
www.ietdl.org
Published in IET Software
Received on 13th April 2011
Revised on 24th April 2012
doi: 10.1049/iet-sen.2011.0060

ISSN 1751-8806

Model and software tool for automatic generation
of user interface based on use case and data model
I. Antović S. Vlajić M. Milić D. Savić V. Stanojević
Faculty of Organizational Sciences, Software Engineering Laboratory, University of Belgrade, 154 Jove Ilića,
11000 Belgrade, Serbia
E-mail: ilijaa@fon.bg.ac.rs

Abstract: The aim of this study is to identify the correlations between the use case model, data model and the desired user
interface (UI). Since use cases describe the interaction between the users and the system, implemented through the user
interface with the aim to change the state of the system, the correlation between these three components should be taken into
account at the software requirements phase. In this study, the authors have introduced the meta-model of software
requirements developed on the identified correlations. Based on this meta-model, it is possible to create a model of concrete
software requirements, which enables not only the design and implementation of the user interface, but also the automation of
this process. In order to prove the sustainability of this approach, they have developed a special software tool that performs
the transformation of the model to an executable source code. They have considered different ways of user interaction with
the system, and consequently, they have recommended the set of most common user interface templates. Thus the flexibility
of the user interface is achieved, as the user interface of the same use case could be displayed in several different ways, while
still maintaining the desired functionality.
1 Introduction

The starting point of creating any software product is the
software requirements phase, and the results of this phase
represent the basis of all other phases in the software life
cycle. For this reason, the requirement specification, which
is commonly represented by the use case model, should be
detailed enough to provide the information necessary for
the design and implementation of all elements of the
software system; starting with the user interface, throughout
application logic that encapsulates domain structure and
system behaviour, to data storage. However, the
requirement specification often misses the information
required to design certain aspects of the system. In such
cases, it is left to a programmer to interpret requirements
and find out solutions, which can often lead to results
which do not meet the user’s needs, for example, when
considering the user interface, one will find that the
requirement specification rarely provides information about
its appearance, content, types of components to be used and
so on.

Hence use cases describe the interaction between the users
and the system implemented through the user interface with
the aim of changing the state of the system, the correlation
between these three components should be taken into
account at the software requirements phase.

This paper will present the results of research whose goal
was to develop a model for the software requirement
specification semantically rich enough to enable the
automation of the user interface implementation process.
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060
Considering the problem of designing user interfaces, we
noticed different relationships between user requirements
specification, data model and desired user interface.

First, we observed relationships between the desired
user interface and user requirements. Looking at the
existing techniques for gathering and specification of user
requirements, use cases have been imposed as the most
appropriate technique for their specification, especially if
we want to achieve that certain parts of the software are
created automatically. In this sense we have analysed the
actions executed by an actor in the use case main scenario
and the impact of these actions on the user interface.

By analysing user interfaces and their underlying data
models, we noticed certain relationships that can be
established between them. In this context, we have analysed
entities, their attributes, relationships between them and
their influence on the user interface.

Besides the influence of elements of use cases and data
model on the user interface, we noticed that for the same
use case we can design a variety of user interfaces, while
still maintaining the desired functionality. This fact should
not be ignored when automating the process of generating
the user interface, because it would thereby lose flexibility
in designing the user interface. The user should be able to
choose the characteristics they want to apply on their user
interface. These characteristics are not related only to the
choice of graphical components, but to the way these
components are organised, as well as to the additional
functionality that are often seen on a user interface.
To recognise these characteristics, we considered user interfaces
559

& The Institution of Engineering and Technology 2012



www.ietdl.org
of several different software systems with different business
domains and we defined several user interface templates.
Consequently, flexibility is achieved, and the interested
parties can try out different templates or the combination of
templates during user requirement specifications to decide
which one best suits their specific use case.

The meta-model defined in this paper represents the input
for the software tool that enables generating the user
interface source code. We will present the main
characteristics of the generator as well as the calculations
derived from its application on the real-life project. In doing
so, we have taken into account both saved time and the
proportions of requirements implemented by its application
compared with those developed manually.

Also, we performed a comparison of this approach with
existing approaches from the field and we presented the
most important results of the comparison.

2 Background

From the user’s point of view, the difference between the user
interface layer and other layers of the software system is not
clearly distinguishable. In fact, it is often completely unseen.
For most users the software system represents a means to
complete certain tasks. To them, the user interface is not
simply part of the software system, but the system itself [1].

On the other hand, the system designer perceives the user
interface as the realisation of the software’s input and/or
output. There are many different methods for software
system development, whose mutual characteristic is dividing
between the design of the system’s functionality and the
design of the way that the user interacts with the system [1].

The phases included in the software life cycle are the
collection and specification of user requirements, analysis,
design, implementation and testing. The design of the user
interface starts only after the requirements phase has been
completed or even after the design of application logic.

Contrary to that, there is another approach to development
– one which suggests that the process of designing the user
interface should be done parallel with the requirement
specification. This approach is based on the way the user
sees the software system, which is summarised by saying
that ‘the user interface is the system!’ [1]. The reason for
this is that the user is not familiar to the structural details
and the ways in which the system is implemented. The
requirement specification explains how the user wishes to
execute a certain task using the software system. The
execution of such a task entails an interaction between the
user and the system, which forms a particular structure.
According to this approach, the user interface should follow
this structure so as to attain a higher level of software system
usability. The early phases of creating a user interface often
do not result in a fully functional user interface, but a
prototype whose main goal is to emphasise the questions
and presumptions that might not have been clarified using
other approaches in requirements engineering [2].

A very important aspect in software development is the cost
of a completion of software project. Given that the production
of software is a series of intellectual and technical activities
performed by highly-educated engineers, it becomes clear
that the cost of the system greatly depends on the time and
effort required for its production. The development of the
user interface is a significant part of such a process [3].
A survey [4] found that 48% of a software system’s
programming code is related to the user interface, with
about 50% of the entire development time being used for
560

& The Institution of Engineering and Technology 2012
its implementation. Other research in this area has produced
similar conclusions [5], regardless of the fact that tools
which hasten this process and make it easier are utilised in
the development process.

Owing to the fact that the user interface represents a direct
link between the user and the system, the user often alters the
requirements regarding its appearance and structure during
the development process. These alterations occasionally
cause changes to be made to the already implemented
system and often result in the discarding of the interface
developed until that point. This means that the entire
process must be started from the scratch. However, the user
may find that even the new solution fails to meet their
needs, as they often find it difficult to precisely define the
requirement specifications.

All these facts impose a strong need for the automation of
the process with a goal is to devise a solution to speeding up
the development of the user interface and reducing its costs.
The resulting user interface must be based on user
requirements. This tool should make the requirement
specification process more effective. The user should then
be able to identify quickly deficiencies in the requirement
specification and remove them, enabling the system to meet
their needs as closely as possible.

3 Software requirements: the basis
of developing a good user interface

The significance of software requirements in software
development is best illustrated by the research [6] which
shows that half of the factors that influence the success of a
software project are linked specifically to software
requirements. Thereafter, this paper pays a great attention to
the process of collecting and specifying the software
requirements.

An important factor in the collection and specification of
software requirements is the techniques employed in this
process. The method chosen for software development often
dictates which technique is to be employed, and the way in
which the results of the applied technique are to be
interpreted.

The most widely used techniques for the collection of user
requirements today are use case specification [7, 8], and user
stories [9]. The use case specification and user stories share
certain characteristics (they are based on the scenarios and
are oriented towards user’s aims), but also differ in a
number of ways (they vary in structure, the range of
requirements covered, integrity, feasibility and how detailed
they are) [7, 9, 10]. The goal of both techniques is to
specify the user’s intentions, that is, what the user wishes to
achieve through a desired functionality. Considering the
two aforementioned techniques for the collection and
specification of user requirements, we can conclude that the
use case specification presents a more acceptable solution
than the user stories, especially when we wish to achieve
automated development of certain software elements. The
reason behind this is the use case’s structure, integrity, as
well as the possibility to include additional details
significant to different system aspects. The literature often
suggests the use cases as the best choice when using the
model driven architecture approach [11].

3.1 Problems in specifying software requirements

Choosing a technique for the software requirements
specification does not solve all the problems that can occur
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060



www.ietdl.org
Table 1 Time required to make changes in different phases (in hours) [14]

Requirements collection Design Implementation Testing (during development) Acceptability test Working system

1 3–6 10 15–40 30–70 40–1000
during this process, but can later have significant
consequences. One of the most common problems that occur
during the use case specification process is the existence of
ambiguities in use cases. The literature identifies multiple
reasons for ambiguities and gives recommendations on how
to lessen the chance of their occurrence. The reasons are
complex logic, negative requirements, omissions, boundaries
and ambiguous terms [12].

All ambiguities in software requirements must be identified
and removed as early as possible in order to avoid additional
effort and save time (Table 1). Should ambiguity only occur
once the implementation phase has been already reached,
the necessary changes must be made, which is often very
complex, time-consuming and hard to trace [13].

3.2 Connection between software requirements
and data models

If ambiguous requirements were the enemy, the domain
model was the first line of defence! [15].

Numbers of software development methods suggest
designing the domain model of the system after having
employed the use case specification.

In the object-oriented applications, states of the systems
are encapsulated in the domain objects, which, along with
relationships and constraints make the domain model of
the software system. A domain model describes a static
structure of the software system, that is, the basic concepts
of the business problem domain being developed. This
model is also called the ‘conceptual model’ and is
constructed in the early, analysis phase of the software life
cycle. The domain model represents the basis for the further
design of the data model that will form the foundations for
designing the data storage.

In order to avoid the ambiguities in user requirements and
all their inherent perils, this research will recommend a
slightly different approach to the use case specification and
to the development of the domain model. According to this
approach, the use case specification will be based on a
previously developed domain model, instead of vice versa.
Therefore before employing the use case specification it is
necessary to construct an initial version or ‘sketch’, of the
domain model. The domain model will become the starting
point of the use case specification. This does not mean that
the starting domain model will remain unchanged until the
end of the requirements phase. On the contrary, when
the new details of user requirements are identified during
the use case specification, which were not included in initial
domain model, they should be added to it. The domain
model will be the foundation for designing the static
elements of the system, while the use case specification will
be used as a basis for designing dynamic elements of the
system. The static elements of the system represent its
structure, whereas dynamic parts determine the way the
system functions. This will enable the static (domain
model) and dynamic (use case) parts of the system’s model
to be connected from the very beginning of requirements
phase, which will preserve their consistency. This fact is
crucial for the next phases of development if they are to
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060
relies directly on the use case specification (which is the
case with all use case driven methods). In this context the
domain model functions as a vocabulary of terms which
will ensure their consistency when describing the problem
domain. The literature [16] suggests this kind of integration
of the use case and the domain model as a way of ensuring
validity of software requirements.

3.3 Use case structure

As mentioned earlier one of the advantages of the use case
specification over other techniques for the collection and
specification of requirements is its structure. This structure
is not strictly defined, and different authors present the use
case specification in different forms.

Today’s literature lists hundreds of different formats or
templates for use case specification. These templates are a
result of the need to standardise the use case specification,
in order to ensure that the specification is complete and that
the communication between team members in charge of the
specification is comfortable. Each of these templates is
made for a specific purpose, so it is difficult to speak of a
single template that could be qualified as universally
acceptable. Still, the template chosen for a specification has
a great impact on the usability of a use case specification
during the design phase. It has also impact on the
completed software. As far as the user interface design is
concerned, using certain templates makes the process of
constructing a good user interface easier, while other
templates provide no useful information for such
development or might even make it more difficult [17].

The use case specification templates describe structural
elements that each use case should contain. However, none
of the these templates describes in detail the structure of the
main scenario or the structure of scenario steps, except for
some templates which recommend the numeration of the
steps or the separation between the actions performed by
the user and the actions executed by the system.

The literature [7, 15] suggests that all steps in a scenario
should be written in active voice, and in sentences with a
‘noun–verb–noun structure’. The first noun signifies the
doer – the user or the system as the subject of the sentence
(depending on whether the action is performed by the user
or the system), the verb represents the predicate of the
sentence and denotes the action being executed, while the
second noun marks the object of the action being performed.

As we mentioned earlier in this paper there is a need to link
the domain model and the use case specification, and we have
concluded that the use case specification should be based on
the previously developed domain model. When studying the
steps in the use case scenario (use case scenario is also
called a use case instance [8, 18]) in greater detail, one can
notice that the object of the action (the second noun in the
noun–verb–noun structure) is represented by a domain
model entity or the attribute of an entity, depending on the
level of detail used when employing a use case
specification. This is how a connection between use cases
and the domain model is made, that is, the data model to be
created based on the domain model. In this way, each use
561

& The Institution of Engineering and Technology 2012



www.ietdl.org
Table 2 Action types in use case scenario steps

User actions preparation of input data

input

selection

sending of requests and data to the system

System actions execution of operation changing the internal state of the system, whose prerequisite is the execution of data validation

displaying of results of the executed operation to the user
case can clearly be linked to an entity set to which it relates.
Each entity set represents a sub-set of the domain model
entities, which clearly defines the boundaries of use cases
from the aspect of system structure.

The literature [8, 19] often explains the action performed in
a use case scenario step as a transaction in the communication
between the user and the system. Jacobson et al. [8] note four
types of actions used to describe a scenario step. Owing to a
need for better requirement specification from the aspect of
user interface, we will introduce further two types which
relate to the preparation of input data, which makes the
complete list of actions appear in this way (underlined)
(Table 2).

4 Connection between use case specification
and the user interface

In the literature, we can often find the recommendation to
omit information about the user interface from the use case
specification [18]. As one of the most common mistakes in
the use case specification, authors mention existence of
details related to the user interface. This recommendation
comes from the legitimate concern that details related to the
user interface can distract the interested parties from the
core of the problem being analysed when specifying
software requirements.

Information about the user interface is of no importance
when describing the goal and the aim of the user, while the
user’s goal and aim are essential for use cases. However,
the fact that information about the user interface is so often
found within a use case specification testifies to the
necessity of establishing clear relations between the user
interface design and the interaction between a user and a
system as described by use cases [20].

By analysing use case specifications and the user interface
designed for these specifications, we have identified certain
connections between the two.

The first connection relates to the execution order of user-
initiated steps in the use case scenario. The user interface is
meant to enable the communication between the user and
the system in a way described by the use case specification.
When considering this, it seems only natural that the
ordering of the components on the user interface should be
arranged in such a way that the user is provided with a
logical sequence for operation execution; one which
matches the desired description illustrated in the use case
specification.

The second connection between the elements of the user
interface and the use case specification relates to the very
type of action in each step of the main scenario executed by
the user. The different types of actions performed by the
user, as well as the actions executed by the system, have
already been mentioned in this paper. User actions pertain
to the preparation of input data (where we noticed two
types of actions: ‘input’ and ‘selection’), as well as
‘sending requests and information to the system’ (the third
562

& The Institution of Engineering and Technology 2012
type of user actions). Table 3 shows the graphical
components that are usually used for the realisation of
different user actions. It is important to emphasise that a
particular action can be performed using other components
and the same time presented components can be used in a
different way, that is, different actions. Typical example is
the table component that can be used not only for data
entry or selection but also for grouping other components
that can then be used for realisation of any kind of actions.

The connection between the elements of the use case
specification and the user interface elements is illustrated
in Fig. 1.

5 Connection between the data model
and the user interface

By analysing data models, as well as the user interface
designed for these models, we have identified certain
connections between them. While observing data models,
we considered the effects of the basic data model elements
(entities, their attributes and the relationships between them)
on the characteristics of the designed user interface.

5.1 Attributes

The attributes of the data model elements in terms of
designing a user interface should not be observed
independently from use case specification. The data model
is designed with the goal of enabling permanent storage of
data, so that the information significant to the user can be
stored. Besides, additional information is also kept in
order to ensure the consistency of data or to keep track of
the changes to the data. All of the information which is
not covered by the use case specification should be hidden
from the user, as it can cause confusion without
presenting anything useful to the user when executing the
use case.

Table 3 Graphical components which match the different types

of scenario actions

Action type Graphical component type

input text field

check field

date entry field

table

selection drop-down list

table

radio buttons

list

tree

sending requests and

information to the system

button

menu or menu entry

event defined for a component
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060



www.ietdl.org
Fig. 1 Connection between the elements of use case specification and the user interface
5.2 Attribute types

Regarding the attribute types, it is also possible to establish
connections with certain components of the user interface.
Some components are, to a lesser or greater degree, suitable
for the output or input of a specific type of data. For
example, in the case of logical data (‘Boolean’), the use of
a ‘text field’ where the user is expected to enter a value
(true/false, yes/no, 0/1 and so forth) is rare. A component
designed for this purpose (a ‘checkbox’, a group of ‘radio
buttons’, a ‘combo box’ with preset values) will be
displayed instead. In the case of text data, a ‘text field’ is
the most commonly used component (with one or more
lines of text, depending on the size of the data), while
attributes which represent dates have their own components
designed for exactly those purposes [different kinds of
components for the input or selection of date (‘date-picker’)].

5.3 Relationships

Data model relationships have also a significant role in
designing a user interface. A 1– ∗ relationship (one-
to-many) means that for the instance of 1 type of entity,
there exists a number of attached instances of entities from
the ∗ side. Let us look at the example with the ‘Invoice’
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060
and ‘InvoiceItem’ entities, where the use case for the entry
of Invoice implies the entry of InvoiceItem as well. Often,
the user interface will display entries for the ∗ side (the
InvoiceItem side) as a separate sub-form to the form created
when Invoice entries are made. The sub-form can be
displayed in the same window or a separate one, taking care
that a means to synchronise data with the initial window
should be insured.

This sub-form should enable the entry of multiple instances
of InvoiceItem for a single Invoice, so a graphical component
which shows data in the form of a table can be used for that
purpose, with each row in the table presenting a different
instance of InvoiceItem for the currently active Invoice,
displayed in the main form. This relationship is often called
the parent–child relationship, where the ‘parent’ can have
more ‘children’, while each ‘child’ has only one ‘parent’
(Fig. 2).

However, the child does not always have to be displayed in
the form of a table. The one-to-many relationship can be
realised in such a way that in the sub-form, for data input
for the child, instead of a table, it has text fields, date fields
or combo boxes, which are used to enter data for one child.
If the sub-form is realised in this way, besides the graphical
components used for entering data regarding a single child,
it is necessary to set up a way for the user to navigate
563

& The Institution of Engineering and Technology 2012



www.ietdl.org
Fig. 2 Graphical example of the parent–child relationship between entities
throughout the existing list of children. In the example of
Invoice–InvoiceItem, the user needs to be able to access all
of the InvoiceItem for the active Invoice. Most cases this
navigation implies buttons for shifting to the next, previous,
first and last instance of InvoiceItem. Providing access to a
specific ‘item’ should also be possible.

When the model includes a ∗ –1 relationship (many-to-one;
in a relational model, an attribute from side 1 is treated as a
foreign key to a relation from side ∗), the entity on side 1 is
most often displayed in some kind of list (combo box,
table, and a group of radio buttons). If we consider the
previous example, and add to it by saying that each invoice
is given to a specific ‘customer’, and 1 Customer can be
issued with multiple Invoices, then the relationship between
Invoice and Customer is a ∗ –1 relationship (Fig. 3). When
entering data in Invoice, it is necessary to choose one of the
existing Customers to whom the Invoice is issued. Then the
list from which the Customer is chosen will be populated
with data belonging to the Customer entity, where each of
the items in the list is one concrete instance of the
Customer entity. Besides, use case specifications often
predict a situation where the Customer list contains no
Customer to whom an Invoice is to be given or where the
aim is to allow the user to gain insight into Customer
details, usually not visible when showing Customers in the
list. Therefore it is useful to enable user to change these
fields (by adding new, altering and deleting existing
Customers) or to review the data on a Customer, selected
from the list. This creates a relationship between different
use cases (as the manipulation of data about Customers is
most often presented by a separate use case).

6 Identifying the user interface templates

By analysing the user interfaces of several different software
systems, we have noticed recurring characteristics which are
independent of the concrete domain for which these systems
were designed. These characteristics are not related only to the
types of graphical components being used (the type of
components to be used will mainly be determined by the type
of action from a use case specification, and the data model
elements, in the previously explained way), but to the way
these components are organised in the user interface. We have
particularly focused on the way of placing the graphical
components, grouping components in logical units and

Fig. 3 Example of a 1– ∗ relationship between the Invoice and
InvoiceItem entities, as well as a ∗ –1 relationship between the
Customer and Invoice entities
564

& The Institution of Engineering and Technology 2012
noticing the relationships between these units, and then
identifying the additional functionality that is commonly
present, such as navigation between components, the
possibility of more detailed view of certain data on the user
interface etc. To obtain these common characteristics, we
considered user interfaces of several different software systems
with different business domains. In order to reach objectivity
of results, we have considered not only the software systems
that we designed, but also the systems of independent authors
that have been seconded to us for the research purpose. We
have analysed the system related to public administration
domain (e-auctions), information system of a manufacturing
company (Perihard inzenjering), a medical institution, system
for monitoring the scientific work of teachers (Faculty of
Organisational Sciences (FOS)) and master students service
(FOS). Besides these systems, many characteristics were
gathered from MS access [21] user interface wizard, which we
once used to develop our prototypes with. The identified
characteristics were basis for defining several user interface
templates: field-form, field-tab, table-form, table-tab and kind
of (un)normalised graphical user interface (KNGUI) template.

A single use case can be realised through different
templates. By using the tools for automatic user interface
generation, created for the purposes of this research, it is
possible to obtain quickly and easily a completely different
user interface for the same use case by making simple
adjustments of the selected template in the model. In this
way, the interested parties can try out different templates
during user requirement specification phase, and decide
which one best suits their specific use case. The templates
are designed in such a way that they can be combined,
which means that different templates can be used for both a
single use case and its parts.

In the previous section we have explained that the 1– ∗

relationship between entities in the data model is displayed
by using a basic ‘parent’ form for the entity on side 1,
while the entities on side ∗ are displayed in sub-forms.
Each sub-form can be realised through a different template.
The following diagram displays the relationship between
different use cases, data models, templates and the graphical
components used by templates (Fig. 4).

If the use case processes an entity with multiple levels of
depth (the parent has children, while the children have their
own children and so forth), it is possible to use a different
template on each level for each child. It is advised to be
cautioned when introducing new levels of depth, because
the user interface tends to become too complex in those
cases, which can confuse the user. Of course, this
recommendation does not pertain to the user interface
templates, but the use case specification, while the problem
of the over complexity user interface is simply a
consequence of a bad use case specification. The cause of a
bad specification is not necessarily the project analyst.
Instead, the reason is most often lays on interested party
that demands certain functionality. In these cases, the
analyst can point out the potential problem, but can also
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060



www.ietdl.org
Fig. 4 Relationship between different use case elements, data models, templates and the graphical components used by templates
suggest that a different template combination can be used, that
is, one which can lessen the complexity of the user interface.

The following part of this paper will provide an example of
combining different templates into multiple depth levels. This
example demonstrates one of the solutions, attained by
automatically generating a user interface by utilising a
developed code generator for a highly complicated use case,
which processes the entity in four levels of depth. The
example shown is a part of the user interface designed for
the project Kostmod 4.0, which was implemented for the
needs of the Royal Norwegian Ministry of Defence. Even
after informing them on the potential problem, the customer
decided not to deviate from their original plan. In the end,
the problem was solved by combining a number different
user interface templates (Fig. 5). The diagram shows a
simplified data model, that is, the part of the data model to
which the aforementioned example refers to (Fig. 6). The
characteristics of each defined template, their links to the
use case specification and the data model entities they refer
to are explained in the following sections.

6.1 Field-form template

The field-form template was devised in such a way as to
enable the input and output of information related to a
specific entity through the use of fields, that is, graphical
components used for the entry or selection of individual
data related to the attributes of the entity being processed,
while the entity’s children are displayed in separate
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060
windows. Each child can be displayed through a different
template. In this template, the following components can
occur: ‘Label’, ‘Text-field’ (consisting of one text line;
known as a ‘text-area’ if it contains more than one text
line), ‘combo-box’, ‘navigation’ buttons (in the form of a
‘toolbar’ or regular ‘buttons’), buttons for insert/update/
delete options, ‘date-picker’, ‘check-box’ and ‘option
buttons’ that are used for displaying the windows
containing information about children.

Which of these components will be displayed depends on
the types of actions specified in the use case scenario, as
well as on the data model itself, which was already
mentioned in the previous sections. Fig. 7 illustrates a user
interface for a simple use case which includes information
pertaining to one entity (without children), which is realised
using a field-form template. The figure shows one of the
ways for displaying navigation buttons, as well as options
for inserting, updating and deleting (‘toolbar’ at the bottom
of the window).

The insert operation (inserting a new record) is realised by
bringing up a new window in which the user can enter new
data, and then save it or cancel the entire process.

This simple example shows that the data ‘User right’ is
shown as a combo box. This is a consequence of the action
type ‘choose’ from the use case specification, which is
related to the ∗ –1 relationship of the data model, that is,
related to a foreign key in a relational model. The simplified
data model that demonstrates the relationship between these
entities is illustrated in the following figure (Fig. 8).
565

& The Institution of Engineering and Technology 2012



www.ietdl.org
Fig. 6 Part of the data model illustrating the example of combining different UI templates

Fig. 5 Example of combining different user interface templates with four levels of depth
Fig. 7 Field-form template: one entity without children
566

& The Institution of Engineering and Technology 2012
Fig. 8 ∗ –1 relationship, which is one of the prerequisites for using
a combo box
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060



www.ietdl.org
Fig. 9 Part of the data model and a user interface to display the field-tab template
Should the user find that the combo box does not contain
the required piece of information when inserting or
updating (or wish to see more detailed information about
one of the elements), it is possible to enable the user to
enter a new element into the list or see the details of the
selected element. This function is executed by right-clicking
on the combo box and selecting the option Show details.
However, it is necessary to define the desired behaviour in
the user interface generation model.

Inserting, updating or deleting of data attributed to children
in this template is enabled in the individual windows
designated for each child. These windows are brought up
by marking a specific ‘option button’. As long as the button
is marked, the window containing the data about the child
will be displayed.

6.2 Field-tab template

The field-tab template, much like the field-form template, was
devised in such a way as to enable the input and output
of information related to a specific entity through the use of
fields, that is, graphical components used for the entry or
selection of individual data related to the attributes of the
entity being processed, while the entity’s children are all
displayed in the same window, but in different tabs. Each
child can be displayed through a different template, which
is specified in the user interface generation model.

Graphical components used in this template, apart from the
ones used in the field-form template, include the ‘Tabbed-
Pane’ component which is used for displaying panels that
contain information about children. By navigating through
the basic entity using navigational buttons, the data in the
tabs are refreshed, in order to reflect the child data for the
currently selected parent entity.

Fig. 9 illustrates a simplified data model and, following
that, an example of a user interface realised by using the
field-tab template for the selected data model. This example
shows a further functionality, that is, the primary keys, if
assigned auto-incrementally, can be hidden from the user.
All that is needed is for this functionality is that this option
is selected in the user interface generation model.

The field-tab is different from the field-form template in the
way in which a certain entity’s child information is displayed.
If the use case contains just one element, without children, it
does not make a difference which of these two templates is
chosen in the user interface generation model.
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060
6.3 Table-form template

The table-form template is devised in such a way to enable
the input and output of information about a specific entity
in the form of a table, while the children of the entity are
displayed in separate windows by pressing the appropriate
option button. Each child can be displayed using a
different template.

This template uses a ‘table’ as the basic graphical
component, and is suitable in situations where the user
wishes to have an overview of information about the
multiple instances of a single entity. Field-form and field-
tab templates can only display information about a single
instance of an entity at the time, while other instances of
the same entity are only available through the use of
navigation buttons. In the table-form template, data are
shown in a table that enables the user to navigate easily by
simply selecting a row in the table. When selecting a row,
information in child windows is refreshed in order to reflect
the selected parent entity.

Besides displaying data in a table form, entry of
information and updating is enabled through the use of a
table. Changes are made directly by selecting one of the
rows, and data is saved either by calling the save option or
selecting another row. At this point, the user is notified that
changes have been made and will be prompted to either
save the changed or revert to the data in its previous state
(if the auto-save option is turned-off in the user interface
generation model). If the data are invalid the system will
not permit switching to another row until the data are
corrected or reverted to their previous state.

When inserting or updating, the appropriate graphical
component will be displayed, which depend on the action
type specified in the use case step or the type of attribute.
This is realised by different ‘cell editors’ that are adjusted
to use different graphical components for editing data.

The function which enables reviewing and updating the
detailed information about an element of a combo box
(show details) is also present in this template. It is executed
by right-clicking on the cell containing the combo box.

6.4 Table-tab template

The table-tab template, like the table-form template, is
devised so as to allow the input and output of information
about a certain entity in a table form, while the children are
567

& The Institution of Engineering and Technology 2012



www.ietdl.org
Fig. 10 Part of the data model and a user interface demonstrating the table-tab template
displayed in the same window, but in different tabs. Each
child can be displayed using a different template, which is
specified in the user interface generation model.

The graphical components used in this template, apart from
those used in the table-form template, include the ‘Tabbed-
Pane’ component used to display information pertaining to
children. When navigating through the basic entity by
selecting a specific row in the table, information displayed
in the tabs is refreshed, so that the displayed children data
reflects the selected parent entity.

Fig. 10 illustrates a simplified data model and an example
of a user interface realised using the table-tab template for the
displayed data model. This example also shows the utilisation
of a cell editor that is adjusted for logic data type.

The table-tab is different from the table-form template in
the way in which a certain entity’s child information is
displayed. If the use case contains only one entity without
children, it does not make a difference which of the two
templates will be chosen for the user interface generation
model.

Fig. 10 shows a different way of displaying options for
inserting, updating and deleting by the use of a toolbar
component. This manner of display is produced by
specifying the corresponding parameter in the user interface
generation model. It is suitable for the situations in which
components for data display (in this case – tables) take a
great amount of space on the user interface. The possibility
of displaying options in this way is not limited to this
template alone, but can be used in all other templates as
well. The appropriate template can be chosen for each case
individually.

6.5 KNGUI template

The KNGUI template is devised so as to enable the entry and
output of information about a specific entity in table form.
The model enables possibility to select children to be
displayed in the same table as parent entity. The remaining
568

& The Institution of Engineering and Technology 2012
children can be displayed either in tabs or separate
windows, using various templates.

This template is suitable in situations where the children of
the entity represent the aggregation of that entity with other.
In these cases, the table – whose columns show all the
attributes of the entity being processed – is dynamically
populated by columns representing all the instances of all
aggregated entities. A cell which is created by such a
merging will display the value of an attribute on the
aggregated entity, the attribute specified by the model. The
table generated in this way and displayed on the user
interface completely transforms the data model which exists
in the database and, in fact, represents the merging of at
least three tables of a relational data base.

This template uses the table as the basic graphical
component and is suitable in situations in which the user
wishes to have an overview of information related to
multiple instances of a single entity, and provides the
possibility enter data about the entity’s children easily,
without taking additional space on the user interface.
In order to display data pertaining to children, table-form
and table-tab templates require panels to be shown in either
the initial or separate windows. Also, the user is not
required to move between panels in order to enter different
data. Instead, all data are entered into the same table, which
significantly speeds up the process.

This template is not limited to processing only one child,
but can instead include an arbitrary number of entities
which represent the children of the initial entity. Caution is
advised when choosing how many children will be included
in the display, as this can cause the table to become too
wide, which reduces visibility. Should the table used for
aggregation contain a large number of records, the issues of
visibility may arise.

A similar manner of displaying data was made possible by
using the cross-tab or pivot instruction within the SQL query
itself, within the Microsoft SQL Server database management
system. The pivot is defined as an order which enables the
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060



www.ietdl.org
displaying of the row values in a table as columns in the
resulting SQL query table [22]. It is most commonly used
for displaying the results of an aggregating function (SUM,
COUNT etc.) as values in a table.

The KNGUI template is different from the previously
described approach because it enables not only the
transformation of table data within a relational database
with the goal of displaying these data differently, but also
allows the use of operations that make changes to the
displayed data that are then reflected on the data in the
database. Each operation then transforms the displayed data
into a set of objects whose altered state is kept in the
database by the use of various SQL queries, which depends
on the changes made.

7 Software requirements specification
model which enables the automation of the
user interface implementation process: the
user interface generation model

The goal of this research was to develop a model for the
specification of software requirements that would be
semantically rich enough to enable the automation of the
process of implementing the user interface.

The basis for defining such a model are the connections
between the use case model, the data model, and the
desired user interface which were all noted in the previous
sections. Considering the way in which use cases describe
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060
the interaction between the user and the system, which is
realised by the user interface with the goal to change the
state of the system, the connection between these three
components must be represented appropriately in order to
enable the automation of the user interface implementation.

When defining this model, one must make sure that the
model follows good practice in the specification of software
requirements, which means that it should provide a
frame for the specification of requirements that will be
understandable to all interested parties, from engineers to
end users. Furthermore, ambiguities in requirements should
be kept to minimum in order to prevent numerous problems
described in previous sections.

The software requirement specification is supposed to
contain information about the user’s goals and aims in
terms of executing system functions, and should not
include implementation details, such as details about the
user interface or the realisation of other parts of the
system. In order for the specification to remain completely
in the field of the problem, and not in the field of the
solution, it is necessary to split these two fields through a
model, and make the problem independent from the
solution that can be usually achieved in one or more ways
of realisation.

As the development of the model is based on the
connections observed between the use case elements, the
data model and the graphical user interface, a meta-model
has been developed. The meta-model considers all relevant
elements and the connections between them (Fig. 11).
Fig. 11 Meta-model representing the connection between the elements of use case specifications, data model and user interface
569

& The Institution of Engineering and Technology 2012



www.ietdl.org
In order to enable the automatic generation of user interface
through a model based on the illustrated meta-model, this
model must be defined in a form which is suitable for
manipulation by a Java program that will be used to realise
a generator, but which is also readable and understandable
by all interested parties in the process of requirement
specification. XML is usually listed as the most suitable
format for this purpose, as this language with a simple
syntax is legible for both humans and computer programs.

7.1 Model specification: UseCaseModel.xml and
UseCaseGuiExtension.xml files

The main objective of this paper is to present a requirement
specification meta-model that enables automation of the
process of generating the user interface. The way of
specifying a model for the generation was beyond the scope
of this paper. During the research, the specification was
done mostly manually or using a tool made for research
purposes, which facilitates the specification. The basic idea
was first to clearly define relationships between use cases,
data model and user interface, and to define the meta-model
on the basis of observed elements and their interrelations,
and only after that to shift focus on how to obtain the input
specification, and thus to define the entire process of how to
make and maintain applications by proposed approach.

In order to separate the specification of software
requirements from the information pertaining to the user
interface, the user interface generation model is specified by
two separate XML documents. The first XML document
represents the use cases, and part of the data model to
which the use case relates, and these data are housed in the
‘UseCaseModel.xml’ file. The second XML document
contains information about the elements of the graphic user
interface, and every element of this document refers to a
particular element from the defined ‘UseCaseModel.xml’
file. The content of the second document is specified in
the ‘UseCaseGUIExtension.xml’ file. The existence of the
second document is not mandatory. When the second
document is not created, the default user interface elements
(such as user interface templates and graphical components)
will be used for displaying the use case described within
‘UseCaseModel.xml’ file. If the requirement is made that
the user interface differs from the implied settings, these
settings are specified in the ‘UseCaseGUIExtension.xml’ file.

8 Automation of the transformation process
of the suggested model into executable
programming code

In order to prove the sustainability of this approach, we have
designed a software tool that conducts the transformation of
the defined model into executable programming code. This
will enable the creation of a user interface in the early
phase of the software’s life cycle. It gives the possibility
to validate and verify user requirements, and drastically
reduces the time and effort required to implement the user
interface. This software tool enables generating of
executable programming code for the interface of a Java
desktop application.

During the design of generator we have taken into
consideration all advantages and disadvantages of this
approach in application development. The authors [23, 24]
point out as the greatest advantages: reduction of
programming errors, time reduction, cost reduction,
570

& The Institution of Engineering and Technology 2012
standardisation of implementation, quality, customer
satisfaction, patterns, code reusability and productivity.
Disadvantages are usually related to not always applicable,
application generators are difficult to build, recognising
where an application generator can be used, influence on
development process, startup cost, longer design phase,
configuration management, process compatibility impacts,
impacts to environment and other tools.

Nakatani et al. [25] emphasised that the business
application systems carry out information storage, retrieval,
updating and deleting. Owing to these characteristics they
point out that most use cases can be put into several
category groups: data storage, data retrieval, data updating,
data list creation and documents creation and document
transmission. In their research 53 of 58 use cases were
categorised into these six groups. They developed tools [26]
that provide basic use case frameworks: for example,
Create, Read, Update, Delete and Making-reports, to help
developers write down use cases and manage relationships
between use cases and domain objects in order to keep
consistency in requirements. These frameworks are
expected to cover over 80% simple use cases in business
application.

We obtained the similar results in previously mentioned
Kostmod 4.0 project. We calculated that user interface for
�75% of total number of use cases were completely
implemented using our approach and other 10% needed
minor manual development adjustments. For other 15% of
use cases some parts of UI were also generated but they
required much more manual development adjustments. The
whole project was released in 4 months, which was much
faster than usually estimated 12 months.

8.1 Generator structure

The generator structure is made up of a collection of classes
and interfaces weighted with different types of responsibility
in the process of generating a programming code. The
structure of the generator is shown in Fig. 12.

The user interface generator accepts the ‘UseCaseModel.
xml’ and, if required, the ‘UseCaseGUIExtension.xml’ files
as input. It interprets the content and performs the
transformation of the specified model into an executable
Java programming code.

8.2 Generated programming code

Following the transformation of the user interface generation
model, the generator produces a programming code, and
ultimately creates an application. The application is entirely
specific to the problem area. In that sense, the central
graphic component which is used as a container component
for all other graphical components is the ‘JPanel’ class. One
or more panels were created which depended on the chosen
set of templates. In that way, the resulting application is
not strictly connected to the way in which graphical
components are displayed. ‘JFrame’ and ‘JDialog’ classes
are most commonly used to display forms. However, the
‘JPanel’ class represents a generic, lightweight container
component that can be transferred from one container to
another with ease. Therefore, after the generation, JPanel
components should be added to JFrame of JDialog
container in order to be displayed. Currently, this part of
user interface implementation process is not included in our
code generation tool, because our main intention was to
create a clear connection between use case model, data
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060



www.ietdl.org
Fig. 12 Class diagram representing the generator structure
model and user interface. Furthermore, in most cases one
needs to add user interface to already existing projects, with
already defined policy for displaying graphical components.
Still, this will be one of the directions for our further research.

As mentioned before, we have defined several templates or
ways to display information on the form. Predefined templates
are used when generating programming code to which
graphical components are added. Based on this, we can
conclude that identical data can be displayed in different
ways (within text fields, inside tables, in separate windows
etc.), with the graphical components found on the JPanel
component. Panels created in this way can be opened with
a graphical tool that supports visual editing of user interface.

The generated user interface enables invocation of business
logic operations for the execution of basic operations on the
database (adding a new record, changing a record, deletion
of a record and selecting a record). These operations should
be implemented in the business logic layer. In addition,
most cases require definition of business logic that will
execute some other operations (e.g. calculating certain sub-
scores, complex rules of validation etc.). Also, the user
interface and business logic can change over time, which
leads to a need to alter the generated programming code. In
this case, it is not recommendable to apply changes directly
to a generated class (or generated panel). Instead, the
generated class should be inherited, and care should be
taken to situate all the specifics within that class. This will
enable the forms to be re-generated, while the specific logic
will remain intact.

User interface classes for each defined use case in the
model will be created in individual Java package, into
which all ‘java’ files are stored.

The generated forms possess no information on domain
objects, which ensures the independence of the presentation
layer of the application from the domain model.

In order to achieve this, we have used data transfer object
(DTO) [27] pattern to make application layers as
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060
independent as much as possible. General idea was to make
a class capable to carry heterogeneous data through layers.
The DTO class uses HashMaps to store the data. Key-value
pairs are attribute name–attribute value. Every top parent
form has a method that maps data from graphical
components to DTO object (retriveData()) and vice versa
(populateForm()). It is important to note that complete
structure which represents the data model displayed in the
forms is stored in the DTO.

This enables a form to be independent from a domain class.
In our research we have identified all necessary services that
business logic has to provide in order to create a completely
functional application (services necessary for create, read
(retrieve), update, delete (CRUD) operations). These
services are defined in the form of interface, which we
implemented for the research purpose, in the same way as
we implemented the persistence layer. Using this
implementation is not mandatory and therefore user can
provide different implementation. Details of how we
implemented these layers are beyond the scope of this paper.

8.3 Data validation on the presentation layer

Using the ‘UseCaseGUIExtensionl.xml’ file enables
generating the code responsible for the execution of
validation on the user interface layer. Regardless of the
validation on the user interface layer, validation rules are
also often checked on the application logic layer.
Consistency and data integrity checks are performed on the
persistent layer. As a result of this, it is possible to block
the processing of data in several locations if they do not
meet the defined validation rules. Using validation on
the user interface layer is useful due to the fact that the
workload on the application logic is lessened, and the
application logic is called only when all data are valid.

Validation rules refer to the data processed by the system.
When speaking about the relational data model, validation
571

& The Institution of Engineering and Technology 2012



www.ietdl.org
Table 4 Comparation of Apache Isis, Metawidget, WebRatio, AlphaSimple, BizAgi BPM Suite and SilabUI on defined criteria

Apache isis Metawidget WebRatio AlphaSimple BizAgi BPM suite SilabUI

input specification domain

model

domain

model

WebML or

BPMN model

textUML BPMN use cases and

domain model

defining input specification manual manual wizard manual wizard manual

dependency on domain model yes yes yes yes yes yes

generates UI source code

or generates UI on runtime

runtime runtime source code source code runtime source code

template selection no no yes no no yes

generated source code can be changed no no no yes no yes

separation of UI from other layers no yes yes yes yes yes
can refer to the relation attributes, tables, as well as a number
of linked tables. This means we can identify five types of
validation rules: attribute type, attribute value, co-
dependence of a single relation’s attributes, co-dependence
of different relation’s attributes and structural limitations.

When generating a user interface, it is possible to generate
a code responsible for validation, where rules that relate to the
type of the relation’s attribute can be automatically applied,
based on the suggested model. All other validation rules
can be added by expanding validation methods.

9 Related work

In order to compare our approach to existing work in the field,
we conducted a survey in which our tool (with the working
title SilabUI) is reviewed in relation with five existing tools.
First, we have defined a set of comparison criteria that are
important for the automation the user interface process, and
then selected some of today’s popular tools and approaches
to compare our approach with. These tools are Apache Isis
[28], Metawidget [29], WebRatio [30], AlphaSimple [31],
BizAgi BPM Suite [32]. In order to achieve the objectivity
of the comparison of selected tools, we have defined
specific user requirement (whose domain model was shown
in Section 5.3). This requirement with underlying domain
model includes the operations and relationships between
objects that we can usually meet in business applications.
The result of the case study is six software applications,
each developed using different tool. Then we carried out
the evaluation of those tools according to defined
comparison criteria, and main results are shown in Table 4
[33, 34].

In addition, there is another interesting approach that uses a
tool for modelling UMPLE to generate executable user
interface prototypes [35]. UMPLE allows you to create
class diagrams and state machines specification. User
interface prototypes are generated based on these models
that can be specified both graphically and textually.
The main advantage of this tool is the simplicity of making
the input specifications, while the main disadvantage is the
inability of choosing different user interface templates. It
would be interesting to consider connecting our approach
and one using UMPLE, especially the part of input
specifications, in order to take advantages of both approaches.

10 Conclusion

This research considered the observed relationships between
the elements of the use case specification, the data model
and the user interface. Based on these perceived
relationships, a meta-model of software requirements has
572

& The Institution of Engineering and Technology 2012
been developed, the one which considers the elements of all
three aforementioned system aspects. Using this meta-
model, we can create a software requirement model which
enables not only the design and implementation of the user
interface but the automation of this process as well.
Potential further research in this area could include (i) the
examination of the applicability of the meta-model to
various technologies and platforms such as desktop and web
applications in different technologies etc.; (ii) the
enrichment of the meta-model and the generator in order to
ensure support for the realisation of various architectures of
the resulting application; (iii) the enhancement of the model
with the possibility to specify more complex validation
rules; and (iv) ensuring the adaptability of the user interface.

11 References

1 Van Vliet, H.: ‘Software engineering: principles and practice’ (John
Wiley & Sons Ltd, Chichester, West Sussex, England, 2008, 3rd edn.)

2 Pfleeger, S.L., Atlee, J.M.: ‘Software engineering theory and practice’
(Prentice-Hall, 2006, 3rd edn.)

3 Kennard, R., Leaney, J.: ‘Towards a general purpose architecture for UI
generation’, J. Syst. Softw., 2010, 83, (10), pp. 1896–1905

4 Myers, B., Rosson, M.: ‘Survey on user interface programming’. ACM:
Human Factors in Computing Systems, Proc. SIGHI, 1992,
pp. 195–202

5 Kivistö, K.: ‘A third generation object-oriented process model, roles and
architectures in focus’. Academic thesis, Faculty of Science, University
of Oulu, Oulu, 2000

6 Johnson, J.: ‘Turning chaos into success’, Softw. Mag., 2000, 19, (3),
pp. 30–39

7 Cockburn, A.: ‘Writing effective use cases’ (Addison Wesley Longman
Publishing Co. Inc, Boston, 2000)

8 Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: ‘Object-
oriented software engineering – a use case driven approach’ (Addison
Wesley Longman Publishing Co. Inc, Boston, 1993)

9 Cohn, M.: ‘User stories applied: for Agile software development’
(Addison Wesley Longman Publishing Co. Inc, Boston, 2004)

10 Stellman A.: ‘Requirements 101: user stories vs. use cases’, available at
http://www.stellman-greene.com/2009/05/03/requirements-101-user-
stories-vs-use-cases/, Building Better Software: Jennifer Greene and
Andrew Stellman weblog, published: 3. 05. 2009, accessed: 1 July 2009

11 Fatolahi, A., Somé, S.S., Lethbridge, T.C.: ‘Towards a semi-automated
model-driven method for the generation of web-based applications from
use cases’. Proc. Fourth Model-Driven Web Engineering Workshop,
Toulouse, 2008, pp. 31–45

12 Wiegers, K.E.: ‘More about software requirements: thorny issues and
practical advice’ (Microsoft Press, 2006)

13 Lin, L., Prowell, S.J., Poore1, J.H.: ‘The impact of requirements changes
on specifications and state machines’, Softw., Pract. Exp., 2009, 39, (6),
pp. 573–610

14 Frost, A., Campo, M.: ‘Advancing defect containment to quantitative
defect management’, J. Def. Softw. Eng., 2007, 20, (12), pp. 24–28

15 Rosemberg, D., Stewphens, M.: ‘Use case driven object modelling with
UML: theory and practice’ (Apress, Berkeley, 2007)

16 Cox, K., Phalp, K.T.: ‘Practical experience of eliciting classes from use
case descriptions’, J. Syst. Softw., 2010, 80, (8), pp. 1286–1304
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060



www.ietdl.org
17 Constantine, L., Lockwood, L.: ‘Structure and style in use cases for user
interface design’. Second Int. Conf. Usage-Centred Design, New
Hampshire, 2003

18 Larman, C.: ‘Applying UML and patterns – an introduction to object-
oriented analysis and design and the unified process’ (Prentice-Hall,
1998, 2nd edn.)

19 Ochodek, M., Nawrocki, J.: ‘Automatic transactions identification in use
cases’. Balancing Agility and Formalism in Software Engineering:
Second IFIP Central and East European Conf. Software Engineering
Techniques CEE-SET 2007, 2008, (LNCS, 5082), pp. 55–68

20 Sinnig, D., Chalin, P., Rioux, F.: ‘Use cases in practice: a survey’. Proc.
CUSEC 05, Ottawa, Canada, 2005

21 http://www.office.microsoft.com/en-us/access/, accessed April 2012
22 Cunningham, C., Galindo-Legaria, C.A., Graefe, G.: ‘PIVOT

and UNPIVOT: optimization and execution strategies in an
RDBMS’. Proc. Thirtieth Int. Conf. Very Large Data Bases, 2004,
vol. 30, pp. 998–1009

23 Singh, R., Serviss, J.: ‘Code generation using GEODE: a CASE study’,
in Cavalli, A., Sarma, A. (Eds.): ‘SDL’97: time for testing’, (Elsevier,
1997), pp. 539–550

24 Cleaveland, J.C.: ‘Building application generators’, IEEE Softw., 1988,
5, (4), pp. 25–33
IET Softw., 2012, Vol. 6, Iss. 6, pp. 559–573
doi: 10.1049/iet-sen.2011.0060
25 Nakatani, T., Urai, T., Ohmura, S., Tamai, T.: ‘A requirements
description metamodel for use cases’. Eighth Asia-Pacific Software
Engineering Conf. (APSEC’01), 2001

26 Urai, T., Ohmura, S., Nakatani, T.: ‘Use case oriented requirements
analysis technique and its support environment’. Proc. Object-Oriented
2001 Symp., Kindai-Kagaku-Sha, 2001, (in Japanese), pp. 17–24

27 Fowler, M.: ‘Patterns of enterprise application architecture’ (Addison-
Wesley Professional, 2002, 1st edn.)

28 http://www.incubator.apache.org/isis, accessed April 2012
29 http://www.metawidget.com, accessed April 2012
30 http://www.webratio.com, accessed April 2012
31 http://www.alphasimple.com, accessed April 2012
32 http://www.bizagi.com, accessed April 2012
33 Buzejic, S.: ‘Komparativna analiza alata za generisanje Java korisničkog

interfejsa’. MSc thesis, Faculty of Organizational Sciences, University
of Belgrade, 2011 (in Serbian)

34 Cirovic, I.: ‘Komparativna analiza CASE alata za generisanje aplikacija
na osnovu modela’. MSc thesis, Faculty of Organizational Sciences,
University of Belgrade, 2011 (in Serbian)

35 Forward, A., Badreddin, O., Lethbridge, C.T., Solano, J.: ‘Model-driven
rapid prototyping with Umple’, Softw. Pract. Exp., 2012, 42, (7),
pp. 781–797
573

& The Institution of Engineering and Technology 2012


