Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1143
Full metadata record
DC FieldValueLanguage
dc.creatorBoričić, Marija
dc.date.accessioned2023-05-12T10:41:16Z-
dc.date.available2023-05-12T10:41:16Z-
dc.date.issued2013
dc.identifier.issn1542-3980
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1143-
dc.description.abstractLogical system associated with the partition induced by the corresponding Lindenbaum-Tarski algebra makes possible to define its entropy. We consider three approaches to define the entropy of a logical system, metaphorically called algebraic, probabilistic and philosophical, and give some reasons to discard or accept some of them, resulting with a proposal to found our definition on geometric distribution of measures over matching partition of set of formulae. This definition enables to classify finite-valued propositional logics regarding their entropies. Asymptotic approximations for some infinite-valued logics are proposed as well. The considered examples include Lukasiewicz's, Kleene's and Priest's three-valued logics, Belnap's four-valued logic, Godel's and McKay's m-valued logics, and Heyting's and Dummett's infinite-valued logics.en
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174026/RS//
dc.rightsrestrictedAccess
dc.sourceJournal of Multiple-Valued Logic and Soft Computing
dc.subjectuncertainty measurementen
dc.subjectpartitionen
dc.subjectmany-valued propositional logicsen
dc.subjectlogical systemen
dc.subjectLindenbaum-Tarski algebraen
dc.subjectentropyen
dc.subjectClassical two-valued propositional logicen
dc.titleOn Entropy of a Logical Systemen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage452
dc.citation.issue5-6
dc.citation.other21(5-6): 439-452
dc.citation.rankM21
dc.citation.spage439
dc.citation.volume21
dc.identifier.rcubconv_3304
dc.identifier.scopus2-s2.0-84889068468
dc.identifier.wos000326481400001
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypearticle-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2025

Page view(s)

8
checked on Dec 28, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.