Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1370
Full metadata record
DC FieldValueLanguage
dc.creatorStiglić, Gregor
dc.creatorBrzan, Petra Povalej
dc.creatorFijacko, Nino
dc.creatorWang, Fei
dc.creatorDelibašić, Boris
dc.creatorKalousis, Alexandros
dc.creatorObradović, Zoran
dc.date.accessioned2023-05-12T10:52:50Z-
dc.date.available2023-05-12T10:52:50Z-
dc.date.issued2015
dc.identifier.issn1932-6203
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1370-
dc.description.abstractDifferent studies have demonstrated the importance of comorbidities to better understand the origin and evolution of medical complications. This study focuses on improvement of the predictive model interpretability based on simple logical features representing comorbidities. We use group lasso based feature interaction discovery followed by a post-processing step, where simple logic terms are added. In the final step, we reduce the feature set by applying lasso logistic regression to obtain a compact set of non-zero coefficients that represent a more comprehensible predictive model. The effectiveness of the proposed approach was demonstrated on a pediatric hospital discharge dataset that was used to build a readmission risk estimation model. The evaluation of the proposed method demonstrates a reduction of the initial set of features in a regression model by 72%, with a slight improvement in the Area Under the ROC Curve metric from 0.763 (95% CI: 0.755-0.771) to 0.769 (95% CI: 0.761-0.777). Additionally, our results show improvement in comprehensibility of the final predictive model using simple comorbidity based terms for logistic regression.en
dc.publisherPublic Library Science, San Francisco
dc.relationU.S. Office of Naval Research [N00014-151-2729]
dc.relationU.S. Air Force Office of Scientific Research (AFOSR) [FA9550-12-1-0406]
dc.relationDefense Advanced Research Project Agency (DARPA)
dc.relationSwiss National Science Foundation [SNSF IZ73Z0_152415]
dc.relationBilateral research grant [BI-RS/14-15-027]
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourcePLoS One
dc.titleComprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity Based Featuresen
dc.typearticle
dc.rights.licenseBY
dc.citation.issue12
dc.citation.other10(12): -
dc.citation.rankM21
dc.citation.volume10
dc.identifier.doi10.1371/journal.pone.0144439
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/199/1366.pdf
dc.identifier.pmid26645087
dc.identifier.rcubconv_1774
dc.identifier.scopus2-s2.0-84955600323
dc.identifier.wos000366903100024
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1366.pdf1.16 MBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

27
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons