
A domain-specific language for managing
ETL processes
Aleksandar Popović1, Vladimir Ivković2, Nikola Trajković3 and Ivan
Luković4

1 Faculty of Science and Mathematics, University of Montenegro, Podgorica, Montenegro
2 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
3 Softwecs LTD, Podgorica, Montenegro
4 Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia

ABSTRACT
Maintenance of Data Warehouse (DW) systems is a critical task because any
downtime or data loss can have significant consequences on business applications.
Existing DW maintenance solutions mostly rely on concrete technologies and tools
that are dependent on: the platform on which the DW system was created; the
specific data extraction, transformation, and loading (ETL) tool; and the database
language the DW uses. Different languages for different versions of DW systems
make organizing DW processes difficult, as minimal changes in the structure require
major changes in the application code for managing ETL processes. This article
proposes a domain-specific language (DSL) for ETL process management that
mitigates these problems by centralizing all program logic, making it independent
from a particular platform. This approach would simplify DW system maintenance.
The platform-independent language proposed in this article also provides an easier
way to create a unified environment to control DW processes, regardless of the
language, environment, or ETL tool the DW uses.

Subjects Databases, Programming Languages
Keywords Domain-specific language, Extraction transformation and loading, Data warehouse,
Platform-independent models, Model-driven development

INTRODUCTION
In a highly competitive world, managers need consistent and accurate data to make
informed decisions for the benefit of their organizations. This demand for high-quality
decision support data has initiated the development of new approaches and methodologies
for organizing and structuring data, including data ingestion from diverse sources,
historical data storage, search functionality, analytical processing, and reporting. A
predominant approach in this domain relies on the Data Warehouse (DW) paradigm
(Kimball & Ross, 2013). A DW is a copy of transactional data specifically structured for
queries and analytical processing (Inmon, 2005). The DW structure consists of data and
associated data manipulation mechanisms. These mechanisms include processes aimed at
data extraction, transformation, and loading (ETL). The design and implementation of
ETL processes is often the most demanding task of the DW development process, and
substantial efforts have been made to develop various tools that automate the ETL process.

Various ETL tools are available that support the extraction of data extraction from
various heterogeneous sources, and the performance of diverse tasks such as initial

How to cite this article Popović A, Ivković V, TrajkovićN, Luković I. 2024. A domain-specific language for managing ETL processes. PeerJ
Comput. Sci. 10:e1835 DOI 10.7717/peerj-cs.1835

Submitted 8 May 2023
Accepted 3 January 2024
Published 26 January 2024

Corresponding authors
Aleksandar Popović,
aleksandarp@ucg.ac.me
Ivan Luković,
ivan.lukovic@fon.bg.ac.rs

Academic editor
Ana Maguitman

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.1835

Copyright
2024 Popović et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1835
mailto:aleksandarp@�ucg.�ac.�me
mailto:ivan.�lukovic@�fon.�bg.�ac.�rs
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1835
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

loading, historical data loading from legacy systems, and incremental loading. Each tool
has a specific structure and a list of supported functions that are related to the concrete
technology for which the tool was built. ETL process design depends on both a selected
ETL tool and a database language used for data manipulation. Batch scripts for running
ETL tasks depend on a server operating system. Technological diversity and complexity
hinder the orchestration and maintenance of the ETL processes being designed.

A focus of the research presented in this article is set to software companies specialized
in the design and implementation of ETL processes. As a rule, such companies create
hundreds of ETL processes using different tools and deploy them on different execution
platforms. An ETL process is defined as a sequence of well-defined tasks where each task
has a clear responsibility. Some tasks are common to many ETL processes, even though
they are initially built for different purposes. Therefore, multiple ETL processes practically
share the same or similar tasks. The majority of modern ETL tools are capable of creating
reusable components. Because software companies develop and deliver their DW services
to different software platforms, these services use multiple ETL tools for a single ETL
process. If a single ETL process needs to extract data from multiple sources and no single
ETL tool supports data extraction from all the sources, then multiple ETL tools are needed.
Thus, a systematic approach is needed to help ETL designers establish and maintain a
repository of reusable tasks and high-level specifications of new and existing ETL
processes.

There are currently no tools on the market that enable platform-independent modeling
of ETL orchestration tasks that can execute on heterogeneous platforms. Data engineers
mostly use concrete ETL tools to perform daily tasks, but these tools do not provide
simultaneous generation of executable specifications, such as SQL scripts or batch scripts,
on more than one platform. One research goal of this article was to create a new domain-
specific language (DSL) to facilitate the orchestration and maintenance of ETL processes at
the level of platform-independent models (PIMs). This language was named the ETL
Control Language (ETLCL), and it allows a user to create specifications for controlling data
flow and loading data into DWs, regardless of platform or ETL tool. By this, our goal is to
raise the level of abstraction when it comes to controlling ETL processes in DW systems.

Many organizations migrate data from complex operational databases into DWs on a
daily basis, so there is a strong demand for an efficient, safe, and comprehensive
environment for controlling ETL processes. Another goal of the ETLCL language is to
facilitate error detection and handling by shifting focus from concrete technology and tools
to the specifications created by high-level PIM concepts.

The concepts of the ETLCL language are abstractions of concepts and commands
commonly encountered in tools and platforms widely used in the DW domain, providing a
foundation for specifications in this language to be executable on various technological
platforms. The main commands of the ETLCL language are related to task organization,
such as defining tasks, defining dependencies between tasks, and scheduling task
execution. Additionally, tasks can be grouped, and dependencies between groups can be
defined.

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 2/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

To provide a fully functional DSL for designing ETL processes, ETLCL programs can
also be transformed into executable code for a selected platform, such as a SQL script for a
target DBMS, such as Microsoft SQL Server and Oracle DBMS, or a batch script for a target
ETL tool, such as Oracle Data Integrator (ODI) or SQL Server Integration Services (SSIS)
and Informatica for Linux and Windows platforms.

Dealing with ETL processes is not an easy task, and it requires expert knowledge from
several fields, such as database systems and system administration. The goal of this article
is to provide a simple, yet powerful language that enables users without expertise in the
field to handle ETL processes. This platform-independent language is also a powerful tool
for time-consuming tasks such as reorganizing DWs or partially reloading data into
storage.

Defining and maintaining ETL processes is a highly error-prone task, even for
experienced and skilled professionals. Using ETLCL as a PIM language that provides high-
level concepts and commands can help mitigate the error risks. Also, our approach
facilitates portability. Introducing a new platform, target language, or ETL tool does not
require the complete development of new specifications for ETL processes. ETLCL only
requires amendments of existing transformation algorithms for these changes. Deploying
the ETLCL in this context provides additional benefits, including improved expressiveness,
as discussed in Mernik, Heering & Sloane (2005).

Apart from the introduction and conclusion, this article is organized into five sections:
“Research and Engineering Methodology” presents the methodology used in the language
development, “Related Work” presents related work, “Main Concepts of the ETLCL
Language” is devoted to the main concepts of the ETLCL language, “Application of ETLCL
in a Use Case” presents a selected case study to demonstrate a typical application of
ETLCL, and “An Assessment of ETLCL’s Main Characteristics” evaluates the ETLCL
language through a discussion and assessment of its characteristics.

RESEARCH AND ENGINEERING METHODOLOGY
One of the crucial steps in language development is language design, which involves
gathering and analyzing requirements, defining key concepts, specifying abstract syntax,
and choosing appropriate notations. Karagiannis (2018) introduced the Agile Modeling
Method Engineering (AMME) approach that combines agile principles with modeling
techniques, enabling the rapid and iterative development of modeling methods tailored to
specific projects or organizational needs. Karagiannis et al. (2019) further explore
modeling method requirements, and as a result the authors introduced CoChaCo
(Concept-Characteristic-Connector) method in order to appropriately support earlier
stages in the AMME approach. Frank (2013) presented a methodological framework for
language design that primarily concentrates on aiding the process of analyzing
requirements. Numerous strategies and methodologies have been introduced to
implement DSLs, including techniques like embedding, interpretation, preprocessing, and
compiler/application generator approaches (Mernik, Heering & Sloane, 2005). For
example, Domain-Specific Modeling (DSM) is a methodology with numerous successful
applications, where the emphasis is placed on the implementation and use of graphical

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 3/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

DSLs, as well as the generation of complete source code (Kelly & Tolvanen, 2005). In
addition to the actual DSL implementation, a crucial step in language development is its
evaluation. Over the last two decades, this topic has garnered significant attention from the
academic community, leading to the development of approaches and frameworks for
assessing DSLs. Kahraman & Bilgen (2013) introduced a comprehensive framework for
evaluating language characteristics.

The rest of this section describes the principles and approach used to create the ETLCL
language. The general principles provided in the previously-referenced publications were
applied in the formulation, implementation, and evaluation of this DSL. In the design
phase, we defined the most crucial requirements that the ETLCL language should meet.
These requirements serve as a starting point for identifying the language characteristics to
be evaluated in the later stages of development. The evaluation of this language and its
characteristics is provided in “An Assessment of ETLCL’s Main Characteristics”.

Requirements and design
The first step in language implementation is the requirement analysis and language design
phase. This step is demanding as the language designer must closely collaborate with
domain experts to effectively express domain knowledge through the language concepts
being designed. Lack of support from users and ambiguous requirements are some of the
primary obstacles that can arise in the requirement gathering phase (Frank, 2013). This
challenge was mitigated in the design process of the ETLCTL language as the designers and
authors of this article possess both experience in language design and implementation, as
well as practical and theoretical knowledge in the DW domain. The following are
requirements for this phase:

R1—Language concepts must originate from the domain of orchestrating ETL activities
and be familiar to the targeted group of end-users, i.e., ETL experts. The goal is to achieve a
high degree of usability and to provide users with a language that is relatively easy to learn.

R2—Semantics of language concepts must be invariant within the scope of the target
domain since it is very technically heterogeneous, as there are a number of ETL tools,
DBMSs, and platforms in widespread use.

R3—Language concepts must be expressive enough to enable users to comprehensively
describe the majority of typical scenarios related to orchestrating ETL processes in DW
systems. The goal is to create a language that provides a high level of functional suitability.

R4—The DSL must exhibit high portability, allowing seamless deployment and
execution across diverse computing environments, including various operating systems
and ETL tools.

R5—The language must promote productivity; orchestrating a typical ETL process
through the ETLCL language should take less time compared to orchestrating an
equivalent process through a concrete environment and tools.

In order to meet requirements R1 and R2, an analysis of current ETL tools and DBMSs
was performed, and a significant number of concepts were identified as being common in
all of them. The main concepts and commands of ETLCL were created using an
abstraction of concepts that are supported by the majority of tools and platforms used in

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 4/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

practice. The Task concept is a central concept of the ETLCL language, representing an
atomic operation within ETL activities, which is present in the majority of tools and
platforms, and have common semantics. Among tasks, there is often a well-defined
execution order based on dependencies. For example, the execution of one task may
depend on the successful completion of a preceding task. Concepts such as Dependency,
Group, and Scheduler were introduced in order to model such scenarios. Such a selection of
concepts also lays the groundwork for satisfying requirement R4 related to portability, as
the chosen concepts can be mapped and transformed into corresponding commands for a
target computational environment. Figure 1 contains a meta-model of the ETLCL
language, while “Main Concepts of the ETLCL Language” contains a detailed description
of ETLCL concepts.

Concrete syntax and language implementation
Developing a new DSL is a challenging task that involves defining syntax, creating syntax
and semantic analyzers, and developing accompanying tools such as editors and
debuggers. In recent decades, significant efforts have been made in the development of
environments that facilitate language development by supporting automated generation of
syntax analyzers and editors, as well as by providing languages for model transformations.
One such platform, named the Eclipse Modeling Framework (EMF), was used to develop
the ETLCL language. EMF provides the xtext framework that generates a syntax analyzer

Figure 1 ECore meta-model of the ETLCL language. Full-size DOI: 10.7717/peerj-cs.1835/fig-1

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 5/25

http://dx.doi.org/10.7717/peerj-cs.1835/fig-1
http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

based on a grammar specification using this tool's grammar language; xtext also generates
a basic editor that can be used within the Eclipse IDE, offering common functions such as
syntax coloring and code completion.

The concrete syntax of the ETLCL language is textual. When selecting syntactic rules,
notations were chosen that are familiar to users in the concrete DW domain. Our decisions
regarding the selection of concepts are also guided by the need to fulfill requirement R1.
The majority of ETL language commands are related to the creation of tasks, schedulers,
and execution workflows. For these commands, syntax was used that resembles SQL
statements. For example, the command for creating a task is: Group1.CREATE_TASK
(TASK_UNIQUE_ID 1). ETLCL exploits the object notation, so a user may easily access a
list of commands available for an object. Table 1 provides an overview of several
grammatical rules related to the creation of tasks and related concepts, which are specified
using xtext grammar language. The formal specification of the grammar will not be
described in this article for the sake of readability, but the complete specification is
available in the Supplemental File.

Table 1 The ETLCL grammar rules.

Create_environment:

name = ID '.CREATE_ENVIRONMENT' '('

('ENVIRONMENT_DESCRIPTION:' desc = STRING)

');'

;

Create_load:

env = [Create_environment] '.CREATE_LOAD' '('

('LOAD_NAME:' name = ID)

');'

;

Create_group:

load = [Create_load]'.CREATE_GROUP' '('

('GROUP_NAME:' name = ID)

(',' domain = [Create_domain])?

');'

;

Create_task:

group = [Create_group] '.CREATE_TASK' '('

('TASK_UNIQUE_ID:' name = ID)','

('TASK_NAME:' tname = STRING)','

('AGENT_NAME:' aname = [Create_agent])

(',''PARAMETERS:' parameters += Parameters)*

');'

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 6/25

http://dx.doi.org/10.7717/peerj-cs.1835#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

Code generation and run-time environment
An ETLCL specification is a starting point for the generation of various executable
specifications, such as SQL code, ETL tools commands, and OS commands. The code
generation is executed in the context of a selected platform. The xtend framework was used
for model-to-code transformation.

The execution environment of ETLCL is based on the concept of a meta-data repository
and services that operate on this repository. The first step in the code generation process is
the generation of SQL code for creating a meta-data repository. The meta-data repository
is a database containing specifications for ETLCL concepts such as tasks, groups, and
dependencies. It is stored in a host’s DBMS, and the generated SQL code is adjusted for the
target DBMS. In its present version, the ETLCL metadata repository consists of more than
twenty tables. This approach is common in the field. For example, the ODI tool uses a
host’s DBMS to store the whole working repository. In addition to the SQL statements for
creating the metadata repository, statements are generated for populating tables within the
repository, based on the specifications of tasks, groups, and dependencies. The metadata
repository also serves as a working repository, with execution results and logs stored in
specific tables designed for this purpose.

The ETLCL run-time environment, in addition to the meta-data repository, comprises
several services that must be active to support the orchestration of tasks. This classification
into four logical services simplifies difficulties caused by the complexity of the underlying
system. The orchestration process is performed using the following services:

� Scheduling service

� Manager service

� Task service

� Execution service (i.e., agent)

The scheduling service was implemented over the repository database. This service runs
continuously and periodically queries the repository to create a list of loads ready for
execution. If the list is not empty, then the manager service is called. The scheduling service
execution algorithm is presented in Fig. 2.

Figure 2 Scheduling service execution. Full-size DOI: 10.7717/peerj-cs.1835/fig-2

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 7/25

http://dx.doi.org/10.7717/peerj-cs.1835/fig-2
http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

The manager service coordinates the execution of the two remaining services: task
service and execution service. The manager service updates the repository meta-data
necessary for the execution of selected tasks and loads. Figure 3 illustrates the execution of
the manager service. The first step is calling the task service, which analyses the meta-data
repository, including the tasks, their execution statuses, and dependencies. The task service
then creates a list of tasks ready for execution and the manager service initiates the
execution of each task in the list. An agent designated for task execution runs the task and
returns the status to the manager service.

The task service reads the current information about tasks, analyzes dependencies, and
prioritizes task executions based on this information, as well as domain identifiers and the
values of appropriate parameters. It then creates a list of tasks ready to be executed by
agents, which is returned to the manager service.

The execution service is active during the execution of the manager service. The
execution service calls agents to run tasks that are ready for execution. If several
independent tasks are ready for execution, these tasks will be run in parallel.

In the current version of ETLCL, these services were implemented for Microsoft SQL
Server and Oracle DBMS for both Linux and Windows platforms. All services were
implemented in a Java environment for easier portability to various operating systems. The
execution service, via the agent concept, carries out tasks that represent atomic activities
implemented using widely adopted commercial tools. At its current development stage, we
have facilitated task execution within leading tools such as Informatica, Microsoft SSIS,
ODI, and Talend. The choice of architecture and technological solutions for the execution
environment aim to fulfill requirement R4. In this approach, an ETL expert, rather than
orchestrating by writing a main package within a specific ETL tool and/or scripts for a
particular OS and DBMS, utilizes the ETLCL language to specify the orchestration scenario
for ETL activities. The orchestration itself is executed by the language’s execution
environment, functioning as an abstraction layer above the specific computational
environment.

Figure 3 Diagram of the manager service execution. Full-size DOI: 10.7717/peerj-cs.1835/fig-3

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 8/25

http://dx.doi.org/10.7717/peerj-cs.1835/fig-3
http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

RELATED WORK
In recent decades, ETL has been applied in various domains, including finance, healthcare,
and telecommunications, attracting significant attention from the academic community
and leading to numerous techniques, methodologies, and tools being developed to address
various issues in this field. Nwokeji & Matovu (2021) provided an overview of research
work in this area in their systematic literature review, including the main challenges of
developing ETL solutions. They identified maintenance and the lack of automation as the
primary challenges encountered in practice. One of the main objectives of ETLCL is to
assist users in orchestrating and maintaining ETL processes. The most prevalent
approaches to implementing ETL solutions are those based on conceptual modeling. The
majority of these approaches are based on existing modeling techniques including UML
diagrams, BPMN, and Semantic Web.

The idea of conceptual ETL modeling started with Vassiliadis, Simitsis & Skiadopoulos
(2002) and their generic meta-model for ETL activities. Their proposal was to develop a
methodology that would focus on the initial stages of data warehouse design. The aim was
to analyze the structure and content of the available data sources and map them to the
common data warehouse model.

Skoutas & Simitsis (2006) and Skoutas, Simitsis & Sellis (2009) outlined an ontology-
based approach to assist in the conceptual design of an ETL process where datastores were
conceptually represented by a graph and semantically annotated by a suitable ontology.
The mappings between them could be subsequently inferred and automated reasoning was
used to deduce correspondences and conflicts that may exist among the datastores.

Trujillo & Luján-Mora (2003) proposed the first UML-based approach, which involved
conceptual modeling and specification of common operations in ETL processes. These
operations included integration between data sources and transformation between source
and target attributes. To facilitate the decomposition of ETL process design into logical
units, the ETL process was constructed using UML packages, with each specific ETL
mechanism represented by a stereotyped class. Since their research was early phase
research, no code generation from specific models was provided. The next attempt at using
UML (Muñoz et al., 2008) for ETL specification focused on Activity Diagrams (AD).
Developers can readily design ETL processes at various levels of detail by employing
stereotyped classes to represent each activity. However, this approach does not provide a
way to represent time constraints, dynamic aspects, or the sequencing of control flows.

Another frequently used modeling technique is Business Process Model Notation
(BPMN). BPMN offers a set of conceptual tools for graphical representation and
specification of business processes that can be transformed into a target execution
language. Additionally, it serves as a universal notation for designing all enterprise
processes in a consistent manner, enabling seamless communication between different
processes. El Akkaoui & Zimanyi (2009) proposed an approach for ETL specification based
on BPMN. Their idea was to customize BPMN for designing ETL processes by identifying
fundamental constructs grouped into four categories: flow objects, artifacts, connecting
objects, and swimlanes. They also showed how the conceptual model could be translated

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 9/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

into executable specifications using Business Process Execution Language (BPEL), a
standard executable language for specifying interactions with web services.

Mazón et al. (2013) highlighted that ETL designers encounter two key challenges when
developing ETL processes: (i) determining how to implement the designed processes in a
target language, and (ii) maintaining the implementation when the organization’s data
infrastructure undergoes changes. They proposed the BPMN4ETL—a model-driven
development (MDD) framework based on BPMN for ETL processes. The framework used
model-to-text transformation to assist ETL engineers in executing designed processes in an
executable language and model-to-model transformation to ensure that the
implementation updated as the target infrastructure changed over time.

Awiti, Vaisman & Zimanyi (2020) introduced an extension of relational algebra (RA)
that incorporated update operations for defining ETL processes at a logical level. They
addressed the case of slowly changing dimensions (SCDs) and compared this approach
against BPMN4ETL and showed that the SQL implementation using RA to translate the
specification into SQL runs significantly faster than BPMN4ETL.

Oliveira & Belo (2015) and Oliveira et al. (2019) presented frequent patterns in ETL
processes using BPMN notation including surrogate key pipelining, slow-changing
dimensions, and change data capture. Using the BPMN notation, they demonstrated how
ETL patterns could be used to represent a typical ETL process, and how these patterns
could be consolidated into a single ETL system package.

Biswas et al. (2019) proposed another modeling approach for conceptualizing the ETL
process using a standard systems modeling language (SysML), which is a new modeling
language standardized by the Object Management Group (OMG). Their article
additionally focused on creating an automated executable SysML model based on an
activity diagram. The aim of their study was to bridge the divide between modeling and
simulation, and to assess the effectiveness of the proposed SysML model by evaluating its
performance.

A technology-specific modeling method for the management of ETL processes within
an organization was presented by Deme & Buchmann (2021). They used AMME
methodology to design a modeling method for model-driven ETL process execution. Their
article also reflected on a flavor of conceptual modeling languages labeled here as
“technology-specific” distinguished from the traditional class of “domain-specific”
languages.

Most frameworks typically focus either on DW design or on ETL process modelling.
However, Atigui et al. (2012) proposed a generic unified method that automatically
integrated DW and ETL design. Their approach employed the MDA framework and used
UML profile and diagrams for DW and ETL design, while the extraction formulas were
formalized using an OCL extension.

Song, Yan & Yang (2009) designed an ETL metamodel using the UML profile where
ETL processes are decomposed into a set of ETL operations, such as merge, join, and filter,
to decrease their complexity. These operations are then used as a starting point to create
UML profiles for ETL design at a conceptual level.

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 10/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

In their work, Albrecht & Naumann (2013) emphasized that within a typical production
environment, numerous individual ETL workflows evolve continuously as new data
sources and requirements are integrated into the system. Managing these often intricate
ETL workflows can be a challenging endeavor. To address this issue, the authors proposed
an ETL management framework that supports the development and maintenance of ETL
workflows through high-level operations like searching, matching, or merging entire ETL
workflows. Users can then use these operators to search through a repository containing
ETL workflows and, if necessary, perform merging to optimize the execution of ETL
activities.

Approaches to designing a data warehouse (DW) often assume that its structure
remains constant. In reality, the structure of a DW undergoes many changes, primarily due
to the evolution of external data sources and alterations reflecting real-world dynamics
within the DW (Wrembel, 2009). Wojciechowski (2013) suggests that changes in external
data sources play an important role in data warehousing systems. These changes can
involve both content and structural modifications. Structural changes often result in errors,
necessitating the redesign and redeployment of an ETL workflow after each change.
Frequent manual modifications of an ETL workflow are complex, error-prone, and time-
consuming. To mitigate this problem, Wojciechowski introduced an environment, called
E-ETL, for detecting structural changes in external data sources and managing these
changes within the ETL process.

The majority of the literature on ETL process modeling concentrates on the utilization
of widely-used, “general-purpose” modeling languages, such as UML and BPMN. These
modeling languages are often used to reduce ETL development and maintenance costs.
Most published approaches are also process-centric and focus on the initial phase of the
ETL process design, such as ETL flow description and specification of typical tasks. Most
proposed solutions do not cover later development and deployment stages of ETL
processes, such as maintenance and orchestration, as it is a case in ETLCL.

ETLCL considers documentation and maintenance of existing ETL processes in its
organization and leverages the reusability of common tasks. Using ETLCL, ETL designers
can browse repositories of tasks and flows, update flow definitions, or create new flows by
reusing existing ones. Furthermore, a new DSL proposed in this article introduces a set of
concepts to describe ETL tasks and their relationships instead of using semantically rich
languages, such as BPMN, that are capable of modeling an arbitrary process. Therefore,
ETLCL’s unique contributions to the existing body of literature are the following
capabilities:

� Specifying and managing existing ETL processes deployed in different execution
environments;

� Maintaining a metadata repository of existing tasks, flow, and configurations across
various execution platforms; and

� A minimal but sufficient number of concepts to semantically represent elements in ETL
processes.

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 11/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

Another important characteristic that differentiates ETLCL from other attempts to
conceptualize ETL modeling is its ability to orchestrate and maintain ETL processes across
various execution environments.

Main concepts of the ETLCL language
ETLCL is a DSL aimed at controlling and maintaining ETL processes in DW. Users can
orchestrate ETL processes using platform-independent concepts and commands that are
translated into specific commands for a selected ETL tool and platform. ETLCL abstracts
concepts that are inherent to most ETL tools. The ETLCL language meta-model is
presented in Fig. 1.

The central concept of the ETLCL language is a Task. A task represents an atomic ETL
activity. Various constraints over the execution of tasks are specified using the dependency
concept. For example, dependency is used to establish a constraint so a task can only be
executed if the previous task has been completed successfully. Tasks are organized into
groups and each group can include various dependencies.

Configuration
The configuration concept is used to specify the target platform for which the program
code will be generated and define the environment over which ETL orchestration is
performed. The configuration concept is used to specify the ETL tool, the operating system
on which the ETL tool is installed, the DBMS, and authentication parameters. These
specifications are used by the code generator when generating SQL statements for creating
the metadata repository. These specifications are also used as a starting point for
generating procedures and functions that implement services for ETL process execution
and management. An example configuration for SSIS/Windows and ODI/Linux platforms
is presented in the beginning of the ETLCL code in Tables 2 and 3.

Task
A task is the atomic execution unit of an ETL process. In code generation, this concept is
translated into a package in the SSIS tool, a workflow in Informatica, or a scenario in the
ODI tool. It can also be translated into a job or stored procedure over a DBMS. Task
parameters are used to define the following:

� name of a procedure, package, or job that executes business logic associated with the
task,

� task identifier,

� domain identifier, and

� user-defined parameters.

The ETLCL code is provided for the examples in Tables 2 and 3, which includes the
specifications for tasks when they represent packages within the SSIS tool, as well as
scenarios within the ODI tool.

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 12/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

Table 2 ETLCL specification of an SSID ETL process.

TEST_CONFIGURATION1.CREATE_CONFIGURATION(

ETL_TOOL:SSIS,

ETL_TOOL_V:"12.0",

ETL_SERVER_ADDRESS: "localhost",

ETL_SERVER_OS: WINDOWS,

DWH_DB: MSSQL,

DWH_DB_V: "12.0",

DWH_DB_ADDRESS: "localhost",

DWH_DB_OS: WINDOWS,

DWH_DB_AUTH: "Windows",

ENVIRONMENT: "TEST Architecture",

ENVIRONMENT_DESC: "Test architecture for ETLCL language"

);

MSSQL_job.CREATE_SCHEDULER_TYPE(

REFRESH_TIME_IN_SEC:10,

LOG_DETAIL_F: 1

);

TestEnv.CREATE_ENVIRONMENT(

ENVIRONMENT_DESCRIPTION:"Test"

);

Test_context.CREATE_CONTEXT(

DESCRIPTION:'Test context,

ENVIRONMENT_NAME: TestEnv

);

TestLoad.CREATE_LOAD(

LOAD_NAME: Test_load

);

MSSQL_PROCEDURE.CREATE_AGENT_TYPE(

DESCRIPTION:"MSSQL PROCEDURE agent type"

);

SQL_PROCEDURE.CREATE_AGENT(

AGENT_TYPE_NAME: MSSQL_PROCEDURE,

ENVIRONMENT_NAME: TestEnv

);

Test_load.CREATE_GROUP(

GROUP_NAME: Group1

);

(Continued)

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 13/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

Table 2 (continued)

Group1.CREATE_TASK(

TASK_UNIQUE_ID: T1,

TASK_NAME: "Package1.dtsx",

AGENT_NAME: SQL_PROCEDURE

);

Group1.CREATE_TASK(

TASK_UNIQUE_ID: T2,

TASK_NAME: "Package2.dtsx",

AGENT_NAME: SQL_PROCEDURE

);

Group1.CREATE_TASK(

TASK_UNIQUE_ID: T3,

TASK_NAME: "Package3.dtsx",

AGENT_NAME: SQL_PROCEDURE

);

T1.DEPENDS_ON_TASK.T2(SUCCESS);

T2.DEPENDS_ON_TASK.T3(ERROR);

MY_SCHEDULER.CREATE_SCHEDULER(

LOAD_NAME: Test_load,

CONTEXT_NAME: Test_context,

DATE_TIME: "01.01.1970 00:00:00",

DESCRIPTION: "Scheduler Service"

);

Table 3 ETLCL specification of an ODI ETL process.

TEST_CONFIGURATION1.CREATE_CONFIGURATION(

ETL_TOOL:ODI,

ETL_TOOL_V:"12c",

ETL_SERVER_ADDRESS: "localhost",

ETL_SERVER_OS: LINUX,

DWH_DB: ORACLE,

DWH_DB_V: "19.1.0",

DWH_DB_ADDRESS: "localhost",

DWH_DB_OS: LINUX,

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 14/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

Dependency
In many cases, an ETL process depends on the execution status of another process.
Dependencies are used to specify such constraints. Dependencies are also used to
determine the order of task execution and avoid concurrent access to a table. There are
three classifications of dependencies among tasks:

� On Success—the dependent task will be started only if the preceding task is completed
successfully,

� On Completion—the dependent task will be started only if the preceding task is
completed, regardless of its status, and

� On Error—the dependent task will be started only if the preceding task is completed
unsuccessfully.

These three types of dependencies can also be established among groups. The
dependency between two tasks or two groups is defined using the commands
DEPENDS_ON_TASK and DEPENDS_ON_GROUP.

Group
The group concept is a logic unit for grouping tasks. A group may contain an arbitrary
number of tasks with associated dependencies. Each group must have both a unique name
and a domain identifier.

Load
The load concept represents the highest level of grouping. A load is used for modeling the
overall process of transferring data from an origin to a destination. Each load is uniquely
identified by its name and associated with an environment. The date and time of execution,
as well as the execution periodicity, are defined using the scheduler concept.

Table 3 (continued)

DWH_DB_AUTH: "username:***,pass:**",

ENVIRONMENT: "TEST Architecture",

ENVIRONMENT_DESC: "Test architecture for ETLCL language"

);

: : : .

Grupa1.CREATE_TASK(

TASK_UNIQUE_ID: T1,

TASK_NAME: "TABLESPACE_CHECK 001",

AGENT_NAME: ORACLE_PROCEDURE,

PARAMETERS: INSTANCE: "agent_jco_npc",

);

: : : .

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 15/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

Domain
A domain also models constraints among processes. In practice, there may be situations
where certain constraints cannot be effectively expressed using dependencies. For example,
two separate tasks might simultaneously use a table, with one task writing data to the table
and the other task reading data from the table. The domain allows users to mark the tasks
or groups that share the same resources. Tasks and groups with the same domain identifier
wait for another task or group using the same identifier to complete its execution before
starting to ensure they are executed in the correct order and do not overlap or interfere
with one another.

Scheduler
A scheduler is a concept that defines the order in which loads should be executed in an ETL
process. A user may define the start time of a load using an appropriate scheduler property.
Scheduler is also used to define an interval for tasks that require iterative execution.

Environment and context
The environment and context concepts represent a set of software and hardware
components where the load will take place. These concepts are used to specify all the loads
that will execute in a particular environment and context.

Agent
The agent is the main concept for specifying how tasks will be executed. An agent
specification is translated into a server script containing commands for running processes
within an ETL tool. An agent executable specification includes commands for running the
associated task, writing log files, modifying data, and returning results.

Each agent type has a set of parameters. The agent type determines an execution
context, such as an ETL tool or operating system. Table 4 shows all supported agent types
and parameters.

ETLCTL specifications of a selected ETL process
This section presents a concrete example of ETLCL specifications for a typical workflow
and demonstrates how these specifications are interpreted for two different ETL tools and
two distinct platforms. Table 2 contains an example specification for loading data into a
DW. The CREATE_CONFIGURATION command is used to specify that the target
platform consists of the SSIS tool and MSSQL DBMS installed on the Windows operating
system. Environment, load, and group are created using the CREATE_ENVIRONMENT,
CREATE_LOAD, and CREATE_GROUP commands. In this example, there is one load
named Test_load that contains one group of tasks named Group1. The group consist of
three tasks identified as T1, T2, and T3, representing the Package1.dtsx, Package2.dtsx, and
Package3.dtsx packages in the SSIS tool. TheDEPENDS_ON_TASK command is then used
to specify that task T2 will only be executed if task T1 successfully completes its work,
while task T3 will be executed only if T2 completes its work with a status indicating an
error.

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 16/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

In this specific environment, the scheduling service is triggered every 10 seconds, as
defined by the CREATE_SCHEDULER_TYPE command and the REFRESH_TIME_IN_
SEC parameter. The CREATE_SCHEDULER command creates a scheduler that will
initiate the load on a specific date and time. Task T1, i.e., Package1.dtx, is the first in the
group to be ready for execution since it does not depend on the execution of other tasks, so
the corresponding agent is invoked. For this environment, the agent retrieves information
from the SSIDB catalog and initiates the appropriate OS command, which is executed
using the xp_cmdshell command. This command returns the execution status of the
package, and this status is saved into the appropriate log table, which is part of the
metadata repository. The execution status is then used to determine whether to execute
Package2.dtsx. In a similar manner, when the execution of this package is completed, the
return status value is read, and a decision is made on whether to execute Package3.dtsx.

A second example specification, outlined in Table 3, used the same load scenario but on
a different target platform, which consisted of the ODI tool and ORACLE DBMS installed
on the Linux operating system. Table 3 contains the ETL specification of the same scenario
for this platform, excluding the environment, load, groups, and dependencies, as those
remained the same as in the previous example. For this platform, tasks represent scenarios
in the ODI tool. Based on the specification of task T1, the ODI scenario
TABLESPACE_CHECK 001 is executed. When the load is ready for execution, just as in the
previous example, task T1 will be the first one ready for execution. The task execution
service calls an agent for the ODI tool, which triggers the following Linux command:
./startscen.sh-INSTANCE=agent_jco_npc TABLESPACE_CHECK 001 PROD. The
execution results and all logs can be read from the ODI repository. For every scenario
executed by the agent, information is logged about the time, execution success, execution
method, and the call details. These logs are then used to determine whether tasks T2 or T3
will be triggered.

APPLICATION OF ETLCL IN A USE CASE
The common approach for orchestrating a large number of ETL workflows in DW systems
involves creating a central ETL package within a specific ETL tool. This master ETL
package serves as the core hub, calling all other packages, DW procedures, functions, and

Table 4 Supported agent types.

Agent type Parameters

Informatica—Linux Server, information system name, working directory, workflow, and session name.

Informatica—Win Server, information system name, working directory, workflow, and session name.

SSIS—File system File name, execution mode (×86/×64).

SSIS—SQL Server Package name, SQL server address, username and password, execution mode (×86/×64).

SSIS—SSIS Package store Package name, SQL server address (Widows authorization is used), execution mode (×86/×64).

SSIS—Integration Service Catalog Directory, project name, package name, execution mode (x86/x64).

ODI—agent Instance name, scenario name, scenario version, agent name, agent location, and execution context.

Talend Script file path, context name.

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 17/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

related elements. Within this master ETL package, all dependencies are defined, along with
the necessary variables required for metadata transfer and execution. This
parameterization approach offers several advantages, such as facilitating ETL load
upgrades during the development of new mappings and table loading. Furthermore,
centralization enables users to more quickly gain a comprehensive understanding of the
data transfer logic from source to destination. However, this centralized approach has
limitations when it comes to task manipulation. For instance, removing a single link
representing a dependency can sometimes lead to intricate package reorganization. Any
upgrade to the main package, such as adding a new task, commonly demands a more in-
depth understanding of the ETL tool itself.

Several representative use-cases are presented in this section to illustrate the advantages
of ETLCL for orchestrating ETL processes in DW systems compared to the approaches
that are used in practice today. The selected use-case scenarios cover the majority of
patterns that exist in practice today, grouped as follows: (i) changing the logic of the load
process, (ii) changing the DW architecture, and (iii) switching to a new ETL tool. The first
two groups include scenarios that are frequently encountered in DW systems and refer to
situations such as adding a new task or introducing a new data mart. Six scenarios are
included, covering the most common situation encountered in DW systems. Switching to a
new ETL tool is less common, but can be a very demanding process, so it was also included
to demonstrate how ETLCL can help facilitate the process.

Table 5 shows the estimated time required for all use-case scenarios included, with time
comparisons between a widely-used commercial ETL tool and the ETLCL language. These
estimations are based on previous repetitive executions of these scenarios in real-world
systems, performed by the ETL process designers of an equal experience and level of
knowledge in the same software company.

Changing the logic of the load process
Changing the logic of the load process is very common in DW systems that are constantly
upgraded according to user needs, including adding new tasks and jobs, changing
dependencies between two or more processes during data transfer, or changing the error
processing logic. All these changes have to be implemented through an ETL tool or at the
procedural level. ETLCL, however, enables the specification of changes at a higher level of
abstraction, while the engine in the background transforms these specifications into a new
implementation of the existing tasks. This approach simplifies the implementation of the
changes and shortens the time required to perform them.

In the following scenario, the change of load logic is compared using ETLCL and the
SSIS tool, which is a popular, concrete ETL tool. In general, ETL/ELT tools share many
common concepts, as described previously. SSIS does not have a tool to define the order
between job calls. When an additional job needs to be created, the main job must be
manually modified, as it contains the logic of start-up dependencies, error processing,
calling services, and sending notifications of all jobs. Table 6 illustrates the process of
creating a new job using ETLCL. ETLCL provides commands to include a newly created
job into the existing load. First, a new SSIS package, or job, named Package_2.dtsx, is

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 18/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

created in the listing. Then, a new task is defined and included in an appropriate group.
ETLCL commands are used to define dependencies and error handling. The SSIS also does
not provide automatic restart functionality, unless it is implemented using markers and
dependencies. The ETLCL environment stores all metadata into the database, so restart
functionality is supported by the engine.

Changing the DW architecture
Changing the DW architecture usually implies the introduction of a new data mart, layer
in the architecture, or modification of task schedule and dependencies. These changes
require significant effort when load logic is manually defined.

When adding a new data mart whose dimension tables are already included in the main
DW environment, creating a dependency between the existing environment and the new
data mart requires defining a new and more complex structure of the main package. Using
ETLCL, this can be done by simply creating dependencies with the DEPENDS_ON_TASK
command, then the new data mart load will wait for the last successful load of all related
tasks.

Switching to a new ETL tool
Switching to a new data loading concept or ETL tool is an extremely demanding process
that involves rewriting the specification of existing tasks. It also requires the creation of a

Table 5 Estimation of time needed to execute the following scenarios.

Scenario Estimated time using an ETL tool Estimated time using ETLCL

1. (a) 8 man-hours 1 man-hour

1. (b) 16 man-hours 2 man-hours

1. (c) 16 man-hours 2 man-hours

1. (d) This scenario is not usually supported by ETL tools Performed by the engine for an very short amount of time

1. (e) On demand—it depends on the operation team 10 man—minutes

1. (f) 1 man-hour 10 man—minutes

2. No more than two man-days No more than 2 man-hours

3. N/A No more than 3 man-hours

Table 6 Adding a new task to a group.

Group1.CREATE_TASK(

TASK_UNIQUE_ID: Package_2,

TASK_NAME: "Package_2.dtsx",

AGENT_NAME: SQL_PROCEDURE

);

Package_2.DEPENDS_ON_TASK.Package_1(SUCCESS);

PackageStandardError.DEPENDS_ON_TASK.Package_2(ERROR);

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 19/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

new package or framework that will implement the logic of dependencies, errors, restart
options, etc. In ETLCL, the existing settings can be used with a set a new configurations for
the tool.

Other use-case scenarios of changes that occur frequently in DW systems:

1) The following scenarios relate to the modification of the existing load logic, such as
adding a new task, that require changing the settings of the input and output
parameters, the method and period of the task launch, as well as the dependencies of the
existing tasks:

a. Adding a new task to the existing daily load: When this is done on a concrete ETL
tool, such as Oracle Data Integrator, the connection on dependencies must first be
removed, a new task inserted, and the parameters set for the start mode (parallel or
sequential). The branch must be defined after successful execution and in case of an
error, and the input parameters set. These steps must be performed over the
development environment, regenerating the main package, refreshing the launch
agents and their schedule, performing testing, and then redeploying to the
production environment. Because of the number of steps required and their
complexity, an ETL expert is required. With ETLCL, these steps may be performed
with ETLCL language commands, including creating a new task with the package
name, adding a dependency over existing data, and adding the task to the group from
which the start-up time and error handling are inherited.

b. Changing the definition of a load in a way that requires including a new database
procedure or script: This scenario is more complex than the previous one since each
ETL has its own mechanisms for invoking a procedure or script within the main
package. Also, some ETL tools do not provide support for invoking such external
scripts, requiring a scheduler to be implemented at the operating system level. The
steps for adding a procedure or script within an existing package using a concrete
ETL tool are identical to the steps described in the previous scenario, but additional
settings need to be specified to determine the way and time external scripts and
procedures are triggered. With ETLCL, the set and order of commands to be
executed can be defined using language commands, as in the previous scenario.

c. Setting multiple dependencies for a new task: Multiple dependencies means tasks
need to wait for the successful execution of a mapping, script, procedure, or process
outside of the ETL tool itself. In most cases, this requires fairly complex steps that can
take a lot of time during implementation and testing. ETLCL, however, provides
appropriate commands for multiple dependencies, so this type of dependency setting
does not require additional steps.

d. Creating a restart point: The ETLCL language provides commands for monitoring
task execution and logging, enabling quick and easy recovery from an error and
starting the next load process from the point of its interruption.

e. Manual initiation of individual tasks is also common in DW systems. In practice,
users often need to start a task or a group of tasks on demand, and such a request

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 20/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

must be forwarded to the developer for execution. On the other hand, ETLCL
provides appropriate commands for such an operation.

2) Adding new sources, or destinations, and changing the DW architecture usually
requires significant effort in changing configuration parameters, reorganizing the main
package, testing the dependencies, and redistributing the tasks. Using the ETLCL
language, configuration changes are performed in a centralized way within the
configuration table, significantly reducing the time it takes to insert new tasks or a new
group of tasks.

3) Changing the version of the ETL tool, or switching from one ETL tool to another
requires numerous changes for implementation, such as changing the dependencies, the
way tasks are started, and processing errors. Using ETLCL, these changes require
significantly less effort since the engine is able to translate the existing dependencies in
accordance with the new ETL tool.

AN ASSESSMENT OF ETLCL’S MAIN CHARACTERISTICS
Several studies have focused on the theoretical aspects of DSL development (Mernik,
Heering & Sloane, 2005; Kosar et al., 2010; Lukovic et al., 2012; Kahraman & Bilgen, 2013).
This section covers ETLCL quality characteristics as presented in Kahraman & Bilgen
(2013). Analyzing our language from the perspective of end-users was one of our main
goals. However, we were unable to conduct formal interviews using questionnaires to
gather feedback on our language because we do not have enough trained users to provide
statistically valid results. On the other hand, we have included potential users in the
implementation of test cases, allowing us to gather their feedback and present some of their
testimonials. We gave particular focus to productivity and portability, which are the
primary objectives of ETLCL, among other factors. In order to analyze the key
characteristics of our DSL, we tested it using the scenarios that were described in the
previous section.

Productivity of a DSL refers to the degree to which a language promotes programming
productivity. Productivity is a characteristic related to the number of resources expended
by the user to achieve specified goals (Kahraman & Bilgen, 2013). To assess the
productivity of the ETLCL language and verify the satisfaction of requirement R5, a small
study was conducted at Logate ltd., which is one of the largest software companies in
Montenegro. Four professionals in the field of ETL with many years of experience
executing these scenarios in real-world systems were interviewed. The second column of
Table 5 provides estimations of the average time required to execute each scenario using
widely-used commercial ETL tools. A short training on using the ETLCL language was
then conducted, where users were introduced to the main concepts and commands of this
language. The estimated time required to execute each scenario using ETLCL is listed in
the third column of Table 5.

To assess the usability of ETLCL, the ETL experts were asked to provide feedback
specific to ETLCL’s usability in informal interviews, including one strength and one area

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 21/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

needing improvement. In general, the assessment of the ETLCL’s usability was positive.
The participants highlighted that the syntax of the language was comparatively easy to
learn, as it incorporates familiar keywords and commands commonly used ETL languages
and tools. From this, it can inferred that requirement R1 has been largely fulfilled.
However, ETLCL’s lack of advanced tooling, especially including a visual editor, was
emphasized as a significant shortcoming.

Requirement R3 is closely tied to functional suitability that refers to the degree to which
a DSL is fully developed. This means that all necessary functionality is present in the DSL
(Kahraman & Bilgen, 2013). ETLCL has a high degree of functional suitability and meets
the requirement R3 in the domain of ETL orchestration as all test case scenarios were able
to be described using this language.

According to Kahraman & Bilgen (2013), extensibility refers to a language’s ability to
incorporate new features, while integrability measures how easily a DSL can integrate with
other languages and modeling tools. ETLCL exhibits a low degree of both extensibility and
integrability as it lacks mechanisms for incorporating new functionalities and integrating
with other languages.

The ETLCL language facilitates portability. Defining and maintaining ETL processes is a
highly error-prone task, even for experienced, skilled professionals. Using ETLCL as a PIM
language that provides high-level concepts and commands mitigates the risk of error. With
ETLCL, introducing a new platform, target language, or ETL tool does not require creating
new specifications for ETL processes from scratch. Instead, it only requires amendments of
existing transformation algorithms. Therefore, it can be concluded that requirement R4
has been met in a large extent.

CONCLUSIONS
The ETLCL language is designed for software companies specialized in the design and
implementation of ETL processes. ETL process designers and data engineers at these
companies deal with numerous ETL processes using heterogeneous technological
platforms. The ETLCL language helps designers specify and maintain complex ETL
processes. This DSL solution makes several common ETL processes easier, including:

� Providing a high-level description of existing ETL processes;

� Modifying ETL processes, including actions such as changing a sequence of tasks,
adding new tasks, and removing existing ones;

� Creating new ETL processes in an easy and consistent way;

� Deploying and executing ETL processes specified by ETLCL; and

� Reducing efforts when switching to a new ETL tool or technology platform.

Several directions for future work were identified during the development of the ETLCL
language. These include enhancing the execution environment in order to support ETL
tools in addition to the ones listed in Table 1. Future research will focus on improving the
dependency specification and developing a system for automatically identifying conflicts in
data loading using metadata and log files from ETL tools. Creating a graphical syntax for

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 22/25

http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

defining dependencies would also be beneficial, as it would make it easier to understand
and manage dependencies. A formal evaluation of the ETLCL tool is also planned by
conducting an experiment that will include individuals with previous experience in the
DW domain, as well as those who may potentially use such a language. Results will be
gathered in the form of questionnaires and then statistically analyzed.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests. Nikola Trajković is employed
by Softwecs LTD, and he declares no competing interests.

Author Contributions
� Aleksandar Popović analyzed the data, performed the computation work, prepared
figures and/or tables, and approved the final draft.

� Vladimir Ivković analyzed the data, authored or reviewed drafts of the article, peformed
reseach for related work, and approved the final draft.

� Nikola Trajković performed the experiments, performed the computation work,
authored or reviewed drafts of the article, and approved the final draft.

� Ivan Luković conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source code is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1835#supplemental-information.

REFERENCES
Albrecht A, Naumann F. 2013. Systematic ETL management—experiences with high-level

operators. In: Proceedings of the 18th International Conference on Information Quality. Vol. 79.

Atigui F, Ravat F, Teste O, Zurfluh G. 2012. Using OCL for automatically producing
multidimensional models and ETL processes. In: Cuzzocrea A, Dayal U, eds. Data Warehousing
and Knowledge Discovery. DaWaK 2012. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer.

Awiti J, Vaisman A, Zimanyi E. 2020. Design and implementation of ETL processes using BPMN
and relational algebra. Data & Knowledge Engineering 129(13):101837
DOI 10.1016/j.datak.2020.101837.

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 23/25

http://dx.doi.org/10.7717/peerj-cs.1835#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1835#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1835#supplemental-information
http://dx.doi.org/10.1016/j.datak.2020.101837
http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

Biswas N, Chattopadhyay S, Mahapatra G, Chatterjee S, Mondal DK. 2019. A new approach for
conceptual extraction-transformation-loading process modeling. International Journal of
Ambient Computing and Intelligence 30(1):45 DOI 10.4018/IJACI.2019010102.

Deme A, Buchmann R. 2021. A technology-specific modeling method for data ETL processes. In:
AMCIS 2021 Proceedings.

El Akkaoui Z, Zimanyi E. 2009. Defining ETL Workflows using BPMN and BPEL. In: Proceedings
of the ACM Twelfth International Workshop on DataWarehousing and OLAP (DOLAP ’09). Vol.
41: New York: ACM, 48.

Frank U. 2013. Domain-specific modeling languages: requirements analysis and design guidelines.
In: Reinhartz-Berger I, Sturm A, Clark T, Cohen S, Bettin J, eds. Domain Engineering. Vol. 133.
Berlin, Heidelberg: Springer, 157.

Inmon WH. 2005. Building the data warehouse. Fourth Edition. Hoboken: John Wiley & Sons.

Kahraman G, Bilgen S. 2013. A framework for qualitative assessment of domain-specific
languages. Software & Systems Modeling 1(4):22 DOI 10.1007/s10270-013-0387-8.

Karagiannis D. 2018. Conceptual modelling methods: the AMME agile engineering approach. In:
Karagiannis D, Lee M, Hinkelmann K, Utz W, eds. Domain-Specific Conceptual Modeling.
Cham: Springer.

Karagiannis D, Burzynski P, Utz W, Buchmann RA. 2019. A metamodeling approach to support
the engineering of modeling method requirements. In: Proceedings of the IEEE 27th
International Requirements Engineering Conference (RE). Jeju, Korea (South). Piscataway: IEEE,
199–210.

Kelly S, Tolvanen JP. 2005. Domain-specific modelling. In: Enabling Full Code Generation.
Hoboken, NJ: Wiley.

Kimball R, Ross M. 2013. The data warehouse toolkit: the definitive guide to dimensional modeling.
Third Edition. Hoboken: Wiley & Sons.

Kosar T, Oliveira N, Mernik M, Pereira MJV, Crepinsek M, Cruz D, Henriques PR. 2010.
Comparing general-purpose and domain specific languages: an empirical study. Computer
Science and Information Systems 247(2):264 DOI 10.2298/CSIS1002247K.

Lukovic I, Ivancevic V, Celikovic M, Aleksic S. 2012.DSLs in action with model based approaches
to information system development. In: Formal and Practical Aspects of Domain-Specific
Languages: Recent DevelopmentsPennsylvania: IGI Global.

Mazón JN, Zimanyi E, El Akkaoui Z, Trujillo J. 2013. A BPMN-based design and maintenance
framework for ETL processes. International Journal of Data Warehousing and Mining 46(3):72
DOI 10.4018/jdwm.2013070103.

Mernik M, Heering J, Sloane MA. 2005. When and how to develop domain-specific languages.
ACM Computing Surveys 4(4):316–344 DOI 10.1145/1118890.1118892.

Muñoz L, Mazón JN, Pardillo J, Trujillo J. 2008. Modelling ETL processes of data warehouses
with UML activity diagrams. In: On the Move to Meaningful Internet Systems: OTM 2008
Workshops. Vol. 44: Cham: Springer, 53.

Nwokeji JC, Matovu R. 2021. A systematic literature review on big data extraction, transformation
and loading (ETL). In: Arai K, ed. Intelligent Computing. Lecture Notes in Networks and Systems.
Cham: Springer.

Oliveira B, Belo O. 2015. A domain-specific language for ETL patterns specification in data
warehousing systems. Progress in Artificial Intelligence 597(4):602
DOI 10.1007/978-3-319-23485-4_60.

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 24/25

http://dx.doi.org/10.4018/IJACI.2019010102
http://dx.doi.org/10.1007/s10270-013-0387-8
http://dx.doi.org/10.2298/CSIS1002247K
http://dx.doi.org/10.4018/jdwm.2013070103
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1007/978-3-319-23485-4_60
http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

Oliveira B, Oliveira Ó, Santos V, Belo O. 2019. ETL development using patterns: a service-
oriented approach. In: Proceedings of the 21st International Conference on Enterprise
Information Systems. Vol. 216222.

Skoutas D, Simitsis A. 2006. Designing ETL processes using semantic web technologies. In:
Proceedings of the 9th ACM International Workshop on Data Warehousing and OLAP. Vol. 67:
New York: ACM, 74.

Skoutas D, Simitsis A, Sellis T. 2009. Ontology-driven conceptual design of ETL processes using
graph. Transformations in the Journal on Data Semantics 120:146
DOI 10.1007/978-3-642-03098-7.

Song X, Yan X, Yang L. 2009. Design ETL metamodel based on UML profile. In: Second
International Symposium on Knowledge Acquisition and Modeling. Vol. 69: Wuhan, China, 72.

Trujillo J, Luján-Mora S. 2003. A UML based approach for modeling ETL processes in data
warehouses. In: Song IY, Liddle SW, Ling TW, Scheuermann P, eds. Conceptual Modeling—ER
2003. Vol. 307320.

Vassiliadis P, Simitsis A, Skiadopoulos S. 2002. Conceptual modeling for ETL processes. In:
Proceedings of the 5th ACM International Workshop on Data Warehousing and OLAP (DOLAP
’02). Vol. 1421.

Wojciechowski A. 2013. E-ETL: framework for managing evolving ETL processes. In:
Pechenizkiy M, Wojciechowski M, eds. New Trends in Databases and Information Systems.
Advances in Intelligent Systems and Computing. Berlin, Heidelberg: Springer.

Wrembel R. 2009. A survey of managing the evolution of data warehouses. International Journal of
Data Warehousing and Mining 24(2):56 DOI 10.4018/jdwm.2009040102.

Popović et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1835 25/25

http://dx.doi.org/10.1007/978-3-642-03098-7
http://dx.doi.org/10.4018/jdwm.2009040102
http://dx.doi.org/10.7717/peerj-cs.1835
https://peerj.com/computer-science/

	A domain-specific language for managing ETL processes
	Introduction
	Research and engineering methodology
	Related work
	Application of etlcl in a use case
	An assessment of etlcl’s main characteristics
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

