Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1048
Full metadata record
DC FieldValueLanguage
dc.creatorVukićević, Milan
dc.creatorKirchner, Kathrin
dc.creatorDelibašić, Boris
dc.creatorJovanović, Miloš
dc.creatorRuhland, Johannes
dc.creatorSuknović, Milija
dc.date.accessioned2023-05-12T10:36:19Z-
dc.date.available2023-05-12T10:36:19Z-
dc.date.issued2013
dc.identifier.issn0219-1377
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1048-
dc.description.abstractThe analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and disease diagnostic, researchers have found the construction of good algorithms a surprisingly difficult task. In this paper, we address this problem by using a component-based approach for clustering algorithm design, for class retrieval from microarray data. The idea is to break up existing algorithms into independent building blocks for typical sub-problems, which are in turn reassembled in new ways to generate yet unexplored methods. As a test, 432 algorithms were generated and evaluated on published microarray data sets. We found their top performers to be better than the original, component-providing ancestors and also competitive with a set of new algorithms recently proposed. Finally, we identified components that showed consistently good performance for clustering microarray data and that should be considered in further development of clustering algorithms.en
dc.publisherSpringer London Ltd, London
dc.relationGerman Academic Exchange Office (DAAD)
dc.relationSerbian Ministry of Science [50453023]
dc.rightsrestrictedAccess
dc.sourceKnowledge and Information Systems
dc.subjectMicroarray dataen
dc.subjectComponent-based algorithmsen
dc.subjectClusteringen
dc.subjectBioinformaticsen
dc.titleFinding best algorithmic components for clustering microarray dataen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage130
dc.citation.issue1
dc.citation.other35(1): 111-130
dc.citation.rankM21
dc.citation.spage111
dc.citation.volume35
dc.identifier.doi10.1007/s10115-012-0542-5
dc.identifier.rcubconv_1539
dc.identifier.scopus2-s2.0-84875455161
dc.identifier.wos000316570800005
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1044.pdf
  Restricted Access
494.23 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.