Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1470
Full metadata record
DC FieldValueLanguage
dc.creatorBohanec, Marko
dc.creatorDelibašić, Boris
dc.date.accessioned2023-05-12T10:57:52Z-
dc.date.available2023-05-12T10:57:52Z-
dc.date.issued2015
dc.identifier.issn1865-1348
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1470-
dc.description.abstractThis paper proposes several models for predicting global daily injury risk in ski resorts. There are three types of models proposed: based on data mining, expert modelling, and a combination of both. We show that the expert model that represents the judgment of injury risk experts in the analyzed ski resort is 10–15% less accurate than data mining models. We also show that expert models refined with data-driven analysis can produce models that are in line with accuracy as data mining models, but in addition show some advantages, like transparency, consistency and completeness.en
dc.publisherSpringer Verlag
dc.rightsrestrictedAccess
dc.sourceLecture Notes in Business Information Processing
dc.subjectSki injuryen
dc.subjectOrangeen
dc.subjectMulti-attribute modelsen
dc.subjectExpert modellingen
dc.subjectDEXen
dc.subjectDecision analysisen
dc.subjectData miningen
dc.titleData-mining and expert models for predicting injury risk in ski resortsen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage60
dc.citation.other216: 46-60
dc.citation.rankM24
dc.citation.spage46
dc.citation.volume216
dc.identifier.doi10.1007/978-3-319-18533-0_5
dc.identifier.rcubconv_3381
dc.identifier.scopus2-s2.0-84929649284
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextrestricted-
item.openairetypearticle-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1466.pdf
  Restricted Access
1.13 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

16
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.