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Abstract. We study a new trace problem for functions holomorphic on

polyballs which generalize a known diagonal map problem for polydisk. Also,

we give descriptions of traces for several concrete functional classes on polyballs

defined with the help of area operator or Bergman metric ball.

1. Introduction

Let C denote the set of complex numbers. Throughout the paper we

fix a positive integer n and let Cn = C × · · · × C denote the Euclidean

space of complex dimension n. The open unit ball in Cn is the set

B = {z ∈ Cn||z| < 1}. The boundary of B will be denoted by S,

S = {z ∈ C
n||z| = 1}.

As usual, we denote by H(B) the class of all holomorphic functions on B.

For every function f ∈ H(B) having a series expansion f(z) =
∑

|k|≥0 akz
k,

1The author is supported by MNTR Serbia, Project 144010.
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we define the operator of fractional differentiation by

Dαf(z) =
∑
|k|≥0

(|k|+ 1)αakz
k,

where α is any real number. It is obvious that for any α, Dα is an operator

acting from H(B) to H(B).

For a fixed α > 1 let Γα(ξ) = {z ∈ B : |1 − ξz| < α(1 − |z|)} be the

admissible approach region with vertex at ξ ∈ S.

Let dv denote the volume measure on B, normalized so that v(B) = 1,

and let dσ denote the surface measure on S normalized so that σ(S) = 1.

For α > −1 the weighted Lebesgue measure dvα is defined by

(1) dvα = cα(1− |z|2)αdv(z),

where

(2) cα =
Γ(n+ α+ 1)

n!Γ(α+ 1)

is a normalizing constant so that vα(B) = 1 (see [18]).

Let also dṽβ(z) = dvβ(z1) . . . dvβ(zm) = (1 − |z1|2)β · · · (1 −
|zn|2)βdv(z1) · · · dv(zn). For z ∈ B and r > 0 the set D(z, r) = {w ∈ B :

β(z, w) < r} where β is a Bergman metric on B, β(z, w) = 1
2 log

1+|ϕz(w)|
1−|ϕz(w)|

is called the Bergman metric ball at z (see [18]).

For α > −1 and p > 0 the weighted Bergman space Ap
α consists of

holomorphic functions f in Lp(B, dvα), that is,

Ap
α = Lp(B, dvα) ∩H(B).

See [5] and [18] for more details of weighted Bergman spaces.

Let m, m > 1 be a natural number, M ⊂ Cn and K ⊂ Cmn,

Cmn = Cn×· · ·×Cn, be a hyper surface. Let X(M) be a class of functions

on M, Y (K) the same. We say TraceY (Mm) = X(M), K = Mm,

Mm = M × · · · × M, if for any f ∈ Y (Mm), f(w, . . . , w) ∈ X(M),

w ∈ M, and for any g ∈ X(M), there exist a function f ∈ Y (K) such

that f(w, . . . , w) = g(w), w ∈ M. Traces of various functional spaces in Rn

were described in [9] and [17]. In polydisk this problem is also known as a

problem of diagonal map (see [5] and references there).

The intention of this paper is to consider the following natural Trace

problem for polyballs. Let M be a unit ball and let K be a polyball

(product of m balls) in definition we gave above. Let further H(B×· · ·×B)

be a space of all holomorphic functions by each zj , zj ∈ B, j = 1, . . . ,m :

f(z1, . . . , zm). Let further Y be a subspace of H(B× · · · ×B).
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The question we would like to study and solve in this work is the following:

Find the complete description of Trace Y in a sense of our definition for

several concrete functional classes. We observe that for n = 1 this problem

completely coincide with the well-known problem of diagonal map. The

last problem of description of diagonal of various subspaces of H(Dn) of

spaces of all holomorphic functions in the polydisk was studied by many

authors before (see [5], [7], [12], [13], [16] and references there). With the

help of area operator and Bergman metric ball in B we introduce new

holomorphic functional classes on polyballs and describe completely their

Traces via classical Bergman spaces in the unit ball B of Cn.

In our previous paper (see [15]), we completely described traces of

weighted Bergman classes on polyballs for all values of p ∈ (0,∞) and traces

of some analytic Bloch type spaces on polyballs expanding known theorems

on diagonal map in polydisk (see [5], [12] and references there). Some results

of this paper are new even for n = 1 (polydisk case). Main results of this

paper will be proved in next section. In the final section, we consider related

estimates for spaces defined with the help of fractional derivatives. Basic

properties of a known so-called r -lattice in the Bergman metric that can

be found in [18] and estimates of expanded Bergman projection in the unit

ball are essential for our proofs.

Trace theorems even for n = 1 (case of polydisk) have numerous

applications in the theory of holomorphic functions (see for example [2],

[5], [14]).

Throughout the paper, we write C (sometimes with indexes) to denote

a positive constant which might be different at each occurrence (even in a

chain of inequalities) but is independent of the functions or variables being

discussed.

We will write for two expressions A � B if there is a positive constant C

such that A < CB.

2. The description of traces of analytic functional spaces
in polyballs based on area operator and Bergman
metric ball and the action of expanded Bergman
projection

Proofs of all our theorems in this section are heavily based on properties

of r -lattice {ak} in a Bergman metric (see for example [18]). In particular

we will use systematically the following lemmas.

Lemma A. [18] There exists a positive integer N such that for any

0 < r ≤ 1 we can find a sequence {ak} in B with the following properties:

(1) B =
⋃

k D(ak, r);
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(2) The sets D(ak,
r
4 ) are mutually disjoint;

(3) Each point z ∈ B belongs to at most N of the sets D(ak, 4r)

Lemma B. [18] For each r > 0 there exists a constant Cr > 0 such that

C−1
r ≤ 1− |a|2

1− |z|2 ≤ Cr, C−1
r ≤ 1− |a|2

|1 − 〈z, a〉| ≤ Cr,

for all a and z such that β(a, z) < r. Moreover, if r is bounded above, then

we may choose Cr independent of r.

We will need also:

Lemma C. [8] Let β > 0 and p > 0. Let {Aj}∞0 be a positive sequence

and
∑∞

n=1 2
−nβAp

n < ∞. Then

∞∑
n=1

2−nβAp
n ≤ C

(
Ap

0 +

∞∑
n=1

2−nβ|An −An−1|p
)
.

Bergman classes on polyballs Ap(Bm, dvα1 · · · dvαm) consists of functions

f in H(Bm), such that,∫
B

· · ·
∫
B

|f(z1, . . . , zm)|p(1− |z1|)α1 · · · (1− |zm|)αmdv(z1) · · · dv(zm) < ∞.

We need also the following theorem from our paper [15] where the

description of traces of Bergman classes in polyballs were given.

Theorem A. (1) Suppose 1 ≤ p ≤ ∞ and s1, . . . , sm > −1. Put

t = (m − 1)(n + 1) +
∑m

j=1 sj . Then there are bounded operators S :

Ap(B, dvt) → Ap(Bm, dvs1 · · · dvsm), and R : Ap(Bm, dvs1 · · · dvsm) →
Ap(B, dvt) such that (Sf)(z, . . . , z) = f(z) and (Rg)(z) = g(z, . . . , z) for

all f ∈ Ap(B, dvt), all g ∈ Ap(Bm, dvs1 · · · dvsm) and all z ∈ B. In other

words, the TraceAp(Bm, dvs1 · · · dvsm) = Ap(B, dvt).

(2) Let 0 < p ≤ 1, s1, . . . , sm > −1, t = (m − 1)(n + 1) +
∑m

j=1 sj .

Then TraceAp(Bm, dvs1 , . . . , dvsm) = Ap(B, dvt).

In this section, we will give the complete description of traces of the

following spaces of holomorphic functions on polyballs Bm = B × · · · × B

defined with the help of area operator and Bergman metric ball with some

restrictions on parameters.

Mp
α =

{
f ∈ H(Bm) :

∫
S

∫
Γt(ξ)

· · ·
∫
Γt(ξ)

|f(z)|pdṽα(z)dσ(ξ) < ∞
}
,

for p ∈ (0,∞), α > −1.
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Kp,q
α,β =

{
f ∈ H(Bm) :

∫
B

· · ·
∫
B

(∫
D(z1,r)

. . .

∫
D(zm,r)

|f(z)|pdṽα(z)
) q

p

dṽβ(z) < ∞
}
,

for p, q ∈ (0,∞), α > −1, β > −1.

Dp
α,β =

{
f ∈ H(Bm) :

∫ 1

0

(1− r)β
(∫

|z1|<1

· · ·
∫
|zm−1|<1

∫
|zm|<r

|f(z)|p ×

×
m∏
j=1

(1− |zj |αj )dv(zj)

)
dr < ∞

}

for p ∈ (0,∞), β > −1, αj > −1, j = 1, . . .m.

These classes were considered in the case of unit disk by many authors

(see, for example, [1], [6], [16]).

Functional classes defined with the help of Bergman metric ball and area

operator in the unit ball were studied in [3], [10], [11] and also in Chapter 5

and Chapter 6 in [18]. Note that Mp
α coincide with usual weighted Bergman

class in ball for m = 1 (see [10], [11]).

The following Theorem for n = 1 was proved in [7].

Theorem 1. Let m ∈ N, n ∈ N, 0 < p < ∞, α > −(n + 1) and

γ = (α+ n+ 1)m− 1. Then Trace(Mp
α(B

m)) = Ap
γ(B).

Proof. In [4] it was shown

(3)

∫ 1

0

|u(rξ1, . . . , rξn)|p(1− r)αdr ≤ C

∫
Γt(ξ)

|u(z)|p(1− |z|)α−ndv(z),

where α > −1, 0 < p < ∞, u ∈ H(B), ξ = (ξ1, . . . , ξn) ∈ S.

We use this estimate m times by each variable separately and get

integrating both sides of obtained estimate by S

∫
S

∫ 1

0

· · ·
∫ 1

0

|u(r1ξ1, . . . , r1ξn, . . . , rmξ1, . . . , rmξn)|p ×
×(1− r1)

α1 . . . (1− rm)αmdr1 . . . drmdξ

≤ C

∫
S

∫
Γt1 (ξ)

. . .

∫
Γtm (ξ)

|u(z1, . . . , zm)|p ×

×(1− |z1|)α1−n . . . (1− |zm|)αm−ndv(z1) . . . dv(zm)dξ,(4)
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where u ∈ H(Bm), m ∈ N, αj > −1, 0 < p < ∞.

To prove the estimate we will use the so-called slice functions (see [18],

page 125). Let

(ũξ)(z) = ũ(ξz), z ∈ D, z = |z|τ,D = {w : |w| < 1}, ξ ∈ S,

uξ(z1, . . . , zm) = u(ξ1z1, . . . , ξnz1, . . . , ξ1zm, . . . , ξnzm),

and

zj = rjφ, zj ∈ D, j = 1, . . . ,m, ũξ(z) = u(ξ1z, . . . , ξnz, . . . , ξ1z, . . . , ξnz), z ∈ D.

Then ũξ ∈ H(D), and

(5)∫ 1

0

∫ 2π

0

|ũξ(z)|p(1−|z|)γdτd|z| ≤ C

∞∑
k=0

∫ 1−2−(k+1)

1−2−k

∫ 2π

0

|ũξ(z)|p(1−|z|)γdτd|z|

� C1

∞∑
k1=0

· · ·
∞∑

km=0

(
2

−k1γ
m · · · 2−kmγ

m

)(
2

−k1
m · · · 2−km

m

) ∫ 1−2−(k1+2)

1−2−(k1+1)

· · ·×

×
∫ 1−2−(km+2)

1−2−(km+1)

∫ 2π

0

|(uξ)(z1, . . . , zm)|p(2k1 · · · 2km)dτd|z1| · · · d|zm|

≤ C2

∫ 1

0

· · ·
∫ 1

0

∫ 2π

0

|(uξ)(z1, . . . , zm)|p
m∏

k=1

(1− |zk|)
γ+1
m −1dτd|z1| · · · d|zm|.

Using that for f ∈ L1(Sn, dσ)

(6)

∫
Sn

fdσ =

∫
Sn

dσ(ζ)
1

2π

∫ 2π

0

f(eiθζ)dθ,

(7) f(tξ) = f(tξ1, . . . , tξn, . . . , tξ1, . . . , tξn), ξ ∈ S, t ∈ (0, 2π),

(see [18], Lemma 1.10), we have from (5) integrating both sides of it by

sphere S

(8)

∫
B

|ũ(z)|p(1−|z|)γdv(z) =
∞∑
k=0

∫ 1−2−(k+1)

1−2−k

∫
S

|ũ(z)|p(1−|z|)γdσ(ξ)d|z|

≤ C

∫ 1

0

. . .

∫ 1

0

∫
S

|u(z)|pdσ(ξ)(1−|z1|)
γ+1
m −1 . . . (1−|zm|) γ+1

m −1d|z1| . . . d|zm|,
ũ(z) = u(z, . . . , z).
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Combining (4) and (8) we have for 0 < p < ∞, γ > −1∫
B

|u(z, . . . , z)|p(1− |z|)γdv(z)

≤ C

∫
S

∫
Γδ(ξ)

. . .

∫
Γδ(ξ)

|u(z1, . . . , zm)|p×

× (1 − |z1|)
γ+1
m −(n+1) . . . (1− |zm|) γ+1

m −(n+1)dv(z1) . . . dv(zm)dσ(ξ).

If β = γ+1
m − (n+1), then γ = (β+ n+1)m− 1, β > −(n+1) and so one

part of the assertion is proved.

Now we prove the reverse of the last inequality. Let p ≤ 1. We use

systematically properties of, so-called, r - lattice {ak} or sampling sequences

(see Lemma A and Lemma B, [18]).

For every s > −1 we have F (z, . . . , z) = f(z), where

F (z1, . . . , zm) = C

∫
B

f(w)(1 − |w|)s∏m
j=1(1 − 〈w, zj〉) s+1+n

m

dv(w)

by Bergman representation formula (see [18], Theorem 2.11). So we get the

following chain estimates (p ≤ 1, s is large enough ) using known properties

of {ak} from Lemma A and Lemma B( see also [18], Chapter 2) and the

fact that (
∑∞

k=1 ak)
p ≤∑∞

k=1 a
p
k, ak ≥ 0, p ≤ 1.

|F (z1, . . . , zm)|p �
∑
k≥0

max
D(ak,r)

|f(w)|p
(∫

D(ak,r)

(1− |w|)s∏m
j=1 |1− 〈w, zj〉| s+1+n

m

dv(w)

)p

�
∑
k≥0

max
D(ak,r)

|f(w)|p (1− |ak|)ps (v(D(ak, r)))
p∏m

j=1 |1− 〈ak, zj〉| s+1+n
m p

.

Then using again the relation |1−〈w, z〉| � |1−〈ak, z〉|, w ∈ D(ak, r), z ∈
B, (see [18], page 63) and Lemma 2.24 from [18] and Lemma A we finally

get

(9) |F (z1, . . . , zm)|p ≤ C

∫
B

|f(w̃)|p(1 − |w̃|)tdv(w̃)∏m
k=1 |1− 〈zk, w̃〉| s+1+n

m p
,

where t = (n+ 1 + s)p− (n+ 1), t > −1.

Integrating both sides of the last inequality by sphere we have the

following estimate
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∫
S

∫
Γt1 (ξ)

. . .

∫
Γtm (ξ)

|F (z1, . . . , zm)|p×

× (1− |z1|)
γ+1
m −(n+1) . . . (1− |zm|) γ+1

m −(n+1)dv(z1) . . . dv(zm)dσ(ξ)

≤ C

∫
B

|f(w̃)|p(1− |w̃|)γdv(w̃); γ > −1, p ∈ (0, 1].

We used m times the following known estimate

(10)

∫
Γt(ξ)

(1− |z|)ν
|1− 〈w, z〉|s1 dv(z) ≤

C

|1− 〈ξ, w〉|s1−n−1−ν
,

where ξ ∈ S, w ∈ B, ν > −n− 1, s1 > ν+n+1, (see [13], [14]). It is easy

to see that Theorem 1 is proved completely for all p ∈ (0, 1].

For p > 1, we use the following estimate, which can be easily obtained

from Hölder’s inequality applied twice and the estimate (see [18], Theorem

1.12): ∫
B

(1 − |z|)ν
|1− 〈w, z〉|s1 dv(z) ≤

C

(1− |w|)s1−n−1−ν
,

w ∈ B, ν > −1, s1 > ν + n+ 1, applied m times for s1 = τ2p
′m

(τ = p
(

ν+n+1
mp′ − τ2

)
, 1

p + 1
p′ = 1)

(11)

|F (z1, . . . , zm)|p �
∫
B

|f(w)|p(1 − |w|)s(1− |z1|2)τ · · · (1− |zm|2)τ∏m
k=1 |1− 〈zk, w〉|pr1 dv(w),

where zj ∈ B, j = 1, . . . ,m; r1 + r2 = s+n+1
m , r1, r2 > 0, and continue

as for the case p ≤ 1, using appropriate τ1, τ2. The proof of theorem is

complete. �

Remark 1. For m = n = 1 the statement of Theorem 1 is obvious.

Theorem 2. Let n ∈ N, 0 < p < ∞, tj > −1, βj > −1,

j = 1, . . . ,m, α > −1 and α =
∑m

j=1(βj + 2(n+ 1) + tj)− (n+ 1), then

Trace
(
Kp,p

t,β (B
m)
)
= Ap

α(B).

Proof. Obviously by Lemma A and B

(12)

∫
B

|f̃(z)|p(1− |z|)αdv(z) �
∑
k≥0

(
max

z∈D(ak,r)
|f̃(z)|p

)
(vα(D(ak, r))) ,

where f̃(z) = f(z, . . . , z), 0 < p < ∞, α > −1.
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We have by Lemma 2.24 from [18] and Lemmas A and B∑
k≥0

max
z∈D(ak,r)

|f̃(z)|pCk,α+n+1

�
∑

k1≥0,...,km≥0

(
max

zj∈D(akj
,r)

|f(z1, . . . , zm)|p
)
Ck1,...,km,α+n+1,

where Ck,α+n+1 = vα+n+1(D(ak, r)). Here

α =

m∑
j=1

β̃j +

m∑
j=1

tj − n− 1, tj > −1, j = 1, . . . ,m,

with β̃j = βj + 2(n+ 1), j = 1, . . . ,m.

‖f‖p
Ap

α
≤
∫
B

. . .

∫
B

(1− |z1|)t1 · · · (1 − |zm|)tm×

×
(∫

D(z1,r)

. . .

∫
D(zm,r)

|f(w1, . . . , wm)|pdṽ−→
β
(w̃)

)
dṽ(z),

where dṽ−→
β
(w̃) =

∏m
k=1(1− |w|2)βkdv(w). At the final step we used Lemma

A again and the fact that for z ∈ D(ak, r) (1− |z|)t � (1− |ak|)t, t ∈ R.

Let us prove the reverse to the estimate we obtained above. We again

use properties of expanded Bergman projection and we have the following

chain of estimates. We have as before for positive large enough integer s,

F (z1, . . . , zm) = C

∫
B

f(w)(1 − |w|)sdv(w)∏m
j=1(1− 〈w, zj〉) s+1+n

m

;

and F (z, . . . , z) = f(z). Hence by Lemma 2.15 from [18], for p ≤ 1, we

have∫
B

. . .

∫
B

m∏
k=1

(1− |z̃k|)tk
(∫

D(z̃1,r)

. . .

∫
D(z̃m,r)

|F (z1, . . . , zm)|pdṽβ(z)
)
dṽ(z̃)

�
∫
B

. . .

∫
D(z̃1,r)

. . .

∫
D(z̃m,r)

∫
B

f(w)(1 − |w|)p(n+1+s)−(n+1))

|∏m
j=1(1− 〈w, zj〉) s+1+n

m |p
×

×
m∏

k=1

(1− |z̃k|)tk
m∏

k=1

(1− |zk|)βkdṽ(z̃)dṽ(w̃)dṽ(z),

where dṽ(z̃) = dv(z̃1) . . . dv(z̃m). Using the fact that s is large and using

the inequality
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∫
D(z1,r)

. . .

∫
D(zm,r)

(1− |w1|)β1 · · · (1− |wm|)βm∏m
j=1 |1− 〈wj , z〉| s+1+n

m p
dv(w1) · · · dv(wm)

≤ C

m∏
j=1

|1− 〈z, zj〉|
−(s+1+n)p

m +βj+n+1, z ∈ B, zj ∈ B,

we finally get the estimate we need:

(13) ‖F‖p
Kp,p

t,β
� ‖f‖p

Ap
α
,

when α, t, β were defined above.

To finish the proof we need the estimate (13) for p > 1. For that reason

we apply estimate (11). Then repeat arguments we provided above for p ≤ 1

using the fact that s is large enough in Bergman representation formula.

The proof of theorem is complete. �

Remark 2. Let us note that for m = 1 and n = 1, Theorem 2 is obvious.

Our Theorem 2 is new even for m > 1, n = 1 (polydisk case).

Theorem 3. Let 0 < p < ∞, β > −1, αj > −1, j = 1, . . . ,m. Then

Trace(Dp
α,β(B

m)) = Ap∑
m
j=1 αj+β+1+(n+1)(m−1)(B).

Proof. We obtain first a characterization of Dp
α,β classes via weighted

Bergman spaces on polyballs and then we will apply Theorem A and thus

we will calculate completely traces of Dp
α,β classes in polybals.

Let 0 < t < 1, ft(z) = f(tz), z ∈ B × · · · × B. Let rn = 1 − 2−n,

n = 0, 1, . . . . Using decomposition
∫ 1

0 P (r)dr =
∑∞

k=0

∫ rk+1

rk
P (r)dr, where

P (r) is any measurable function on (0, 1), it is easy to check

‖f‖p
Dp

α,β
=

∫ 1

0

(1 − r)β

(∫
|z1|<1

· · ·
∫
|zm−1|<1

∫
|zm|<r

|ft(z1, . . . , zm)|p×

×
m∏
j=1

(1− |zj |)αjdv(zj)

⎞⎠ dr

≤ C

∞∑
n=1

2−n(β+1)

⎛⎝∫
|z1|<1

· · ·
∫
|zm−1|<1

∫
|zm|<rn

|ft(z)|p
m∏
j=1

(1− |zj |)αjdv(zj)

⎞⎠
= C

∞∑
n=1

2−n(β+1)Ap
n = K(p, f, α).
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We have by Lemma C

K ≤ C1

∞∑
n=1

2−n(β+1)

∫
|z1|<1

· · ·
∫
|zm−1|<1

∫
rn−1≤zm<rn

|ft(z)|p×

×
m∏
j=1

(1 − |zj|)αjdv(zj)

≤ C2‖ft‖Ap(Bm,dvα1 ,...,dvαm−1
,dvβ+1+αm)

= C2

∫
|z1|<1

· · ·
∫
|zm|<1

|ft(z1, . . . , zm)|pdvα1(z1) · · · dvαm−1(zm−1)dvβ+1+αm(zm).

Finally we have

(14) ‖ft‖pDp
α,β

< C‖ft‖Ap(Bm,dvα1 ,...,dvαm−1
,dvβ+1+αm).

We tend t → 1 and apply Theorem A. So we get

Trace(Dp
α,β(B

m)) ⊂ Ap∑
m
j=1 αj+β+1+(n+1)(m−1)(B).

The reverse to (14) can be obtained by very similar arguments. So using

again Theorem A we get the reverse inclusion

Ap∑
m
j=1 αj+β+1+(n+1)(m−1)(B) ⊂ Trace(Dp

α,β(B
m))

and the proof is complete. �

3. On traces of Hardy spaces and some functional classes
defined via fractional derivatives in polyballs

In this section we will give estimates for traces of classes of holomorphic

functions of Besov-type in polyballs defined with the help of fractional

derivatives.

For α ≥ 0, p ∈ (0,∞), β ∈ R, Dβf = Dβ
z1 · · ·Dβ

zmf, r ∈ (0, 1), define

Hp
α,β(B

m) = {f ∈ H(Bm) : sup
r<1

(
M̃p(D

βf, r)
)
(1− r)α < ∞

M̃p
p (f, r) =

∫
S

· · ·
∫
S

|f(rξ1, . . . rξm)|pdσ(ξ1) · · · dσ(ξn).

We define Hardy class Hp in polyballs as Hp(Bm) = Hp
0,0(B

m) for

p ∈ (0,∞). As usual, we denote by −→α the vector (α1, . . . , αn). Let

Ap
t,−→α (B

m) = {f ∈ H(Bm) :

∫
B

· · ·
∫
B

|Dα1 · · ·Dαmf |p(1− |z̃|)tdṽ(z) < ∞},



282 Traces of some holomorphic spaces on polyballs

where αj ∈ R, j = 1, . . . ,m, t > −1, 0 < p < ∞ and (1 − |z̃|) =∏m
k=1(1 − |zk|). Then the following result can be formulated as a direct

corollary of estimates for expanded Bergman projection obtained during

the proof of Theorem 1 (see estimate (9)) and some known calculations

with fractional derivatives on Bergman kernels that can be found also in

[10] and [11].

Theorem 4. (1) Let p ≤ 1, α ≥ β ≥ 0, then Ap
nm+(α−β)pm−(n+1)(B) ⊂

Trace(Hp
α,β(B

m));

(2) Let p ≤ 1, αj ≥ 0, t ≥
∑m

j=1 αj

m , then Ap
mt+m(n+1)−(n+1)−∑

m
j=1 αj

(B) ⊂
Trace(Ap

t,−→α (B
m)).

Remark 3. Note that for n = 1 (polydisk case) and α = 0, β = 0 the

first inclusion can be found in [5]. The second inclusion for α1, . . . , αn = 0

can be also found in [5].

It is not difficult to see as a consequence of Cauchy formula (as in case of

polydisk) that the expansion of any function f, f ∈ H(Bm) can be defined

as follows

f(z1, . . . , zm) =
∑
n1≥0

· · ·
∑

nm≥0

an1,...,nmzn1
1 · · · znm

m

z
nj

j = z
n1
j

1 · · · zn
n
j

n , j = 1, . . . ,m

where z
ni
j

k is in unit disk in C. And hence the corresponding homogeneous

expansion of will be defined as follows:

f(z1, . . . , zm) =

∞∑
k1=0

· · ·
∞∑

km=0

fk1,...,km(z1, . . . , zm);

fk1,...,km(z1, . . . , zm) =
∑

|s1|=k1

· · ·
∑

|sm|=km

as1,...,smz
−→s1
1 · · · z−→smm ,

|sj | =
n∑

i=1

sji , zj ∈ B,

and the action of the fractional derivative is given by

(
Dt1,...,tmf

)
(z) =

∞∑
k1=0

· · ·
∞∑

km=0

m∏
j=1

(kj + 1)tjfk1,...,km(z1, . . . , zm),

with tj ∈ R, j = 1, . . . ,m,
(
D

−→
t f
)
: H(Bm) → H(Bm).



R. F. Shamoyan, O. R. Mihić 283

We now provide some estimates for traces of Hardy Hp classes in

polyballs. Let p ≥ 2. Then Trace(Hp(Bm)) ⊂ Ap
n(m−1)−1(B), m ∈ N,

m > 1, n ∈ N. The proof follows directly from binomial formula. We will

give a short proof for n = 1 polydisk case. The general case needs small

modification.

Let Dn be unit polydisk, dm2n(z) Lebesgue measure on Dn. Then we

have the following chain of estimates. For s ∈ N.

(k1 + . . .+ kn + 1)s =
∑

αj≥0;
∑n+1

j=1 αj=s

Cs(α1, . . . , αn)

⎛⎝ n∏
j=1

(kj + 1)αj

⎞⎠×

× (−1)αn+1(n− 1)αn+1 .

Hence

M =

∫
Dn

|
∑

k1,...,kn

(k1 + . . .+ kn + 1)sak1,...,knz
k1
1 · · · zkn

n |p×

× (1− |z1|)α1p−1 · · · (1− |zn|)αnp−1dm2n(z)

≤ C

∫
Dn

|Dα1···αnf |p
n∏

k=1

(1 − |zk|)αkp−1dm2n(z) ≤ C‖f‖Hp .

The last estimate follows directly from Theorem 4.41 from [18] for Hp, p ≥ 2

applied n times.

On the other hand obviously by Theorem A we have

M ≥ C1

∫
D

|
∑

k1,...,kn

(k1 + . . .+ kn + 1)sak1,...,knz
k1+...+kn |p(1 − |z|)sp+n−2dm2(z)

≥ C2

∫
D

∣∣∣∣∣∣
∑
m≥0

(m+ 1)s

( ∑
k1+...+kn=m

ak1,...,kn

)
zm

∣∣∣∣∣∣
p

(1− |z|)sp+n−2dm2(z)

≥ C3‖f̃‖pAp
n−2

, p ≥ 2, f̃ = f(z, . . . , z).

Let us note also that according to well known estimate for Poisson integral

of functions from Hardy classes in the unit ball (see [18], page 154) applied

(m− 2) times we have

|f(z, . . . , z)|p ≤ C

∫
Sn

· · ·
∫
Sn

|f(ξ1, . . . , ξm−2, z, z)|p×

× (1− |z|2)n · · · (1− |z|2)n∏m−2
k=1 |1− 〈ξk, z〉|2n

dσ(ξ1) · · · dσ(ξm−2),
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where z ∈ B, f ∈ Hp(B× · · · ×B) = Hp(Bm), 0 < p < ∞.

From last estimate now it is easy to see that if

(15)

∫
B

|f(z, z)|p(1 − |z|)n−1dv(z) ≤ C‖f‖Hp(B2),

where 0 < p < ∞, n ≥ 1, f ∈ Hp(B2). Then for any m > 1, m ∈ N, f ∈
Hp(Bm), 0 < p < ∞,

(16)

∫
B

|f(z, . . . , z)|p(1− |z|)n(m−1)−1dv(z) ≤ C‖f‖pHp(Bm).

So Trace(Hp(Bm)) ⊂ Ap
n(m−1)−1(B), 0 < p < ∞.
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