Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/115
Title: Adaptivni fazi sistem za algoritamsko trgovanje : interpolativni Bulov pristup
Adaptive fuzzy system for algorithmic trading : interpolative Boolean approach
Authors: Rakićević, Aleksandar 
Contributors: Petrović, Bratislav
Suknović, Milija
Martić, Milan
Žarkić-Joksimović, Nevenka
Marković, Aleksandar
Keywords: strategija za trgovanje;sistem za algoritamsko trgovanje;logički DuPont metod;interpolativni fazi kontroler;interpolativna Bulova algebra;fazi logika;adaptivni fazi sistem;trading system;trading strategy;logical DuPont method;interpolative logical m;interpolative fuzzy controller;interpolative Boolean algebra;fuzzy logic;algorithmic trading;adaptive fuzzy system
Issue Date: 2020
Publisher: Univerzitet u Beogradu, Fakultet organizacionih nauka
Abstract: Tema ovog rada je adaptivni fazi sistem za algoritamsko trgovanje. Sistem je razvijen korišćenjem interpolativnog Bulovog pristupa fazi modelovanju, analizi podataka i upravljanju. Predloženi pristup uključuje interpolativne logičke modele za fazi prepoznavanje cenovnih obrazaca na tržištu, logički DuPont metod za automatizovanu analizu profitabilnosti preduzeća, interpolativni fazi kontroler za upravljanje trgovanjem i genetski algoritam za obučavanje interpolativnog fazi kontrolera radi otkrivanja strategija. Interpolativni Bulov pristup, zasnovan na interpolativnoj Bulovoj algebri, prevazilazi problem nekonzistentnosti fazi logike. Konstruisani adaptivni fazi sistem može samostalno, iz podataka, da otkrije uspešne strategije, primeni ih za algoritamsko trgovanje i adaptira u slučaju pada njihovih performansi. Uspešnost sistema testirana je na podacima sa američkog tržišta akcija, međunarodnog deviznog tržišta i tržišta kriptovaluta.
The topic of this thesis is adaptive fuzzy system for algorithmic trading. The system is developed using interpolative Boolean approach for fuzzy modeling, data analysis and control. The proposed approach includes interpolative logical models for fuzzy recognition of price patterns in market data, logical DuPont method for automated analysis of company’s profitability, interpolative fuzzy controller for trading and a genetic algorithm for extracting trading strategies by training interpolative fuzzy controller. Interpolative Boolean approach, based on interpolative Boolean agebra, solves the problem of fuzzy logic’s inconsistency with Boolean axioms. The proposed system can independently discover successful trading strategies from data, apply them for algorithmic trading and adapt in the case of performance deterioration. The system was tested on historical data from US equity, foreign exchange market and cryptocurrency market.
URI: https://eteze.bg.ac.rs/application/showtheses?thesesId=8697
https://fedorabg.bg.ac.rs/fedora/get/o:26242/bdef:Content/download
https://plus.cobiss.net/cobiss/sr/sr/bib/35614473
https://nardus.mpn.gov.rs/handle/123456789/20669
https://rfos.fon.bg.ac.rs/handle/123456789/115
Appears in Collections:Doktorati

Files in This Item:
File Description SizeFormat 
111.pdf4.99 MBAdobe PDFThumbnail
View/Open
Show full item record

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons