Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1242
Full metadata record
DC FieldValueLanguage
dc.creatorRadovanović, Sandro
dc.creatorRadojičić, Milan
dc.creatorSavić, Gordana
dc.date.accessioned2023-05-12T10:46:21Z-
dc.date.available2023-05-12T10:46:21Z-
dc.date.issued2014
dc.identifier.issn0354-0243
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1242-
dc.description.abstractIn sports, a calculation of efficiency is considered to be one of the most challenging tasks. In this paper, DEA is used to evaluate an efficiency of the NBA players, based on multiple inputs and multiple outputs. The efficiency is evaluated for 26 NBA players at the guard position based on existing data. However, if we want to generate the efficiency for a new player, we would have to re-conduct the DEA analysis. Therefore, to predict the efficiency of a new player, machine learning algorithms are applied. The DEA results are incorporated as an input for the learning algorithms, defining thereby an efficiency frontier function form with high reliability. In this paper, linear regression, neural network, and support vector machines are used to predict an efficiency frontier. The results have shown that neural networks can predict the efficiency with an error less than 1%, and the linear regression with an error less than 2%.en
dc.publisherUniverzitet u Beogradu - Fakultet organizacionih nauka, Beograd, i dr.
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceYugoslav Journal of Operations Research
dc.subjectpredictive analyticsen
dc.subjectmachine learningen
dc.subjectefficiency analysisen
dc.subjectdata envelopment analysisen
dc.titleTwo-phased DEA-MLA approach for predicting efficiency of NBA playersen
dc.typearticle
dc.rights.licenseBY-NC-SA
dc.citation.epage358
dc.citation.issue3
dc.citation.other24(3): 347-358
dc.citation.rankM51
dc.citation.spage347
dc.citation.volume24
dc.identifier.doi10.2298/YJOR140430030R
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/133/1238.pdf
dc.identifier.rcubconv_217
dc.identifier.scopus2-s2.0-84909949783
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1238.pdf296.13 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons