where z1, . . . , zm are in Bn and f is a function in L1(Bn, dν−n−1−∑m
j=1 bj

). Note
that for such f, the function Sa,bf is defined on (Bn)m, the product of m copies of
Bn. The operator Sa,b can be called an expanded Bergman projection in the unit
ball (see [23, Chapter 2]).

The following two propositions study the boundedness of Sa,b from certain Lp

spaces on Bn into certain Ap spaces of (Bn)m. Note that for m = 1 and rj = 0, j =
1, . . . , m these assertions are well known (see, for example, [23]).

Proposition 1. Let 1 < p < ∞. Suppose s1, . . . , sm > −1 and r1, . . . , rm ≥ 0 are
such that for each j = 1, . . . , m, we have −paj < min{sj + 1, sj + 1 + n− rj} and
msj +1 < p(mbj −n)− (m− 1)(n+1). Denote t = (m− 1)(n+1)+

∑m
j=1 sj . Then

there is a constant C > 0 such that
∫

Bn

· · ·
∫

Bn

|(Sa,bf)(z1, . . . , zm)|p
m∏

j=1

(1− |zj |2)sj

|1− 〈uj , zj〉|rj
dν(z1) · · · dν(zm)
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≤ C

∫

Bn

|f(w)|p |1− |w|2|t∏m
j=1 |1− 〈uj , w〉|rj

dν(w),

for all f ∈ Lp(Bn, dνt) and u1, . . . , um ∈ Bn.

Proof. Let q denote the exponential conjugate of p, that is 1
p + 1

q = 1. Choose a
positive number γ such that pγ < min{p(mbj − n) − (m − 1)(n − 1) − msj − 1 :
j = 1, . . . , m}. Put α = 1

m (γ − 1
q ) and β = −n − 1 +

∑m
j=1 bj −mα = −n − 1 +∑m

j=1 bj − γ + 1
q . For each j, choose ej such that

n + 1
mq

+ α < ej <
n + 1
mq

+ α + min{paj + sj + 1
p

,
paj + sj + 1 + nprj

p
}.

It is possible to choose such an ej since paj +sj +1 > 0. Further, let dj = aj +bj−ej .
For any measurable function f on Bn and z1, . . . , zm ∈ Bn, using Hölder’s inequality,
we have ∫

Bn

|f(w)| (1− |w|
2)−n−1+

∑m
j=1 bj

∏m
j=1(1− 〈zj , w〉)aj+bj

dν(w)

=
∫

Bn

|f(w)|(1− |w|2)β

∏m
j=1 |1− 〈zj , w〉|dj

m∏

j=1

(1− |w|2)α

(1− 〈zj , w〉)ej
dν(w)

≤
(∫

Bn

|f(w)|p(1− |w|2)pβ

∏m
j=1 |1− 〈zj , w〉|pdj

dν(w)

) 1
p m∏

j=1

(∫

Bn

(1− |w|2)mqα

(1− 〈zj , w〉)mqej
dν(w)

) 1
mq

.

For each j, since mqα = qµ − 1 > −1 and mqej > n + 1 + mqα, Lemma 2 shows
that ∫

Bn

(1− |w|2)mqα

(1− 〈zj , w〉)mqej
dν(w) ≤ C(1− |zj |2)n+1+mqα−mqej ,

where C is independent of z1, . . . , zm. This implies that

|(Sa,bf)(z1, . . . , zm)|p ≤

≤ C

∫

Bn

|f(w)|p(1− |w|2)pβ

∏m
j=1 |1− 〈zj , w〉|pdj

dν(w)
m∏

j=1

(|1− |zj |2)
p(n+1)

mq +p(α−ej+aj).

Now by Fubini’s theorem

∫

Bn

· · ·
∫

Bn

|(Sa,bf)(z1, . . . , zm)|p
m∏

j=1

(1− |zj |2)sj

|1− 〈uj , zj〉|rj
dν(z1) · · · dν(zm) (1)

≤ C

∫

Bn

{
m∏

j=1

∫

Bn

(1− |zj |2)
p(n+1)

mq +p(α−ej+aj)+sj

|1− 〈zj , w〉|pdj |1− 〈uj , zj〉|rj
dν(zj)}|f(w)|p(1− |w|2)pβdν(w).
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For each j, by the choice of ej and γ, we have p(n+1)
mq + p(α − ej + aj) + sj > −1

and rj < n + 1 + p(n+1)
mq + p(α− ej + aj) + sj < pdj . Applying Lemma 3, we have

∫

Bn

(1− |zj |2)
p(n+1)

mq +p(α−ej+aj)+sj

|1− 〈zj , w〉|pdj |1− 〈uj , zj〉|rj
dν(zj)

≤ C
(1− |w|2)n+1+

p(n+1)
mq +p(α−ej+aj)+sj−pdj

|1− 〈uj , w〉|rj
(2)

= C
(1− |w|2) pγ−p(mbj−n)+(m−1)(n+1)+(msj+1)

m

|1− 〈uj , w〉|rj
,

where C is independent of w and uj . From (1) and (2) and the fact that

m∑

j=1

pγ − p(mbj − n) + (m− 1)(n + 1) + (msj + 1)
m

= (m− 1)(n + 1)
m∑

j=1

sj − p(
m∑

j=1

bj − µ− n) + 1 = (m− 1)(n + 1) +
m∑

j=1

sj − pβ,

the conclusion of the proposition follows.

For the case 0 < p ≤ 1, we have the following result.

Proposition 2. Let 0 < p ≤ 1. Suppose that s1, . . . , sm > −1 and r1, . . . , rm ≥ 0
are such that for each j = 1, . . . ,m, we have −paj < min{sj + 1, sj + 1 + n − rj}
and sj +1 < pbj−n). Denote t = (m−1)(n+1)+

∑m
j=1 sj . Then there is a constant

C > 0 such that
∫

Bn

· · ·
∫

Bn

|(Sa,bf)(z1, . . . , zm)|p
m∏

j=1

(1− |zj |2)sj

|1− 〈uj , zj〉|rj
dν(z1) · · · dν(zm)

≤ C

∫

Bn

|f(w)|p (1− |w|2)t

∏m
j=1 |1− 〈uj , w〉|rj

dν(w),

for all f ∈ Ap(Bn, dνt) and u1, . . . , um ∈ Bn.

Proof. Fix 0 < r ≤ 1 and choose {vk}∞k=1 to be an r-lattice in the Bergman metric
of Bn. This means that Bn = ∪∞k=1D(vk, r) and D(vl, r/4) ∩ D(vk, r/4) = ∅ if
k 6= l and there is an integer N ≥ 1 such that each z ∈ Bn belongs to at most N
of the sets D(vk, 2r) (see Lemma 1). For any function f ∈ L1(Bn, dνn) and any
z1, . . . , zm ∈ Bn we have

|(Sa,bf)(z1, . . . , zm)| ≤
m∏

j=1

(1−|zj |2)aj

∞∑

k=1

∫

D(vk,r)

|f(w)|p(1− |w|2)−n−1+
∑m

j=1 bj

∏m
j=1 |1− 〈zj , w〉|aj+bj

dν(w).



6 Romi F. Shamoyan and Olivera R. Mihić

By Lemma 1 (b) there is a constant C > 0 so that for each j = 1, . . . , m and
k ≥ 1, 1

C ≤ | 1−〈zj ,w〉
1−〈zj ,vk〉 | ≤ C for all w ∈ D(vk, r). Also by Lemma 1 (c),

∫
D(vk,r)

(1−
|w|2)−n−1+

∑m
j=1 bj dν(w) is comparable with (1− |vk|2)

∑m
j=1 bj . Thus we obtain

|(Sa,bf)(z1, . . . , zm)| ≤

≤ C

∞∑

k=1

m∏

j=1

(1− |zj |2)aj

|1− 〈zj , vk〉|aj+bj

∫

D(vk,r)

|f(w)|p(1− |w|2)−n−1+
∑m

j=1 bj dν(w)

≤ C

∞∑

k=1

m∏

j=1

(1− |zj |2)aj (1− |vk|2)
∑m

j=1 bj

|1− 〈zj , vk〉|aj+bj
sup{|f(w)|p : w ∈ D(vk, r)}.

Now since 0 < p ≤ 1, using the inequality (x1 +x2 + . . .)p ≤ xp
1 +xp

2 + . . . , which
is valid for non-negative numbers x1, x2, . . . , we get

|(Sa,bf)(z1, . . . , zm)|p
m∏

j=1

1
|1− 〈uj , zj〉|rj

≤ C

∞∑

k=1

m∏

j=1

(1− |zj |2)paj (1− |vk|2)p
∑m

j=1 bj

|1− 〈zj , vk〉|paj+pbj |1− 〈uj , zj〉|rj
sup{|f(w)|p : w ∈ D(vk, r)}.

Integrating with respect to dνs1(z1) · · · dνsm(zm) and using Lemma 3 (note that by
assumption, paj + sj > −1 and paj + pbj > n + 1 + paj + sj > rj), we obtain

∫

Bn

· · ·
∫

Bn

|(Sa,bf)(z1, . . . , zm)|p
m∏

j=1

(1− |zj |2)sj

|1− 〈uj , zj〉|rj
dν(z1) · · · dν(zm)

≤ C

∞∑

k=1

(
m∏

j=1

(1− |vk|2)n+1+sj−pbj

|1− 〈uj , vk〉|rj
)(1− |vk|2)p

∑m
j=1 bj sup{|f(w)|p : w ∈ D(vk, r)}

≤ C

∞∑

k=1

(1− |vk|2)m(n+1)+
∑m

k=1 sj

∏m
j=1 |1− 〈uj , vk〉|rj

sup{|f(w)|p : w ∈ D(vk, r)}.

By Lemma 1 (b), 1 − |vk|2 is comparable with 1 − |w|2 and |1 − 〈uj , vk〉| when
w ∈ D(vk, r). This together with Lemma 1 (d) implies that, if f ∈ H(Bn), then

∫

Bn

· · ·
∫

Bn

|(Sa,bf)(z1, . . . , zm)|p
m∏

j=1

(1− |zj |2)sj

|1− 〈uj , zj〉|rj
dν(z1) · · · dν(zm)

≤ C

∞∑

k=1

sup{|f(w)|p (1− |w|2)m(n+1)+
∑m

k=1 sj

∏m
j=1 |1− 〈uj , w〉|rj

: w ∈ D(vk, r)}

≤ C

∞∑

k=1

∫

D(vk,2r)

|f(w)|p (1− |w|2)(m−1)(n+1)+
∑m

k=1 sj

∏m
j=1 |1− 〈uj , w〉|rj

dν(w)
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≤ C

∫

Bn

|f(w)|p (1− |w|2)(m−1)(n+1)+
∑m

k=1 sj

∏m
j=1 |1− 〈uj , w〉|rj

dν(w).

To derive the last inequality we have used the fact that each z ∈ Bn belongs to at
most N of the sets {D(vk, 2r) : k = 1, 2, . . .}.
Remark 1. The condition msj + 1 < p(mbj − n) − (m − 1)(n + 1) − n(1 − p) is
equivalent to sj+1 < mbj−n. This shows that there is an extra summand n(1−p) in
the condition on the sj ’s compared to that in Proposition 1. This extra summand
vanishes when p = 1. Also note that in Proposition 2 we require that f to be
holomorphic, which is not needed in Proposition 1.

Lemma 4. Let 0 < p < ∞. Suppose that s1, . . . , sm > −1 are real numbers and let
t = (m− 1)(n + 1) +

∑m
j=1 sj . Then there exists a constant C > 0 such that for all

f ∈ H((Bn)m),
∫

Bn

|f(z, . . . , z)|pdνt(z) ≤ C

∫

Bn

· · ·
∫

Bn

|f(z1, . . . , zm)|pdνs1(z1) · · · dνsm
(zm).

Proof. Let 0 < r < 1 and choose {uk}∞k=1 to be an r-lattice in the Bergman metric
of Bn as in the proof of Proposition 2. For any integer k ≥ 1, νt(D(uk, r)) is
comparable with (1−|uk|2)n+1+t, which is in turn comparable with (1−|w|2)n+1+t

for any w ∈ D(uk, r) (see Lemma 1). Also, Bn = ∪∞k=1D(uk, r). Hence we have
∫

Bn

|f(z, . . . , z)|pdνt(z) ≤
∞∑

k=1

∫

D(uk,r)

|f(z, . . . , z)|pdνt(z)

≤ C

∞∑

k=1

(1− |uk|2)n+1+t sup{|f(z, . . . , z)|p : z ∈ D(uk, r)}

≤ C

∞∑

k=1

sup{
m∏

j=1

(1− |zj |2)n+1+sj |f(z1, . . . , zm)|p : z1, . . . , zm ∈ D(uk, r)}.

Using Lemma 1 (d), we see that, for z1, . . . , zm ∈ D(uk, r),

m∏

j=1

(1− |zj |2)n+1+sj |f(z1, . . . , zm)|p ≤

≤ C

∫

D(zj ,r)

· · ·
∫

D(zm,r)

|f(z1, . . . , zm)|pdνs1(z1) · · · dνsm(zm)

≤ C

∫

D(uk,2r)

· · ·
∫

D(uk,2r)

|f(z1, . . . , zm)|pdνs1(z1) · · · dνsm(zm).

Therefore
∫

Bn
|f(z1, . . . , zm)|pdνt(z)

≤ C

∞∑

k=1

∫

D(uk,2r)

· · ·
∫

D(uk,2r)

|f(z1, . . . , zm)|pdνs1(z1) · · · dνsm(zm)



8 Romi F. Shamoyan and Olivera R. Mihić

≤ C

∞∑

k=1

∫

Bn

· · ·
∫

Bn

|f(z1, . . . , zm)|pdνs1(z1) · · · dνsm(zm),

where the last inequality follows from the fact that each w ∈ Bn belongs to at most
N of the sets {D(vk, 2r) : k = 1, 2, . . .}.

The following result follows directly from Lemma 4 and Propositions 1 and 2
and was obtained by us in [17].

Theorem 1. Let 0 < p < ∞. Suppose that s1, . . . , sm > −1 are real num-
bers and let t = (m − 1)(n + 1) +

∑m
j=1 sj . Then Ap(Bn, dνt) is the trace of

Ap((Bn)m), dνs1 · · · dνsm
).

Let m ≥ 1 be an integer. Suppose µ is a positive Borel measure on (Bn)m

and (r1, . . . , rm) is a m-tuple of positive real numbers. We say that µ is a bounded
(r1, . . . , rm)-Carleson measure if

sup{ µ(E(a1)× · · · × E(am))
(1− |a1|)r1 · · · (1− |am|)rm

: a1, . . . , am ∈ Bn} < ∞, (3)

where E(0) = Bn and for a ∈ Bn \ {0}, E(a) = {z ∈ Bn : |1 − 〈z, a
|a| 〉| < 1 − |a|}.

The following result is proved in [23] for the case m = 1 but the same proof also
works for m ≥ 1.

Theorem 2. Let 0 < τ1, . . . , τm < ∞ and 0 < r1, . . . , rm < ∞. A positive Borel
measure µ on (Bn)m is a bounded (r1, . . . , rm)-Carleson measure if and only if

sup{
∫

Bn

· · ·
∫

Bn

(1− |aj |)τj

|1− 〈aj , zj〉|τj+rj
dµ(z1, . . . , zm) : a1, . . . , am ∈ Bn} < ∞. (4)

Furthermore, the two suprema in (3) and (4) are equivalent.

We now introduce Qp type spaces in polyballs. Let 0 < p < ∞. For the real num-
bers s1, . . . , sm > −1 and r1, . . . , rm > 0, we define Mp

r1,...,rk
((Bn)m, dνs1 · · · dνsm)

to be the space of all measurable functions f on (Bn)m for which the measure
dµf = |f |pdνs1 · · · dνsm is a bounded (r1, . . . , rm)-Carleson measure. For any f ∈
Mp

r1,...,rk
((Bn)m, dνs1 · · · dνsm), we define

|||f |||p = sup{ µf (E(a1)× · · · × E(am))
(1− |a1|)r1 · · · (1− |am|)rm

: a1, . . . , am ∈ Bn} < ∞.

It can be checked that when 1 ≤ p < ∞, the space Mp
r1,...,rk

((Bn)m, dνs1 · · · dνsm)
is a Banach space with the above norm. For 0 < p < 1, it is a complete metric
given by d(f, g) = |||f − g|||p. The space HMp

r1,...,rk
((Bn)m, dνs1 · · · dνsm) is the

intersection of H((Bn)m) with Mp
r1,...,rk

((Bn)m, dνs1 · · · dνsm).

Proposition 3. Let 0 < p < ∞. Suppose that s1, . . . , sm ≥ −1 and r1, . . . , rm ≥ 0
are such that for each j = 1, . . . , m, we have −paj < min{sj + 1, sj + 1 + n − rj}
and msj + 1 < p(mbj − n) − (m − 1)(n + 1) when 1 ≤ p < ∞ and −paj <
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min{sj + 1, sj + 1 + n − rj} and sj + 1 < pbj − n when 0 < p < 1. Let t =
(m − 1)(n + 1) +

∑m
j=1 sj and r =

∑m
j=1 rj . Then Sa,b is a bounded operator from

HMp
r (Bn, dνt) into Mp

r1,...,rk
((Bn)m, dνs1 · · · dνsm

).

Proof. For j = 1, . . . ,m, since −paj < sj + 1 + n − rj , we can choose τj > 0 such
that −paj < sj + 1 + n − (rj + τj). By Propositions 1 and 2, there is a constant
C > 0 such that for any f ∈ HMp(Bn, dνt) and u1, . . . , u2 ∈ Bn,

∫

Bn

· · ·
∫

Bn

|(Sa,bf)(z1, . . . , zm)|p
m∏

j=1

(1− |zj |2)sj

|1− 〈uj , zj〉|τj+rj
dν(z1) · · · dν(zm)

≤ C

∫

Bn

|f(w)|p (1− |w|2)t

∏m
j=1 |1− 〈uj , w〉|τj+rj

dν(w).

Multiplying both sides with
∏m

j=1(1− |uj |2)τj we obtain

∫

Bn

· · ·
∫

Bn

|(Sa,bf)(z1, . . . , zm)|p
m∏

j=1

(1− |zj |2)sj (1− |uj |2)τj

|1− 〈uj , zj〉|τj+rj
dν(z1) · · · dν(zm)

≤ C

∫

Bn

|f(w)|p
m∏

j=1

(1− |uj |2)τj

|1− 〈uj , w〉|τj+rj
(1− |w|)tdν(w). (5)

Since
∑m

j=1
rj

r = 1, applying Hölder’s inequality and Theorem 2, we get

∫

Bn

|f(w)|p
m∏

j=1

(1− |uj |2)τj (1− |w|)t

|1− 〈uj , w〉|τj+rj
dν(w)

≤
m∏

j=1

{
∫

Bn

|f(w)|p(1− |w|2)t (1− |uj |2)(τjr)/rj

|1− 〈uj , w〉|(τjr)/rj+rj
dν(w)}rj/r

≤ C
∏m

j=1(|||f |||p)rj/r = C |||f |||p, where C is independent of f and u1, . . . , um.
From this and (5), we get

∫

Bn

· · ·
∫

Bn

|(Sa,bf)(z1, . . . , zm)|p
m∏

j=1

(1− |zj |2)sj (1− |uj |2)τj

|1− 〈uj , z〉|τj+rj
dνs1(z1) · · · dνsm(zm)

≤ C|||f |||p

for all u1, . . . , um ∈ Bn. The statement, then follows from Theorem 2.

Theorem 3. Let 0 < p < ∞. Suppose that s1, . . . , sm > −1 and r1, . . . , rm > 0 are
such that rj < n + 1 + sj for j = 1, . . . , m. Put t = (m − 1)(n + 1) +

∑m
j=1 sj and

r =
∑m

j=1 rj . Then Trace(HMp
r1,...,rm

((Bn)m, dνs1 · · · dνsm)) = HMp
r (Bn, dνt).
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Proof. For any a ∈ Bn and f ∈ HMp
r1,...,rm

((Bn)m, dνs1 · · · dνsm), define

f̃(z1, . . . , zm) = f(z1, . . . , zm)
(1− |a|2)m

∏m
j=1(1− 〈zj , a〉)1+rj/p

.

Applying Lemma 4 to the function f̃ we get
∫

Bn

|f(z, . . . , z)|p (1− |a|2)mp

|1− 〈z, a〉|mp+r
dνt(z)

≤ C

∫

Bn

· · ·
∫

Bn

|f(z1, . . . , zm)|p
m∏

j=1

(1− |a|2)p

|1− 〈zj , a〉|p+rj
dνs1(z1) · · · dνsm

(zm) ≤ C|||f |||p.

The last inequality follows from Theorem 2. This shows that the function z 7→
f(z, . . . , z) is in HMp

r (Bn, dνt).
On the other hand, for j = 1, . . . , m, let aj = 0 and bj be large enough so

that the hypotheses of Propositions 1 and 2 are satisfied. Let a = (0, . . . , 0) and
b = (b1, . . . , bm). Put α = −n − 1 +

∑m
j=1 bj . Then Proposition 3 together with

the fact that the image of Sa,b is contained H((Bn)m) show that S = cαSa,b maps
HMp

r (Bn, dνt) boundedly into HMp
r1,...,rm

((Bn)m, dνs1 · · · dνsm). In addition, for
f ∈ HMp

r (Bn, dνt) and z ∈ Bn,

(Sf)(z, . . . , z) = cα

∫

Bn

f(w)(1− |w|2)−n−1−∑m
j=1 bj

(1− 〈z, w〉)
∑m

j=1 bj
dν(w)

=
∫

Bn

f(w)dνα(w)
(1− 〈z, w〉)n+1+α

= f(z).

The last equality follows from [23, Theorem 2.2]. So the conclusion of the theorem
follows.

We now introduce the mixed norm classes in polyballs

Ap1,...,pm
α1,...,αm

(Bm
n ) = {f ∈ H(Bm

n ) : ‖f‖A
p1,...,pm
α1,...,αm

:= (
∫

Bn

(1−|zm|)αm(
∫

Bn

(1−|zm−1|)αm−1

· · ·
∫

Bn

|f(z1, . . . , zm)|p1(1− |z1|)α1dν(z1))
p2
p1 · · · dν(zm−1))

pm
pm−1 dν(zm))

1
pm < ∞},

where 0 < pi < ∞, αi > −1, i = 1, . . . ,m. Note that for n = 1 these classes were
studied in [14]. For m = 1 we have the classical Bergman spaces on the unit ball.
Formally replacing Bn by Rn we arrive at well studied function classes in Rn (see
[3], [4], [10]).

Let Lp1,...,pm
α1,...,αm

(Bm
n ) denote the space of all measurable functions f : Bm

n → C
such that ‖f‖A

p1,...,pm
α1,...,αm

< ∞. It is not difficult to show that Ap1,...,pm
α1,...,αm

(Bm
n ) is a
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Banach space for 1 ≤ pi < ∞, i = 1, . . . , m. Moreover, it can be shown that
Ap1,...,pm

α1,...,αm
(Bm

n ) is a complete metric space for 0 < pi < 1, i = 1, . . . , m.
For f ∈ Ap1,...,pm

α1,...,αm
(Bm

n ), we have the following estimate

|f(z1, . . . , zm)| ≤ C
||f ||Ap1,...,pm

α1,...,αm∏m
k=1(1− |zk|)

αk
pk

+ n+1
pk

, (6)

where zj ∈ Bn, j = 1, . . . ,m. The proof of (6) can be obtained by modification of
standard arguments from [23].

Our intention is to describe the traces of these function spaces. This result also
generalizes our previous mentioned description of the trace of Ap

α(Bm
n ) (see [16],

[17]) and for n = 1 it coincides with a theorem from [14].

Theorem 4. Let γ = αm+
∑m−1

j=1 (n+1+αj)pm

pj
, αj > −1 and pj > 1, j = 1, . . . ,m.

If f ∈ Ap1,...,pm
α1,...,αm

(Bm
n ), then

∫

Bn

|f(z, . . . , z)|pmdνγ(z) ≤ C ||f ||Ap1,...,pm
α1,...,αm

.

Moreover, Trace(Ap1,...,pm
α1,...,αm

(Bm
n )) = Apm

γ (Bn), for 1 < pj < ∞, j = 1, . . . , m.

Proof. Note the first assertion of theorem is a direct mixed norm generalization of
Lemma 4 and we will provide only sketch of the proof.

The proof of the first part is based on the following estimate which can be
obtained from Lemma 1 applied (n − 2) times separately by each variable and is
based also on the fact that

(∫

Bn

|f(z1, . . . , zm)|pi(1− |zi|)αidν(zi)
) pi+1

pi

is subharmonic by zi+1 when other variables are fixed.

(
∞∑

km=1

sup
zm∈D(ukm ,2r)

· · · (
∞∑

k2=1

sup
z2∈D(uk2 ,2r)

(
∞∑

k1=1

sup
z1∈D(uk1 ,2r)

|f(z1, . . . , zm)|p1

(1− |uk1 |2)α1+n+1)
p2
p1 (1− |uk2 |2)α2+n+1)

p3
p2 · · · )

pm
pm−1 (1− |ukm |2)αm+n+1 ≤

≤ C ‖f‖pm

A
p1,...,pm
α1,...,αm

< ∞,

where 0 < pi < ∞, αi > −1, i = 1, . . . ,m. Taking only those members of this
multidimensional sum that have the same indexes, that is, k1 = · · · = km, we arrive
at estimates as follows

∞∑

k=1

sup
z∈D(uk,2r)

|f(z, . . . , z)|pm(1− |z|)γ̃ ≤ C ‖f‖pm

A
p1,...,pm
α1,...,αm

, γ̃ =
m∑

j=1

(αj + n + 1)
pm

pj
,
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and hence again applying Lemma 1 we finally have

‖f(z, . . . , z)‖pm

Apm
γ (Bn)

≤ C

∞∑

k=1

sup
z∈D(uk,2r)

|f(z, . . . , z)|pm(1− |z|)γ̃ ≤ C‖f‖pm

A
p1,...,pm
α1,...,αm

.

To prove the reverse estimate we restrict ourselves to the case of the biball, that
is, Bn × Bn. The general case can be considered similarly. The expansion is done
again with the help of the expanded Bergman projection.

For every s > −1, we have as above f(z, z) = g(z), where

f(z1, z2) = C(n, β)
∫

Bn

g(w)(1− |w|)2(s+n+1)−(n+1)dν(w)∏2
j=1(1− 〈zj , w〉)s+n+1

by Bergman representation formula (see [23, Theorem 2.11]). Using duality, we
show that f ∈ Ap1,p2

α1,α2
if g ∈ Ap2

γ (Bn). Let Ψ ∈ Lq1,q2
α1,α2

, 1
pi

+ 1
qi

= 1, i = 1, 2. Then

∣∣∣∣
∫

Bn

∫

Bn

f(w1, w2)Ψ(w1, w2)(1− |w1|)α1(1− |w2|)α2dν(w1, w2)
∣∣∣∣ (7)

≤ C(n)
∫

Bn

∫

Bn

|Ψ(w1, w2)|(1− |w1|)α1(1− |w2|)α2

∫

Bn

|g(w)|(1− |w|)2(s+n+1)−(n+1)dν(w)∏2
j=1 |1− 〈wj , w〉|s+n+1

≤ C(s, n)
∫

Bn

|g(w)|(1− |w|)2(s+n+1)−(n+1)

∫

Bn

∫

Bn

Ψ(w1, w2)(1− |w1|)α1(1− |w2|)α2dν(w1, w2)
|1− 〈w1, w〉|s+n+1|1− 〈w2, w〉|s+n+1

dν(w).

Let F (w1, w2) =
∫

Bn

∫
Bn

Ψ(w1,w2)(1−|w1|)α1 (1−|w2|)α2dν(w1,w2)
(1−〈w1,w〉)s+n+1(1−〈w2,w〉)s+n+1 .

Then by first part of theorem

F (w, w) ∈ Aq2

α̃2+(n+1+α̃1)
q2
q1

, (8)

where α̃1 = α1 − q1α1 + sq1, α̃2 = α2 − q2α2 + sq2. Since it can be easily shown
that if Ψ ∈ Lq1,q2

α1,α2
then F (w1, w2) ∈ Aq1,q2

α̃1,α̃2
.

Using the fact that
(
Lq1,q2

α1,α2

)∗ = Lp1,p2
α1,α2

(see [3]), it remains to use in (7) Hölder’s
inequality with q2 and p2 and use (8) choosing appropriate s to get what we need,
f ∈ Ap1,p2

α1,α2
. We omit calculations. The theorem is proved.

A complete analogue of the last theorem is also valid for pj ≤ 1, j = 1, . . . ,m
case.
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Theorem 5. Let γ = αm+
∑m−1

j=1 (n+1+αj)pm

pj
, αj > −1 and pj ≤ 1, j = 1, . . . ,m.

If f ∈ Ap1,...,pm
α1,...,αm

(Bm
n ), then

∫

Bn

|f(z, . . . , z)|pmdνγ(z) ≤ C ||f ||Ap1,...,pm
α1,...,αm

.

Moreover, Trace(Ap1,...,pm
α1,...,αm

(Bm
n )) = Apm

γ (Bn), for pj ≤ 1, j = 1, . . . , m.

The proof of this assertion is based on representations of bounded linear func-
tionals for analytic mixed norm spaces in polyballs we introduced above for pj ≤
1, j = 1, . . . ,m case. We provided the formulation for completeness of our exposi-
tion. The complete proof of this last will be presented in a separate paper.

We can easily notice that generally sharp trace theorems for analytic spaces we
considered above will be valid for any G domain and any G× · · · ×G polydomain
for which an appropriate substitution of r-lattice we had above in the ball and
appropriate Bergman type integral representations can be found. By this we mean
substitutions of properties of mentioned r-lattices in the ball we enlisted in text
above that were used by us during the proof of trace theorems in Bn × · · · × Bn

polyballs.

3 Traces of the harmonic Bergman function spaces
in the unit ball of Rn and Rn+1

In this section we will provide descriptions of traces of products of harmonic Bergman
classes in the unit ball of Rn and in Rn+1. Since these results are very similar to
those we obtained in holomorphic case we mostly restrict ourselves to formulations
and short sketches of proofs.

Let B be the unit ball in Rn, that is B = {x = (x1, . . . , xn) ∈ Rn : |x| =
(
∑n

i=1 |xi|2) 1
2 ≤ 1}, and Sn−1 = ∂B = {x = (x1, . . . , xn) ∈ Rn : |x| = 1}, and

x = rx′, r = |x| ∈ (0, 1), x′ ∈ Sn−1. We consider as usual the normalized Lebesgue
measure on B as dx = dx1 · · · dxn or in the sphere coordinates as rn−1drdx′, so
that ∫

B

dx =
∫ 1

0

∫

Sn−1
rn−1drdx′ = 1.

Let h(B) be the space of all harmonic functions on B. We consider Banach Bergman
spaces in B (see [6], [7]),

Ap
α(B) = {f ∈ h(B) : ‖f‖p,α :=

(∫ 1

0

∫

Sn−1
|f(rx′)|p(1− r)αrn−1drdx′

) 1
p

< ∞},

when 1 ≤ p < ∞ and 0 ≤ α < ∞ and for p = ∞ and 0 ≤ α < ∞ we have

‖f‖∞,α := sup
x∈B

|f(x)|(1− |x|)α < ∞.
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We now introduce a new Qα(x, y) function that serve as a nice substitution of
Bergman kernel for harmonic functions in the unit ball of Rn (see [7]),

Qα(x, y) = 2
∞∑

k=0

Γ(α + 1 + k + n/2)
Γ(α + 1)Γ(k + n/2)

rkρkz
(k)
x′ (y′).

Note that x = rx′ and y = ρy′, Qα(x, y) = Qα(y, x) and ‖Qα‖Ap
α

= 1, where Γ is
the Gamma function of Euler and z

(k)
x′ (y′) is a zonal harmonic of order k, (see [7]).

z
(k)
x′ (y′) =

αk∑

j=1

y
(k)
j (x′)y(k)

j (y′),

where y(k) and y(l) are so called spherical harmonics, see [7]. Various nice properties
of spherical harmonics can be found in [18] and [19].

From properties of these spherical harmonics it follows that every harmonic
function in B has an expansion

f(x) = f(rx′) =
∞∑

k=0

rkcky(k)(x′),

where cky(k) =
∑αk

j=1 cj
ky

(k)
j and ∪∞k=0{y(k)

1 , . . . , y
(k)
αk } form a orthonormal basis in

L2(Sn−1) (by dx′ measure), see [19].
We need the following result from [7].

Theorem A. Let 1 ≤ p ≤ ∞ and 0 ≤ α < ∞. If f ∈ Ap
α(B), then

f(x) =
∫ 1

0

∫

Sn−1
(1− ρ2)αQα(x, y)f(ρy′)ρn−1dρdy′.

Theorem A provides Bergman type representation for harmonic Bergman spaces
in the unit ball.

In order to get a sharp trace theorem for this case we introduce a modified
Qα function to form an analogue of the expanded Bergman projection we consid-
ered above, that is, Qα(x1+···+xm

m , y). Let αj > 0 for j = 1, ..., m and denote by
A∞α1,...,αm

(B × · · · ×B) the space of all functions f harmonic by each variable in B
such that

sup
xi∈B,i=1,...,m

|f(x1, . . . , xm)|
m∏

i=1

(1− |xi|2)αi < ∞.

Theorem 6. Let αj > 0 for j = 1, . . . ,m. Then Trace(A∞α1,...,αm
(Bm)) =

A∞∑m
j=1 αj

(B).

Proof. One implication is obvious. We show the reverse by using Theorem A.
Indeed, for g ∈ A∞∑m

j=1 αj
(B) we have f(x, . . . , x) = g(x) since we put

f(x1, . . . , xm) =
∫ 1

0

∫

Sn

Qβ(
x1 + · · ·+ xm

m
, y)(1− ρ2)βρn−1g(ρy′)dρdy′,
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where β can be large enough. Hence we get obviously

‖f‖A∞α1,...,αm
(Bm) ≤ c sup

xi∈B,i=1,...,m

∫ 1

0

∫

Sn

Qβ(
x1 + · · ·+ xm

m
, y)(1− ρ2)β−∑m

j=1 αj

m∏

k=1

(1− |xk|)αkdρdy′.

We need an estimate for the expanded Qβ kernel. For that reason we apply the
following inequality can be found in [7].

Qβ(x, y) ≤ c

|rρx′ − y′|n+β
+

c(1− ρr)−{β}

|rρx′ − y′|n+[β]
+

c1

(1− ρr)1+β
, (9)

where x = rx′, y = ρy′, β > 0.
We will need the following two classical estimates which can be obtained by

direct calculations,
∫

Sn−1

dx′

|rρx′ − y′|γ <
c

(1− ρr)γ−n+1
, γ > n− 1, ρ, r ∈ (0, 1) (10)

and
∫ 1

0

(1− ρr)−α(1− ρ)βdρ ≤ c(1− r)−α+β+1, β > −1, α > β + 1, ρ, r ∈ (0, 1). (11)

For x̃ := x1+···+xm

m , where xi ∈ B, |xi| < 1, using (9) we have
∫ 1

0

∫

Sn

Qβ(x̃, y)(1− ρ2)β−∑m
j=1 αj dρdy ≤ I1 + I2 + I3.

We estimate I2 and I3. The estimate for I1 can be obtained similarly. We have

I3 ≤ c

∫ 1

0

(1− ρ2)β−∑m
j=1 αj

(1− |x̃|ρ)1+β
dρ ≤ c

∫ 1

0

(1− ρ2)β−∑m
j=1 αj dρ

(1−
∑m

j=1 |xj |ρ
n )1+β

≤ c

∫ 1

0

(1− ρ2)β−∑m
j=1 αj dρ

(
∑m

j=1(1−|xj |ρ)

m )1+β
≤ c

∫ 1

0

(1− ρ)β−∑m
j=1 αj dρ

(
∏m

j=1
m
√

1− |xj |ρ)1+β
≤ c1∏m

j=1(1− |xj |)αj
.

I2 ≤ C

∫ 1

0

∫

Sn−1

(1− ρ)β−∑m
j=1 αj dρdy′

|r̃ρx̃− y′|n+β
≤ C

∫ 1

0

(1− ρ)β−∑m
j=1 αj dρ

(1− ρr̃)β+1
,

r̃ =
∑m

k=1 |xk|
m , and we continue as for I3.

Note above we used an elementary estimate
∫ 1

0

(1− r)tdr∏m
k=1(1− rρk)αk

≤ c∏m
k=1(1− ρk)αk−βk(t+1)

, (12)

t > −1,
∑m

k=1 βk = 1, αk > (t + 1)bk, ρk ∈ (0, 1), k = 1, . . . , m, which follows
directly from Hölder’s inequality for m functions. Note we used (12) for βk =

1+β
m −αk

β−∑m
k=1 αk+1 , t = β−∑m

k=1 αk, αk = 1+β
n , k = 1, . . . , m. The theorem is proved.
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Let hAp−→α (B × · · · ×B) = {f ∈ h(Bm) :
∫

B

∫

B

· · ·
∫

B

∫

B

|f(x1, . . . , xm)|p

m∏

k=1

(1− |xk|)αk(|x1| · · · |xm|)n−1d|x1| · · · d|xm|dx′1 · · · dx′m < ∞}.

Traces of hAp−→α (B × · · · × B) classes for p < ∞ can be described in a following
manner.

Theorem 7. Let p ≥ 1, m ∈ N, αj > −1, j = 1, . . . , m. Then Trace(hAp−→α (Bm)) =
hAp∑m

k=1 αk+β(B), where β = (n + 1)(m− 1).

The proof follows directly from arguments we provided above for holomorphic
case. {D(ak, r)} families from there should be replaced by dyadic cubes {∆k}∞k=1,⋃∞

k=0 ∆k = B such a decomposition can be found in [18], [19] and we should use
the estimate

|u(a)|p ≤ C(p, α)
rα

∫

|x−a|<r

|u(x)|pdx, u ∈ h(B), a ∈ Rn, 0 < p, r < ∞ (see [1]).

As usual, denote by Rn+1
+ the upper half-space in Rn+1, Rn+1

+ =
{x = (x1, . . . , xn, xn+1) ∈ Rn+1, xn+1 > 0}, the Lebesque measure in Rn+1 will be
denoted by dx = dx′dxn+1, dx′ = dx1 · · · dxn.

Let Qk(x, y) = ck
∂k+1

∂k+1
n+1

P (x′−y′, xn+1 +yn+1), k ≥ 0 which is defined on Rn+1
+ ×

· · · × Rn+1
+ , P (x′, xn+1) = xn+1

(|x′|2+x2
n+1)

n+1
2

is a usual Poisson kernel on Rn+1
+ , (see

[7]).
We introduce harmonic Bergman classes on Rn+1 and on product spaces as

follows. Let 0 < p < ∞, α > −1,

Ap
α(Rn+1

+ ) = {f is harmonic in Rn+1
+ :

‖f‖p
p,α =

∫

Rn

∫ ∞

0

|f(x′, xn+1)|pxα
n+1dx′dxn+1 < ∞},

and Ap
α((Rn+1

+ × · · · × Rn+1
+ )) = {f is harmonic in Rn+1

+ × · · · × Rn+1
+ :

∫

Rn

· · ·
∫

Rn

∫ ∞

0

· · ·
∫ ∞

0

|f(x′1, . . . , x
′
m, x1

n+1, . . . , x
m
n+1)|p×

×
m∏

k=1

(xk
n+1)

αkdx′1 · · · dx′mdx1
n+1 · · · dxm

n+1 < ∞} (see [7]).

Theorem B. (see [7]) Let f ∈ Ap
α(Rn+1

+ ), α > −1, k ≥ α+n+1
p −(n+1), 0 < p ≤ 1

or k > 1+α
p − 1, 1 < p < ∞. Then the following integral representation holds

f(y) =
∫

Rn+1
+

f(x)Qk(y, x)xk
n+1dx.
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Theorem B provides Bergman type representation for harmonic Bergman spaces
in Rn+1

+ .
Using this assertion we will get description of traces Bergman type classes on

Rn+1
+ ×· · ·×Rn+1

+ . We will use expanded projections (integral operators). Expanded
Qk(y, x) kernel in Rn+1 will have the following form

Qk(y1, . . . , ym, x) = ck
∂k+1

∂xk+1
n+1

∏m
j=1(xn+1 + yj

n+1)
1
m

∏m
j=1(|x′ − yj

1|2 + (xn+1 + yj
n+1)2)

n+1
2m

, yj ∈ Rn+1,

j = 1, . . . , m.

Obviously Qk(y, . . . , y, x) = Qk(x, y), x, y ∈ Rn+1
+ , (see [7]).

The expanded Bergman projection type operator has the form

(Tf)(y1, . . . , ym) =
∫

Rn+1
+

f(x)Qk(y1, . . . , ym, x)xk
n+1dx′dxn+1, yj ∈ Rn+1,

j = 1, . . . , m.

We will provide now descriptions of traces of harmonic Bergman classes on products
of Rn+1.

Theorem 8. Let 0 < p < ∞, m ∈ N, αj > −1, j = 1, . . . ,m. Then

Trace(Ap
α1,...,αm

(Rn+1
+ × · · · × Rn+1

+ )) = Ap∑m
k=1 αk+(n+1)(m−1)(R

n+1
+ ).

Remark 2. We would like to mention finally that sharp trace theorems in harmonic
Bergman spaces we formulated at the second part of our paper can be at least par-
tially extended to mixed norm classes of harmonic functions which can be defined in
appropriate manner as we did in holomorphic spaces case above. The formulations
of these assertions and arguments that are needed for proofs of these assertions are
very close or even repeat those we used in holomorphic case above and we would
like to omit details leaving them to readers.
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