Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1337
Full metadata record
DC FieldValueLanguage
dc.creatorRadovanović, Sandro
dc.creatorVukićević, Milan
dc.creatorKovačević, Ana
dc.creatorStiglić, Gregor
dc.creatorObradović, Zoran
dc.date.accessioned2023-05-12T10:51:09Z-
dc.date.available2023-05-12T10:51:09Z-
dc.date.issued2015
dc.identifier.issn0302-9743
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1337-
dc.description.abstractMany studies fail to provide models for 30-day hospital re-admission prediction with satisfactory performance due to high dimensionality and sparsity. Efficient feature selection techniques allow better generalization of predictive models and improved interpretability, which is a very important property for applications in health care. We propose feature selection method that exploits hierarchical domain knowledge together with data. The new method is evaluated on predicting 30-day hospital readmission for pediatric patients from California and provides evidence that a knowledge-based approach outperforms traditional methods and that the newly proposed method is competitive with state-of-the-art methods.en
dc.publisherSpringer-Verlag Berlin, Berlin
dc.rightsrestrictedAccess
dc.sourceArtificial Intelligence in Medicine (Aime 2015)
dc.subjectRe-admissionen
dc.subjectFeature selectionen
dc.subjectDomain knowledgeen
dc.titleDomain knowledge Based Hierarchical Feature Selection for 30-Day Hospital Readmission Predictionen
dc.typeconferenceObject
dc.rights.licenseARR
dc.citation.epage100
dc.citation.other9105: 96-100
dc.citation.spage96
dc.citation.volume9105
dc.identifier.doi10.1007/978-3-319-19551-3_11
dc.identifier.rcubconv_1762
dc.identifier.scopus2-s2.0-84947903431
dc.identifier.wos000364534300011
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.