Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1245
Full metadata record
DC FieldValueLanguage
dc.creatorIvančević, Vladimir
dc.creatorKnezević, Marko
dc.creatorLuković, Ivan
dc.date.accessioned2023-05-12T10:46:30Z-
dc.date.available2023-05-12T10:46:30Z-
dc.date.issued2014
dc.identifier.issn0922-6389
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1245-
dc.description.abstractWe propose an exam scheduling approach to deal with problems that may appear in some oral exams, such as the cases when student turnout is considerably above or below expectation. As opposed to similar approaches, we focus on predicting the number of students applying for an exam by performing data mining on student records. Our predictive model considers previous student scores, attendance records, and past exam attempts. We evaluate the prediction segment of this approach on a real-world data set containing university records for a pair of database-related courses.en
dc.publisherIOS Press, Amsterdam
dc.rightsrestrictedAccess
dc.sourceSmart Digital Futures 2014
dc.subjectpredicting turnouten
dc.subjectoral examen
dc.subjectexam schedulingen
dc.subjectdata miningen
dc.subjectclassifieren
dc.titleA Course Exam Scheduling Approach based on Data Miningen
dc.typeconferenceObject
dc.rights.licenseARR
dc.citation.epage141
dc.citation.other262: 132-141
dc.citation.spage132
dc.citation.volume262
dc.identifier.doi10.3233/978-1-61499-405-3-132
dc.identifier.rcubconv_1688
dc.identifier.scopus2-s2.0-84902313703
dc.identifier.wos000350149800013
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.