DOI:10.2298/CSIS120203034C

1.

A MOF based Meta-Model and a Concrete DSL
Syntax of IIS*Case PIM Concepts

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

University of Novi Sad, Faculty of Technical Sciences,
Trg D. Obradovica 6, 21000 Novi Sad, Serbia
{milancel, ivan, slavica, dragoman}@uns.ac.rs

Abstract. In this paper, we present a platform independent model (PIM)
of [IS*Case tool for information system (IS) design. [IS*Case is a model
driven software tool that provides generation of executable application
prototypes. The concepts are described by Meta Object Facility (MOF)
specification, one of the commonly used approaches for describing
meta-models. One of the main reasons for having 1IS*Case PIM
concepts specified through the meta-model, is to provide software
documentation in a formal way, as well as a domain analysis purposed
at creation a domain specific language to support IS design. Using the
PIM meta-model, we can generate test cases that may assist in software
tool verification. The meta-model may be also a good base for the
process of the concrete syntax generation for some domain specific
language.

Keywords: information system modeling, domain specific languages,
domain specific modelling, platform independent models.

Introduction

[IS*Case is a software tool that provides a model driven approach to
information system (IS) design. It supports conceptual modeling of database
schemas and business applications. 11S*Case, as a software tool assisting in
IS design and generating executable application prototypes, currently
provides:

Conceptual modeling of database schemas, transaction programs, and
business applications of an IS;

Automated design of relational database subschemas in the 3rd normal
form (3NF);

Automated integration of subschemas into a unified database schema in
the 3NF;

Automated generation of SQL/DDL code for various database management
systems (DBMSs);

Conceptual design of common user-interface (Ul) models; and

Automated generation of executable prototypes of business applications.

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

In order to provide design of various platform independent models (PIM) by
[IS*Case, we created a number of modeling, meta-level concepts and formal
rules that are used in the design process. Besides, we have also developed
and embedded into [IS*Case visual and repository based tools that apply
such concepts and rules. They assist designers in creating formally valid
models and their storing as repository definitions in a guided way. Main
features of [IS*Case and the specification of its usage may be found in [1].

There is a strong need to have PIM concepts specified formally in a
platform independent way, i.e. to be fully independent of repository based
specifications that typically may include some implementation details. Our
current research is based on two related approaches to formally describe
[1IS*Case PIM Concepts. One of them is based on Meta Object Facility (MOF)
and the other one on a textual Domain Specific Language (DSL). In [2], we
give a specification of the IIS*Case textual modeling language, named
[IS*CDesLang that formalizes [IS*Case PIM concepts and provides modeling
in a formal way. IIS*CDesLang meta-model is developed under a visual
programming environment for attribute grammar specifications named
VisualLISA [3].

In [4] we propose a meta-model of [IS*Case PIM concepts, which is based
on the Meta Object Facility (MOF) 2.0. MOF 2.0 is a common meta-meta-
model proposed by Object Management Group (OMG) where meta-models
are created by the use of UML class diagrams and Object Constraint
Language (OCL) [5]. As we could not find standardized implementation of
MOF, we decided to use Ecore meta-meta-model. Ecore is the Eclipse
implementation of MOF 2.0 in Java programming language which is provided
by Eclipse Modeling Framework (EMF) [6]. Ecore concepts are not always
identical to MOF 2.0 concepts, but they are expressive enough to create our
[1IS*Case meta-model. A benefit of such a meta-model is providing software
documentation in a formal way. Besides, created meta-model can be used for
the software tool verification in EMF environment. It also represents a domain
analysis specification necessary to create [1IS*CDeslLang, as a textual DSL
that supports IS design. In this paper we give an example that illustrates the
process of modeling a part of an IS using 11IS*Case PIM concepts. We also
present a small part of a concrete syntax grammar that is based on the
definition of [1IS*Case PIM concepts.

In Fig. 1 we illustrate the four layered architecture of our solution, which is
tailored from OMG four—layered architecture standard. Level M3 comprises
meta-meta-model (MOF 2.0) [7] that is used for implementation of the
[IS*Case meta—model (M2). M2 level represents the 11S*Case PIM meta-
model specified by MOF specification and implemented in EMF. Using the
[IS*Case PIM meta-model, a designer specify and implement a conceptual
model of an IS that is placed at the M1 level of the four-layered data
architecture from Fig. 1. By using IS applications generated by 1IS*Case, end-
users manipulate real data, i.e. they create and use models of entities from
real world (MO0), using the conceptual model (M1).

1076 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

MOF, Ecore
l ¢ \ Level M3
IIS* Case ruil}eta-Model \ Level M2

IS Concepﬁual Model \ Level M1

Real Entities \ Level MO

Fig. 1. Four layered meta-data architecture

Apart from Introduction and Conclusion, the paper is organized in four
sections. In Section 2, we present a related work. In Section 3 we give a
presentation of 1IS*Case PIM concepts specified through the meta-model that
is implemented in EMF environment. In Section 4 we illustrate an example of
[1IS*Case PIM concepts usage, while in Section 5 we give a concrete syntax
definition of main PIM concepts.

2. Related Work

Nowadays, meta-modeling is widely spread area of research and there is a
huge number of references covering MOF based meta-models. However, we
could not find papers presenting formal approaches to the specification of
meta-model implementation and design of CASE tools, based on MOF or
Ecore meta-meta-models.

We found a vast number of meta-model specifications and implementations
based on MOF or Ecore specifications. Meta-models based on MOF are also
presented in [8] and [9]. The authors in both papers propose the meta-models
of the Web Modeling Language. The meta-model specification and design is
implemented under EMF environment. Defining W2000 [8] as a MOF meta-
model, the authors specify it as an UML profile. In [9], the authors provide a
solution for the generation of MOF meta-models from document type
definition (DTD) specifications [10]. A formal specification of OCL is given in
[11]. In their meta-model, the authors precisely define the syntax of OCL, as it
is given in [5]. They propose a solution for the presented meta-model
integration with the UML meta-model. In [12], the authors propose the Kernel
MetaMetaModel (KM3) representing a DSL for meta-model definition. In [13],
the authors propose the UML Profile, EUIS, used for the specification of
business applications’ user interfaces. Their solution provides automatic
interface code generation that is based on their own HCI standard. They
developed a DSL specified as UML Profile that offers user interface modeling
and generation. In [14] the authors propose a solution for the kiosk
applications development. They present KAG, a DSL that provides kiosk
applications development in a more rapid way than standard high-level
programming languages. While the presented DSL provides rapid application

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1077

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

prototyping of new applications, it also simplifies the maintenance process of
existing applications. The DSL has also reduced the number of errors that
were common in the process of programming using standard high level
programming languages. The authors of the paper [15] present the
DOMMLite, a DSL that provides the definition of database applications' static
structures. The language structure has been defined at the level of the meta-
model. The textual syntax has been defined in order to provide creation,
update and persistence of DOMMLite models. They have also developed a
textual Eclipse editor that provides generation of source code for graphical-
user interface forms supporting CRUDS (Create-Read-Update-Delete-Search)
operations. In [16], the authors present a selection of 75 key publications,
covering the area of DSLs. They give an overview of the terminology, DSL
examples, design methodologies, and implementation techniques. In [17], the
authors give an overview of the problems in the decision, analysis, design,
implementation and deployment phases of DSL development. They have
identified patterns for the first four phases that can aid DSL developers. They
have also presented language development systems and frameworks aimed
at facilitating the development process. The authors of the paper [18] present
Sequencer, a domain specific modeling language for programming or
modeling measurement procedures without interacting with programming
engineers. Sequencer provides development of measurement procedures
inside the measurement system DEWESoft using DCOM objects. It is a DSL
that provides textual or visual mode, customized for the application
development in the measurement domain. Similar to the papers discussed in
this section, we base our research on the development of the DSL in the
domain of IS development. In this paper we focus on the meta-model
specification of IS*Case PIM concepts and the generation of concrete syntax.

There are various meta-modeling tools that are generally based on their
own meta-meta-model specifications. One of them is Generic Modeling
Environment (GME) [19], a configurable toolkit for domain specific modeling
and program synthesis based on UML meta-models. MetaEdit+ [20], [21] and
[22] allows creation and design of meta-models by the use of a graphical
editor providing the Graph-Object-Property-Port-Role-Relationship data
model. All of these tools may also be used for the 1IS*Case PIM meta-model
description in a formal way.

3. lIS*Case Meta-Model

[IS*Case provides a definition of several concepts embedded into [IS*Case
repository, that typically may include some implementation details. In this
paper, we present only 11IS*Case PIM meta-model concepts specified by
Ecore meta-meta-model. Hereby we overview here the following main
[IS*Case PIM concepts: Project, Domain and Attribute as Fundamental
concepts, Program unit, Application system, Application type, Form type and
Component type. A model of the [IS*Case main concepts with their properties

1078 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

and relationships is presented latter on, in Fig. 2. More information about
these concepts may be found in [1] and [23], as well as in many other authors'
references.

3.1. Project

In 11IS*Case, modeling process is organized through one or more projects.
Therefore, the central concept in our meta-model from Fig. 2 is Project. For
each project, a designer defines the project name as its mandatory property.
All existing elements in the repository of [IS*Case are always created in the
context of a project. Fundamental concepts and Application systems are
subunits of a Project. Fundamental concepts are formally independent of any
application system. Fundamental concept instances can be used in more than
one application system, because they are defined at the level of a project.
Fundamental concepts comprise zero or more:
o Attributes,
e Domains,

Program units and

Inclusion dependencies.
Each project is organized through application systems and fundamental
concepts. For each project, we can define zero, or more instances of the
Application system concept. An IS designer may create application systems of
various types. By the Application type concept, a designer may introduce
various application system types and then associate each instance of an
application system to exactly one application type.

At the level of a project, 11S*Case provides generation of various types of
repository reports. As the Report is not a real modeling concept, it does not
belong the 11IS*Case PIM concepts. However, the 11S*Case repository contains
Report concept. It is used by the [IS*Case reporting tools.

3.2 Domain

Domains specify allowed values of database attributes. They are classified as:
e Primitive and
e User defined.

Therefore, in our meta-model, there are two classes: PrimitiveDomain and
UserDefinedDomain that are subclasses of a Domain class.

Primitive domains represent primitive data types that exist in formal
languages, such as string, integer, char, etc. The reason behind the existence
of user defined domain concept is to allow designers to create their own data
types in order to raise the expressivity of their models. Each domain has its
name, description and default value. At the level of a primitive domain, a
designer may specify length required item value. It denotes if a numeric
length: must be, may be, or is not to be given. For user defined domains, a

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1079

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

designer needs to define a domain type and a check condition. 11S*Case
supports two classes of user defined domains:

Fig. 2. A meta-model of [IS*Case main PIM concepts

1080 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

e Domains created by the inheritance rule and
e Complex domains.

A domain created by the inheritance rule references a specification of some
primitive or user defined domain. We call it a child domain, while the
referenced domain is also called a superordinated or parent domain. By using
the inheritance, all the rules defined at the level of a parent domain also hold
for the child domain.

Complex domains may be created by the tuple rule, set rule, or choice rule.
A domain created by the tuple rule we simply call the tuple domain, because it
represents a tuple of values. The items of such a tuple structure are some of
already created attributes. A domain created by the choice rule we call a
choice domain. It is specified in almost the same way as a tuple domain. The
choice domain concept is the same as the choice type of XML Schema
Language. Each value of a choice domain corresponds to exactly one
attribute. A set domain represents sets of allowed values over a specified
domain.

Check condition is a regular expression that additionally constrains
possible values of a domain created by a designer.

Domain concept allows definition of display properties of screen items that
correspond to attributes and their domains. Each domain corresponds to
exactly one element of the Display type. The Display concept specifies rules,
later used by the application generator to generate screen or report items.
Generated screen or report items correspond to some of the attributes, and
attributes correspond to some of domains. Technical aspects of the display
properties implementation may be found in [24] and [25].

3.3. Attribute

In Fig. 3, we present a meta-model of the Attribute concept. Each attribute in
a project is identified by its name. It also has a description and a Boolean
property specifying if it belongs to the database schema. In practice, the most
of created attributes belong to the database schema. For attributes
representing derived (calculated) values in reports or screen forms a designer
may decide if they are to be included in the database schema. By this, we
classify attributes as: a) included or b) non-included in a database schema.

According to the way how an attribute gains a value, we classify attributes
as: a) non-derived or b) derived. A value of a non-derived attribute is created
by an end-user. A value of derived attribute is always calculated from the
values of other attributes, by applying some function, i.e. a calculation
formula. There is a rule that any non-included attribute must be specified as
derived one.

A function that is used to calculate a derived attribute value is formally
specified in the [IS*Case repository. Additionally, a designer may specify
parameters that are passed to the function. The Function concept will be
presented in the next subsection, Program Units. If an attribute is non-
included in a database schema, the function is referenced as a query function.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1081

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

Only derived attributes that are included in a database schema may
additionally reference three 1IS*Case repository functions specifying how to
calculate the attribute values on the following database operations: insert,
update and delete.

An attribute may be specified as a) elementary or b) renamed. A renamed
attribute references a previously defined attribute. The source of such an
attribute is the referenced attribute, but with the different semantics. The
renamed attribute needs to be included in database schema. Renaming is a
concept that also exists in the Entity-Relationship and relational data models.
By means of renaming, a designer may differentiate between semantics of
"similar" attributes. If a designer introduces a new attribute A1 and specifies it
as a renamed from the existing attribute A, he or she actually specifies an
inclusion dependency of the form [A1] < [A] at the level of a universal relation
scheme. More information about the use of renaming concept in the context of
[IS*Case tool may be found in [1]. Inclusion dependency is modeled in Fig. 2
in our meta-model as the class InclusionDependency inheriting
Fundamentals. It is also related with class Attribute over two relationships,
that actually represent left and right side of the inclusion dependency.

To each attribute a domain must be associated. This association allows
defining a default value and a check condition. If the attribute value is not
specified, the default value is assigned to it. Check condition is the attribute
check expression that represents the regular expression that additionally
constrains the value of the attribute.

At the level of an attribute, we can specify the display properties. The
concept of the Display properties is same as the one at the level of the
Domain concept. Values of display properties, specified at the level of the
associated domain, may be inherited or overridden according to the
requirements of an IS project.

3.4. Program Units

The Program unit concept is used to express complex application
functionalities. We classify program units as: a) Functions, b) Packages and
c) Events.

The Function concept is used to specify any complex functionality that later
may be used in other specifications. Each function has its name and return
type that are mandatory properties, as well as a formal specification of a
function body and a description that are optional. The return type is a
reference to a domain. A function specification may include a list of formal
parameters. Each formal parameter of a function is specified by its name and
a sequence number, as mandatory properties. Exactly one domain is
associated with each formal parameter. Any parameter may also have a
default value specified. With respect to the ways of exchanging values
between the function and its calling environment, we classify formal
parameters as: a) In, b) Out and c) In-Out, with a usual meaning as it is in
many general purpose programming languages.

1082 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

Fig. 3. A meta-model of the 11S*Case Attribute concept

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1083

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

[IS*Case provides grouping of created functions into packages. Each
function may be included into one or more packages, or may stay as a stand-
alone object. By the location of the deployment in a multi-layer architecture,
the packages are classified as: a) Database server packages, b) Application
server packages and c) Client packages. A package is identified by its name,
and may have an optional description.

The Package concept is modeled by the inheritance rule. We have the
abstract class named Package. It is superordinated to the classes:
DBServerPackage, ApplicationServerPackage and ClientPackage. For each
instance of the Package class, there may be zero or more references to the
instances of the Function class.

The Event concept is used to represent any software event that may trigger
some action under a specified condition. Each event is identified by its name,
and may have an optional description. Similar to the packages, by the location
of the deployment in a multi-layer architecture, we also classify events as: a)
Database server events, b) Application server events and c) Client events.
The Event concept is modeled in the similar way like Package, by applying
the inheritance rule.

3.5. Application System

The Application System concept is used to model organizational parts of each
Project. Each application system has its name and a description as
mandatory properties. Besides, it may reference other, subordinated
application systems that we call child application systems. By this, a designer
may create a hierarchy of application systems in a project. Application system
hierarchy is modeled by a recursive reference.

Various kinds of 11IS*Case repository objects may be created at the level of
an application system, but in this paper we focus on two of them only, as PIM
concepts: a) Form type and b) Business Application.

3.6. Form type

Form type is the main concept in 1IS*Case. The meta-model of this concept is
presented in Fig. 4. It abstracts document types, screen forms, or reports that
end-users of an information system may use in a daily job. By means of the
Form type concept, designers indirectly specify at the level of PIMs a model of
a database schema with attributes and constraints included. At the same time,
they also specify a model of transaction programs and applications of an
information system.

Apart from creating form types in application systems, designers may
include into their application systems form types created in other application
systems being modeled. Therefore, we classify form types as: a) owned and
b) referenced. A form type is owned if it is created in an application system. It

1084 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

Fig. 4. A meta-model of the IIS*Case Form Type concept

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1085

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

may be modified later on through the same application system without any
restrictions. A referenced form type is created in another application system
and then included into the application system being considered. All the
referenced form types in an application system are read-only.

Each form type has a name that identifies it in the scope of a project, a title,

frequency of usage, response time and usage type. Frequency is an optional
property that represents the number of executions of a corresponding
transaction program per time unit. Response time is also an optional property
specifying expected response time of a program execution. By the usage type
property, we classify form types as: a) menus and b) programs.
Menu form types are used to model menus without data items. Program form
types model transaction programs providing data operations over a database.
They may represent either screen forms for data retrievals and updates, or
just reports for data retrievals. As a rule, a user interface of such programs is
rather complex. A program form type may be designated as considered in
database schema design or not considered in database schema design. Form
types considered in database schema design are used later as the input into
the database schema generation process. Form types not considered in
database schema design are not used in the database schema generation
process. They may represent reports for data retrievals only.Each program
form type is a tree of component types. A component type has a name, title,
number of occurrences, allowed operations and a reference to the parent
component type, if it is not a root component type. Name is the component
type identifier. All the subordinated component types of the same parent must
have different names.

Each instance of the superordinated component type in a tree may have
more than one related instance of the corresponding subordinated component
type. The number of occurrences constrains the allowed minimal number of
instances of a subordinated component type related to the same instance of a
superordinated component type in the tree. It may have one of two values: 0-
N or 1-N. The 0-N value means that an instance of a superordinated
component type may exist while not having any related instance of the
corresponding subordinated component type. The 1-N value means that each
instance of a superordinated component type must have at least one related
instance of the subordinated component type.

The allowed operations of a component type denote database operations
that can be performed on instances of the component type. They are selected
from the set {read, insert, update, delete}.

A designer can also define component type display properties that are used
by the program generator. The concept of component type display is defined
by properties: window layout, data layout, relative order, layout relative
position, window relative position, search functionality, massive delete
functionality and retain last inserted record.

Window layout has two possible values: “New window” and “Same window”
and specifies if the component type is to be placed in a new window or in the
same window as the parent component type. Data layout specifies the way of
component type representation in a screen form. Two values are possible:

1086 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

“Field layout” or “Table layout”. By the “Field layout”, only one record at a time
is displayed in a form. By the “Table layout”, a set of records at a time is
displayed in a screen form, in a form of a table. The relative order is a
sequence number representing the order of a component type relative to the
other sibling component types of the same parent in a form type tree. The
layout relative position represents the component type relative position to the
parent component type. We may select “Bottom to parent” value if we want to
place the component type below the layout of the parent component type in a
generated screen form, or “Right to parent” value if it is to be placed right to
the parent one. Window relative position is to be specified only when “New
window” layout is selected. A designer may specify one of the three possible
values: “Center”, “Left on top”, or “Custom”. The “Center” value denotes that
the center of a new window is positioned to match the center of the parent
window. “Left on top” specifies that the top left corner of the new window will
match the top left corner of the parent window. By selecting the “Custom”
value, a relative position of the new window top left corner to the top left
corner of the parent window is explicitly specified by giving X and Y relative
positions.

“Search functionality” represents the Boolean property that enables
generation of the filter for data selection. If search functionality is enabled,
end-users are allowed to refine the WHERE clause of a SQL SELECT
statement. If checked, “massive delete functionality” provides a generation of
a delete option next to each record in a table layout. The “retain last inserted
record” property specifies if the last inserted record is to be retained on the
screen for future use.

Each component type includes one or more attributes. A component type
attribute is a reference to a project attribute from the Fundamentals category.
It has a title that will appear in the generated screen form. Also, it may be dec-
lared as mandatory or optional on the screen form. The allowed operations of
a component type attribute denote database operations that can be performed
on the attribute, by means of the corresponding screen item. They are
selected from the set {query, insert, update, nullify}. For a component type
attribute a designer may also specify display properties and by this define its
presentation details in the screen form. The display properties are specified in
the same way as it is for attribute specifications. Values of the display
properties may be inherited from the attribute specification or overridden.

So as to unify the layout formatting rules of selected component type
attributes, a designer may group them into items groups. Each item group
may include one or more component type attributes or other item groups from
the same component type. Any item group has its name, title, context and
overflow properties. The name and title are mandatory properties. Context
and overflow are Boolean properties, specifying if an item group is to be used
for presenting layout contextual information or as a layout overflow area.

Each component type attribute provides defining a “List of values” (LOV)
functionality. To do that, a designer needs to reference a form type that will
serve as a LOV form type. He or she should also define how an end-user can
edit attributes: “Only via LOV” or “Directly & via LOV”. “Only via LOV” property

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1087

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

means that attribute value may not be inserted or edited using a keyboard, but
only using the LOV. “Directly & via LOV” means that inserting or editing
attribute values is provided both via keyboard and LOV. “Filter value by LOV”
property specifies if all values from LOV will be displayed, or only those
filtered according to the pattern given by an end-user. Restrict expression
represents the where clause that is concatenated to the rest of where clause
in the SQL statement supporting the LOV.

Each component type has one or more keys. Each component type key
comprises one or more component type attributes. It represents the unique
identification of a component type instance but only in the scope of its
superordinated component instance. Uniqueness constraints may be defined
for each component type also. Each component type uniqueness constraint
comprises at least one component type attribute, but may have more than
one. If uniqueness constraint attributes have non-null values, it is possible to
uniquely identify a component type instance but only in the scope of the
superordinated component instance.

3.7. Business Application

Business Application concept represents the way to formally describe an IS
functionality and is organized through a structure of form types. Each
business application has a name and a description. One of the form types
included into the structure must be declared as the entry form type of the
application. It represents the first transaction program invoked upon the
launching of the application. Each business application must have the entry
form type. To create the form type structure of an application, a concept of the
form type call is used. By the form type calls, designers model execution of
calls between generated transaction programs. They are also used to model
parameters and passing the values between two transaction programs during
the call executions. The concept of a form type call comprises two form types:
a calling form type and a called form type.

Any form type may have formal parameters defined. Each formal
parameter has a mandatory name as the identifier. It must be related to
exactly one domain. In the specification of a form type call, it is possible to
associate each parameter to a called form type attribute. By this, a designer
specifies to which attributes real parameter values will be passed during the
call execution.

For a called form type in a call we need to specify Binding and Options
properties. Binding property comprises formal parameters of a called form
type. For each parameter a designer specifies how a real argument value is to
be passed to the parameter. There are three possible options: “value”,
“attribute reference”, or “parameter reference”. The value is a constant that
will be passed during a call execution. The “attribute reference” provides a
relation to a calling form type attribute that gives a value to be passed to the
parameter during a call execution. The “parameter reference” provides a

1088 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

relation to a calling form type parameter that gives a value to be passed to the
parameter during a call execution.

The Options properties comprise: calling method, calling mode, and Ul
position. Calling method comprises two Boolean properties: a) “Select on
open” and b) "Restricted select”. “Select on open” means that the called form
type is opened with an automatic data selection. “Restricted select” allows the
data selection in the called form type restricted just to the values of passed
parameters. Calling mode specifies a general behavior of the calling form type
during the call execution. Three possibilities are allowed: “Modal”, “Non-
modal” or “Close calling form”. “Modal” means that a user cannot activate the
calling form type while the called form type is opened. “Non-modal’” means
that both the calling and the called form type are simultaneously active in the
screen. “Close calling form” is used to cause the closing of the calling form
type during the call execution. Ul position specifies how a call will be provided
at the level of Ul: as a menu item or as a button item.

4. 1IS*Case PIM Concepts Usage

For many years, |IS*Case provides visually oriented tools for the IS
specification in a formal way. In this section we present a different approach
where an IS is modeled using the [IS*Case PIM concepts specified at the
level of meta-model in EMF. EMF is not only the framework that provides
modeling at the level of meta-models, but also supports model
implementations based on the created meta-models. In this section, by an
example we illustrate the usage of some PIM concepts belonging to our meta-
model trough EMF.

In Fig. 5 we present a part of the project Student Service IS. It represents a
form type Student_Grades that refers to information about students’ grades.
In the following text the project and its main parts are explained in more
details.

Using the Eclipse Modeling Framework (EMF), end-users are able to
specify the model of Student Service IS using the [IS*Case PIM concepts. In
Fig. 6, we present a part of the formal specification of Student Service IS in a
form of a tree structure, created by means of the PIM concepts modeled in
EMF. It represents the form type from Fig. 5. In the following text we also
explain the model from Fig. 6 in more details.

Modeled IS consists of two application systems: Student Service and
Faculty Organization. Student Service application system, referenced in Fig. 5
in the upper left rectangle, is a child application system of the parent
application system Faculty Organization that is referenced in the upper right
corner of Fig. 5. In Fig. 6 we have defined the Project, where a value of the
Name property is FacultylS. We have also defined at the level of the Project
two kinds of application types: a) System and b) Subsystem. Further, we
classified application system Faculty Organization as the System and Student
Service as the Subsystem application type. In Fig. 6, at the level of the Project

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1089

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

Application System Parent Application System

Student Service Faculty Qrganization

STUDENT_GRADES

STUDENT r

| Studentld, StugeniVame, Year

GRADES l riud

| CowseShoritame, Dae Grade

Fig. 5. Application system Student Service

FacultylS, we have also created a set of attributes, including: StudentID,
StudentName, Year, CourseShortName, Date and Grade. The set of these
attributes is defined in the Fundamentals category. The attributes defined in
the Fundamentals category are later used in the specification of other IS
components.

Further, we illustrate the usage of the Form Type concept. We have the
form type Student Grades, placed inside the main area of Fig. 5. It has two
component types: Students and Grades. Student Grades form type is
presented in Fig. 6 as the Owned Form Type STG — Student Grades at the
level of the application System Student Service. It refers to the information
about student grades.

The rectangles that represent Student and Grades component types are
located inside the rectangle representing the form type Student grades. While
Student component type represents instances of students, Grades component
type represents instances of grades for each student. Student component
type is the parent to the Grades component type. Student and Grades
component types are modeled in Fig. 6 at the level of the Owned Form Type
STG — Student Grades.

Allowed database operations for the component type are: read, update,
insert and delete. They are presented in Fig. 5 with the abbreviations: r, u, i, d,
respectively. The only allowed database operation for Student is read, while
the allowed operations for Grades are read, insert, update and delete. The
allowed database operations for the component types are specified in our
Project modeled in EMF, although they could not be seen in Fig. 6. End-users
of the generated transaction program specified by the form type
Student_Grades will be able to read data about student instances. They may
read, update and delete existing grades for each student, as well as insert
new instances of the grades.

1090 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

Fig. 6. Model of the Application System Student Service

For each of the Student component type attributes, a designer needs to
specify its Name, Title, if it is mandatory or optional for entering values on the

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1091

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

screen form, Behaviour, and the list of the Allowed operations on the screen
form. A set of display and LOV properties may also be given. In Fig. 6, at the
level of the component type attribute StudentID, we presented the properties:
Allowed operations, Display and LOV.

In a similar way a designer creates a specification of the Grades
component type with attributes CourseShortName, Date and Grade.
CourseShortName is a key of the Grades component type.

In this section we have presented an approach to IS conceptual modeling
in EMF using [IS*Case PIM concepts. Such approach is valuable not only to
create concrete IS models but also to check and validate if 11S*Case PIM
concepts are specified correctly and completely. A designer may also use it
for fast specification of some IS characteristics. On the other hand, [IS*Case
provides specialized, visually oriented and repository based tools supporting
the same modeling approach. In general, it is expected to be more convenient
for the practical usage, since EMF does not have specialized functionalities
and tools to make the IS development process easier for designers.

5. A Concrete Syntax Generation

Generation of the concrete syntax is one of the important steps in the process
of the implementation of some DSL. One of our research goals is an
implementation of the DSL that will assist in the IS design process. We need
to specify the grammar that defines the structure and semantics of the
concepts at the meta-level. Such specification actually represents a DSL that
could be used in the process of conceptual IS modeling.

A concrete syntax definition is based on the abstract syntax. While
concrete syntax expresses a user's perception of a language, the abstract
syntax expresses a viewpoint close to the compiler. A DSL implemented for
the 1IS*Case tool may be used by IS designers. Our plan is to develop a
model checker using the abstract syntax specified by EMF. By this, we create
a possibility of checking the formal correctness of models, during the whole
process of the IS modeling. It is an important feature of each modeling
environment aimed at providing IS development in a formal way.

There are different tools for the DSL development. They provide different
approaches and techniques to the DSL implementation process. A meta-
model specified by Ecore meta-meta-model in EMF may be used as the
abstract syntax specification in Eclipse plug-in named EMF text. As we have
already developed the meta-model under the EMF using Ecore meta-meta-
model, we have decided to use EMF text plug-in and test if the [IS*Case
meta-model as the abstract syntax specification may be transformed to the
equivalent concrete syntax.

In this section we present only a small part of the concrete syntax
grammar, successfully generated by the EMF text plug-in. The [IS*Case
meta-model specified by the Ecore meta-meta-model was the input
specification for the generation process. The concrete syntax is the output

1092 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

specification. It is expressed in Human Usable Textual Notation (HUTN) [26]
that provides concrete textual language representations for any MOF model.
In the following text we present the concrete syntax rules only for the main
[1IS*Case PIM concepts.

Production rule for defining a Project is:

Project ::= "Project" "{" "ProjectName" ":"
ProjectName['"','"'] ("NewApplicationType" ":"
NewApplicationType | "NewFundamentalConcept" ":"
NewFundamentalConcept | "NewApplicationSystem" ":"

NewApplicationSystem)* "}";

It specifies a name of a project (ProjectName), possible types of application
systems (NewApplicationType), different fundamental concepts
(NewFundamentalConcept) and application systems (NewApplicationSystem)
created in the context of the project.

The rule for specification of an Application System is:

ApplicationSystem ::= "ApplicationSystem" "{"
"AppSystemName" ":" AppSystemName['"',"'"']
"AppSystemDescription”™ ":" AppSystemDescription['"','"']
"AppSystemType" ":" AppSystemTypel]

("ParentAppSystem" ":" ParentAppSystem[])?

("JoinDependency" ":" JoinDependencyl[] |

"ClosureGraph" ":" ClosureGraph['"','"'] | "BA"™ ":" BA |
"NewFormType" ":" NewFormType |

"RelationScheme" ":" RelationScheme[])* "}";

It requires specifying the application system name (AppSystemName),
description (AppSystemDescription), a type of the application system
(AppSystemType), parent application system (ParentAppSystem) created join
dependencies (JoinDependecy), a closure graph (ClosureGraph), business
applications (BA), form type categories (NewFormType), and generated
relation schemes (RelationScheme).

The generated rule for defining Primitive domain is:

PrimitiveDomain ::= "PrimitiveDomain" "{"
"DomainName" ":" DomainName['"',6 '"']
"Description”" ":" Description['"','"']
("DefaultvValue" ":" Defaultvaluel['"','"'])?
("Comment" "." Comment [Ty , Ty]) 2
("DecimalPlaces" ":" DecimalPlaces[INTEGER])?
"LenReq" ":" LenReq[] "}";

It describes a domain name (DomainName), a description (Description)
and a comment (Comment) for the domain, a default value (DefaultValue),
decimal places value (DecimalPlaces) and a required length (LenReq).

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1093

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

Production rule for specification a User defined domain is:

UserDefinedDomain ::= "UserDefinedDomain" "{"
"DomainName" ":" DomainName['"',6 '"']
"Description”™ ":" Description['"','"']
("DefaultValue" ":" Defaultvalue['"',6'"'])?
("Comment"™ ":" Comment['"','"'])?
("CheckCondition™ ":" CheckCondition['"','"'])?
"USDDT" ":" USDDT[]

"DomainDisplay" ":" DomainDisplay "}";

Similar to the previous definition PrimitiveDomain we have DomainName,
Description, Comment and DefaultValue. The UserDefinedDomain is also
specified by the check condition (CheckCondition), a type of the domain
(USDDT) and the specification of how the attributes corresponding to the
domain will be displayed (DomainDisplay).

Production rule for defining the Attribute that is incuded in DB is:

AttributeIncludedInDB ::= "AttributeIncludedInDB" "{"
"AttDomain" ":" AttDomain

"AttributeName" ":" AttributeName['"','"']
"Description" ":" Description['"','"']

"AttDisplay" ":" AttDisplay

"AttIncludedDef" ":" AttIncludedDef

"AttTypeIncluded" ":" AttTypelncluded "}";

The attribute is specified by its name (AttributeName), the attribute domain
(AttDomain), a description (Description), the specification of how the attribute
is displayed (AttDisplay), a definition of the attribute (AttincludedDef) and a
type of the attribute.

Production rule for the specification of the Attribute that is not incuded in
DB is similar to the previous one:

AttributeNonIncludedInDB ::= "AttributeNonIncludedInDB"
"{" "AttDomain" ":" AttDomain

"AttributeName" ":" AttributeName['"','"']
"Description" ":" Description['"','"']

"AttDisplay" ":" AttDisplay

"AttTypeNonIcluded" ":" AttTypeNonIcluded
"AttNonIncludedDef" ":" AttNonIncludedDef "}";

Production rule for definintion of Function is:

1094 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

Function ::= "Function" "{"
"FunctionName" ":" FunctionName['"',6 ""']
("Description™ ":" Description['"','"'])?
("FunctionBody" ":" FunctionBody['"','"'])?
("FuncParamList" ":" FuncParamList) *
("FunctionReturnType" ":" FunctionReturnTypel[])? "}";

Each function is described by its name (FunctionName), a description
(Description), body (FunctionBody), a set of the parameters (FuncParamList)
and the function return type (FunctionReturnType).

The specification rule of the Parameter is:

Parameter ::= "Parameter" "{"

"ParameterSegNo" ":" ParameterSeqgNo[INTEGER]
"ParameterName" ":" ParameterName['"',6 "'"']
("ParameterDefValue" ":" ParameterDefValuel['"',6"'"'])?
"ParamInOut" ":" ParamInOut

"ParamDomain" ":" ParamDomain[] "}";

It requires the definition of a sequence number in the list
(ParameterSegNo), a parameter name (ParameterName), a default value
(ParameterDefValue), a type (ParamiInOut), and a domain the parameter is
corresponding to (ParamDomain)

Production rule for specification of a Business application is:

BussinesApplication ::= "BussinesApplication" "{"
"BussinesAppName" ":" BussinesAppName['"',6 '"']
"BussinesAppDescription" ":"
BussinesAppDescription['"', "'""]

("BAEntryFT" ":" BAEntryFT[])* "}";

It describes a business application by its name (BussinesAppName),
description (BussinesAppDescription), and the entry form type (BAEntryFT).
ReferencedFormType production rule is:

ReferencedFormType ::= "ReferencedFormType" "{"
"FormTypeName" ":" FormTypeName['"',6 "'"']
("FTCalledFT" ":" FTCalledFT[]

"RefFTAppSys" ":" RefFTAppSys[])* "}";

Each referenced form type has its name (FormTypeName), the reference
to the called form type (FTCalledFT), and the application system
(RefFTAppSys).

Production rule for the definition of an OwnedFormType is:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1095

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

OwnedFormType ::= "OwnedFormType" "{"

"FormTypeName" ":" FormTypeName['"',6 '"']
("FTCalledEFT" ":" FTCalledFT[])*

"FormTypeTitle" ":" FormTypeTitle['"', '""]
("FormTypeFrequency" ":" FormTypeFrequency|[INTEGER])?

("FormTypeResponseTime" ":"

FormTypeResponseTime [INTEGER]) ?

("FTParam" ":" FTParam)*

"DefineFormTypeUsage" ":" DefineFormTypeUsage "}";

It requires the definiton of a form type specifying its name
(FormTypeName), title (FormTypeTitle), the form type that is called
(FTCalledFT), frequency (FormTypeFrequency), usage
(DefineFormTypeUsage), and the response time (FormTypeResponseTime)
of the form type, and the list of the form type parameters (FTParam).

Production rule that represents Program definition is:

Program ::= selectedFormTypeUsage
["selectedFormTypeUsage" : ""] "Program" "{"
"ConsideredINDBSchDesign" ":" ConsideredINDBSchDesign/[]
("NewComponentType" ":" NewComponentType)* "}";

The production rule specifies the program by the component type tree
structure that consists of a set of component types.
Production rule for the definition of a Component type is:

ComponentType ::= "ComponentType" "{"
"CompTypeName" ":" CompTypeName ['"','"']
"NoOfOccurrences" ":" NoOfOccurrences['"','""]
"CompTypeTitle" ":" CompTypeTitle['"','"']
"AO" ":" AO ("IG" ":" IG[])*

(HCTU" n.n CTU) *

("CompTypeKey" ":" CompTypeKey) *
("CompTypeCheckConstraint" ":"
CompTypeCheckConstraint['"',"'"'])?
"CompTypeCompDisplay" ":" CompTypeCompDisplay
("CompTypeParent" ":" CompTypeParent [])?
("CTAttrib" ":" CTAttrib)* "}";

ComponentType rule describes a component type specifying its name
(CompTypeName), number of occurrences (NoOfOccurrences), a title
(CompTypeTitle), allowed operations for the component type (AO), the item
group (IG), the unique constraint (CTU) and the key (CompTypeKey).

Production rule for the definition for the Component type attribute is:

1096 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

ComponentTypeAttribute ::= CompTypeAttribMandatory
["CompTypeAttribMandatory " : ""]
"ComponentTypeAttribute” "{"

"CompTypeAttribTitle" ":" CompTypeAttribTitle ['"™','"']
("CompTypeAttribBehavior" ":" CompTypeAttribBehavior
[HH’HH])?

("CTADeafultValue" ":" CTADeafultvValue['"','"'])?
"CompTypeAttribName" ":" CompTypeAttribName []
("CTAttribFunction”™ ":" CTAttribFunction[])?

"CTAttribAO" ":" CTAttribAO "CTAttribLov" ":" CTAttribLov
"CTAttribDisplay" ":" CTAttribDisplay "}";

Each component type attribute has its title (CompTypeAttribTitle), behavior
specification (CompTypeAttribBehavior), a default value (CTADeafultValue), a
reference to the attribute (CompTypeAttribName), a reference to the function
(CTAttribFunction), allowed operations for the component type attribute
(CTAttribAO), list of values (CTAttribLov), and the set of display properties
(CTAttribDisplay).

In Fig. 7 we present a fragment of the program that corresponds to the
example specified in Fig. 5.

Firstly, we have created an instance of the project concept, named Faculty
IS. After that we have specified attributes (AttributelncludedinDB) with their
AttributeName values. New attributes are presented in a form of a new
fundamental concept instances. Before the specification of an application
system, we need to specify one or more application types at the level of the
project. In the example shown in Fig. 7, Project Faculty IS comprises two
application systems (ApplcationSystem). While the first one is a specification
of the Faculty Organization application system, the other one represents
Student Service application system. For each instance of the
ApplicationSystem concept it is necessary to define its name
(AppSystemName), description (AppSystemDescription) and type
(AppSystemType). In Fig. 7, FacultyOrganization is a parent
(ParentAppSystem) application system for the StudentService.

At this stage, in the example in Fig. 7, we define a set of the form types
(NewFormType) for each application system. For each form type, we specify
the name (FormTypeName), title (FormTypeTitle) and the form type usage.
Each form type in Fig 7., has the property values for frequency
(FormTypeFrequency) and response time (FormTypeResponseTime). It also
includes a list of component type specifications (NewComponentType). Form
type STG - Student Grades comprises two component types, a parent
component type (CompTypeParent) STUDENT and its child component type
GRADES.

For each component type, in the example presented in Fig. 7, we define
the name (CompTypeName), title (CompTypeTitle) and the set of display
properties (CompTypeCompDisplay). For STUDENT component type search
functionality (SearchFuncionality) is enabled. The component type STUDENT
is to be positioned in a new window (CompDisplayPosition) and the data need

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1097

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

to be displayed in a field data layout (CompDispplayDatalayout). For each
component type, we also define component type attributes
(CompTypeAttribute). The definition of component type attributes requires the
name (CompTypeAttribName) and the title (CompTypeAttribTitle) to be
specified.

After the list of component type attributes, the list of component type
constraints is given. We may give specifications of key, uniqueness and check
constraints. In the example shown in Fig. 7, only component type keys are
specified for STUDENT by the property CompTypeKey.

Project {
ProjectName : "Faculty IS"
//definition of the fundamental concepts
NewFundamentalConcept
AttributeIncludedInDB ({
AttributeName : "StudentID"
}
NewFundamentalConcept
AttributeIncludedInDB ({
AttributeName : "StudentName"
}
NewFundamentalConcept
AttributeIncludedInDB ({
AttributeName : "Year"
}
NewFundamentalConcept
AttributeIncludedInDB ({
AttributeName : "CourseShortName"
}
NewFundamentalConcept
AttributeIncludedInDB ({
AttributeName : "Date"
}
NewFundamentalConcept
AttributeIncludedInDB ({
AttributeName : "Grade"
}
//definition of the applicaiton types
NewApplicationType
ApplicationType {
ApplicationTypeName : "ProjectSubsystem"
}
//definition of the applicaiton systems
NewApplicationSystem :

ApplicationSystem {
AppSystemName : "FacultyOrganization"
AppSystemDescription : "A unit of a Faculty IS"

AppSystemType : ProjectSubsystem

1098 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

}
NewApplicationSystem

ApplicationSystem {
AppSystemName : "StudentService"
AppSystemDescription : "A unit of a FacultyOrgan."

AppSystemType : ProjectSubsystem
ParentAppSystem : FacultyOrganization
//definition of the new form type

NewFormType
OwnedFormType {
FormTypeName : "STG-StudentGrades"
FormTypeTitle : "Catalogue of student grades"
DefineFormTypeUsage
Program {

ConsideredINDBSchDesign : true
//definition of the new component type

NewComponentType
ComponentType {
CompTypeName : "STUDENT"
CompTypeTitle : "Student Records"
CompTypeCompDisplay
SearchFuncionality
ComponentDisplay {

CompDisplayPosition : NewWindow { }

CompDispplayDatalayout :FieldLayout { }

}

CompTypeAttribute

ComponentTypeAttribute
CompTypeAttribName : StudentID

CompTypeAttribTitle : "StudentId"
CompTypeAttribBehavior : "queryOnly"
}
CompTypeAttribute

ComponentTypeAttribute ({
CompTypeAttribName : StudentName
}
CompTypeAttribute
ComponentTypeAttribute {
CompTypeAttribName : Year
}
CompTypeKey
ComponentTypeKey {
CompTypeKeyAttribute : StudentId
}
}
//definition of the new component type
NewComponentType
ComponentType {

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1099

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

CompTypeName : "GRADES"
CompTypeParent : STUDENT
CompTypeCompDisplay :

ComponentDisplay ({
CompDisplayLayoutRelativePosition :
BottomToParent { }
CompDispplayDatalayout:TableLayout { }
}
//definition of the new component type continues
}

}
FormTypeFrequency : 1
FormTypeResponseTime : 1

}
}

Fig. 7. A fragment of program that corresponds to the example in Fig. 5

In this section we presented only a small part of the concrete syntax of a
DSL that assists in the process of an IS development. As the process of
concrete syntax generation is automatic, we can easily produce a new
language based on the whole [IS*Case meta-model. Generated language
provides the syntax and semantics for creating the PIM specifications of an
IS, which is one of the most important activities in our approach to IS
development process.

6. Conclusion

In this paper we presented a part of the 11S*Case PIM meta-model, created by
the use of the MOF 2.0 meta-meta model specification. Our intention was not
to present all the elements of our meta-model in detail. Instead, we tried to
focus just on those meta-model details that are necessary to give a general
picture of the model. We believe that the formal specification of our meta-
model is not for documentation purposes only. It is also a necessary step in
creating a textual DSL to support IS design and give another view of the IS
description. In this paper we have presented only one part of the concrete
syntax generated from the [IS*Case PIM meta-model. The syntax of such a
DSL is not simple. It is a consequence of the complexity of our [IS*Case PIM
meta-model. One of the further steps is to generate the whole concrete syntax
of the DSL. The concrete syntax should be developed for the textual DSL,
although we plan to support the visual approach, too.

The abstract syntax specified by the MOF model is the input specification
for the development of the model checker. We may use the 11S*Case PIM
meta-model in the verification of generated relational database schemas.
Currently, 11IS*Case supports an assistance to designers in detecting formal

1100 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

conflicts at the level of relational database model. By this, the algorithms for
detection and resolving constraint collisions at the level of relational data
model has already been implemented in [IS*Case. In our future research, we
may extend this support so as to assist designers at the level of created PIM
models in searching for the appropriate solutions of detected problems. In this
way, the process of collision resolving will be raised to the PIM level of
abstraction.

Our further research will include experiments with other technologies that
rely on MOF. The presented meta-model is a good base for a research in the
area of Query View Transform (QVT) set of languages. Our intention is to
embed into [IS*Case transformations between different data models.
Providing data model transformations may play an important role in the IS
design process. In the course of data reengineering process, our plan is to
provide the data integration from various sources based on different data
models. Data transformation rules specified by QVT could be applied at the
level of meta-models specified by various data-models, all expressed in a
unified manner in MOF. Our intention is to provide transformations of the
models specified in [IS*Case to the UML models. Providing such
transformations we allow designers to have models specified in UML standard
with OCL constraints.

Acknowledgment. The research presented in this paper was supported by Ministry of
Education and Science of Republic of Serbia, Grant 111-44010: Intelligent Systems for
Software Product Development and Business Support based on Models.

References

1. . Lukovi¢, P. Mogin, J. Pavi¢evi¢, S. Risti¢, “An Approach to Developing Complex
Database Schemas Using Form Types”, Software: Practice and Experience, 2007,
DOI: 10.1002/spe.820, Vol. 37, No. 15, pp. 1621-1656.

2. |. Lukovi¢, M. J. Varanda Pereira, N. Oliveira, D. Cruz, P. R. Henriques, “A DSL for
PIM Specifications: Design and Attribute Grammar based Implementation”,
Computer Science and Information Systems (ComSIS), ISSN: 1820-0214, DOI:
10.2298/CSIS101229018L, Vol. 8, No. 2, 2011, pp. 379-403.

3. N. Oliveira, M. J. Varanda Pereira, P. R. Henriques, D. Cruz, B. Cramer,
“VisualLISA: A Visual Environment to Develop Attribute Grammars”, Computer
Science an Information Systems, (ComSIS), ISSN:1820-0214, Vol. 7, No. 2, 2010,
pp. 265-289.

4. M. Celikovié, |. Lukovi¢, S. Aleksi¢, V. Ivandevi¢, "A MOF based Meta-Model of
[IS*Case PIM Concepts", Federated Conference on Computer Science and
Information Systems (FedCSIS), 3rd Workshop on Advances in Programming
Languages (WAPL 2011), September 18-21, 2011, Szczecin, Poland,
Proceedings, IEEE Computer Society Press and Polish Information Processing
Society, ISBN 978-83-60810-39-2, pp. 833-840.

5. Object Management Group (OMG), OCL SpecificationVersion 2.0, [Online]
Available: http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005.

6. Eclipse Modeling Framework, [Online] Available: http://www.eclipse.org/
modeling/emf/.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1101

http://www.eclipse.org/%20modeling/emf/
http://www.eclipse.org/%20modeling/emf/

Milan Celikovié, Ivan Lukovié, Slavica Aleksi¢, and Vladimir lvanéevié

9.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.

23.

24.

25.

Meta-Object Facilty, [Online] Available: http://www.omg.org/mof/.

L. Baresi, F. Garzotto, M. Maritati, “W2000 as a MOF Metamodel.” In Proc. of the
6th World Multiconference on Systemics, Cybernetics and Informatics - Web
Engineering track. Orlando, USA, 2002.

A. Schauerhuber, M. Wimmer, E. Kapsammer, “Bridging existing web modeling
languages to model-driven engineering: A metamodel for webML”, International
Workshop on Model Driven Web Engineering (2nd), Palo Alto, CA, 2006.
Document Type definition (DTD), [Online] Available: http://www.w3.org/TR/html4/
sgml/dtd.html.

M. Richters, M. Gogolla, “A meta-model for OCL” In Proc. of the 2nd international
conference on The unified modeling language beyond the standard, ISBN:3-540-
66712-1, 1999.

F. Jouault, J. Bézivin, “KM3: a DSL for Metamodel Specification”, In Proc. of 8th
IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems, Bologna, Italy, 2006, Springer LNCS 4037, pp. 171-185.

B. PerisSi¢, G. Milosavljevi¢, I. Dejanovi¢é, B. Milosavljevi¢, “UML Profile for
Specifying User Interfaces of Business Applications”, Computer Science and
Information Systems (ComSiIS), ISSN: 1820-0214, DOI:
10.2298/CSIS110112010P, Vol. 8, No. 2, 2011, pp. 405-426.

Zivanov Z., Rakié P., Hajdukovi¢ M.: “Using Code Generation Approach in
Developing Kiosk Applications®, Computer Science and Information Systems,
(ComSIS), ISSN:1820-0214, Vol. 5, No. 1, 2008, pp. 41-59.

Dejanovi¢ 1., Milosavljevic G., PeriSi¢ B., Tumbas M.: A Domain-Specific
Language for Defining Static Structure of Database Applications, Computer
Science and Information Systems, (ComSIS), ISSN:1820-0214, Vol. 7, No. 3,
2010, pp. 409-440.

Van Deursen A, Klint P, Visser J: Domain-specific languages: an annotated
bibliography, ACM SIGPLAN Not 35(6), 2000, pp. 26—36.

Mernik M., Heering J., Sloane A.M.: When and how to develop domain-specific
languages, ACM Computing Surveys, 2005, Vol. 37, No. 4, pp. 316-344.

Kos, T., Kosar, T., Knez, J., Mernik, M.: From DCOM interfaces to domain-specific
modeling language: A case study on the Sequencer. , Computer Science and
Information Systems, (ComSIS), ISSN:1820-0214, Vol. 8, No. 2, 2011, pp. 361-
378.

GME: Generic Modeling Environment, [Online] Available: http://www.isis.
vanderbilt.edu/Projects/gme/.

MetaCase Metaedit+, [Online] Available: http://www.metacase.com/.

Kelly, S. Lyytinen, K. Rossi,M.: MetaEdit+: a fully configurable multi-user and
multi-tool CASE and CAME environment, Advanced Information Systems
Engineering 1080, 1996, pp. 1-2.

Kelly, S. Tolvanen,J.-P. Domain-Specific Modeling: Enabling Full Code
Generation, Wiley—IEEE Computer Society Press, 2008.

I. Lukovi¢, S. Risti¢, P. Mogin, J. Pavi¢evi¢, “Database Schema Integration
Process — A Methodology and Aspects of Its Applying”, Novi Sad Journal of
Mathematics, Serbia, ISSN: 1450-5444, Vol. 36, No. 1, 2006, pp. 115-150.

J. Banovi¢, “An Approach to Generating Executable Software Specifications of an
Information System”, Ph.D. Thesis, University of Novi Sad, Faculty of Technical
Sciences, Novi Sad, 2010.

A. Popovi¢, “A Specification of Visual Attributes and Business Application
Structures in the 11IS*Case Tool”, Mr (M.Sc.) Thesis, University of Novi Sad,
Faculty of Technical Sciences, 2008.

1102 ComSIS Vol. 9, No. 3, Special Issue, September 2012

http://www.omg.org/mof/
http://www.w3.org/TR/html4/%20sgml/dtd.html
http://www.w3.org/TR/html4/%20sgml/dtd.html
http://www.metacase.com/

A MOF based Meta-Model and a Concrete DSL Syntax of [IS*Case PIM Concepts

26. Human Usable Textual Notation (HUTN) [Online] Available http://www.omg.org/
spec/HUTNY/.

Milan Celikovié graduated in 2009 at the Faculty of Technical Sciences, Novi
Sad, at the Department of Computing and Control. Since 2009 he has worked
as a teaching assistant at the Faculty of Technical Sciences, Novi Sad, at the
Chair for Applied Computer Science. In 2010, he started his Ph.D. studies at
the Faculty of Technical Sciences, Novi Sad. His main research interests are
focused on: Domain specific modeling, Domain specific languages,
Databases and Database management systems. At the moment, he is
involved in the projects concerning application of DSLs in the field of software
engineering.

Ivan Lukovié received his M.Sc. (5 year, former Diploma) degree in
Informatics from the Faculty of Military and Technical Sciences in Zagreb in
1990. He completed his Mr (2 year) degree at the University of Belgrade,
Faculty of Electrical Engineering in 1993, and his Ph.D. at the University of
Novi Sad, Faculty of Technical Sciences in 1996. Currently, he works as a
Full Professor at the Faculty of Technical Sciences at the University of Novi
Sad, where he lectures in several Computer Science and Informatics courses.
His research interests are related to Database Systems and Software
Engineering. He is the author or coauthor of over 90 papers, 4 books, and 30
industry projects and software solutions in the area.

Slavica Aleksi¢ received her M.Sc. (5 year, former Diploma) degree from
Faculty of Technical Sciences in Novi Sad. She completed her Mr (2 year)
degree at the University of Novi Sad, Faculty of Technical Sciences.
Currently, she works as a teaching assistant at the Faculty of Technical
Sciences at the University of Novi Sad, where she assists in teaching several
Computer Science and Informatics courses. Her research interests are related
to Database Systems, Theory of Data Models, System Design, Logical and
Physical Database Design, Development and Usage of MDSE / CASE tools in
Software Engineering and System Design, Reengineering of Information
Systems and Model Transformations in MDA.

Vladimir Ivancevi¢ is a PhD student in Applied Computer Science and
Informatics and a teaching assistant at the Faculty of Technical Sciences,
University of Novi Sad (Serbia), where he also gained his BSc and MSc in
Electrical Engineering and Computing. His research interests include domain
specific languages (DSLs), data mining (DM), and databases. At the moment,
he is involved in several projects concerning application of DSLs and DM in
the fields of software engineering, education, and public health.

Received: February 03, 2012; Accepted: August 17, 2012.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1103

http://www.omg.org/%20spec/HUTN/
http://www.omg.org/%20spec/HUTN/

