Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1552
Full metadata record
DC FieldValueLanguage
dc.creatorVukićević, Milan
dc.creatorRadovanović, Sandro
dc.creatorDelibašić, Boris
dc.creatorSuknović, Milija
dc.date.accessioned2023-05-12T11:02:05Z-
dc.date.available2023-05-12T11:02:05Z-
dc.date.issued2016
dc.identifier.issn1748-5673
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1552-
dc.description.abstractClass retrieval in gene expression microarray data analysis is highly challenging task. Because of high class imbalance, highly dimensional feature space and small number of samples most of the algorithms fail to capture real complex structures in data ('golden standard'). Therefore, one of the major problems in this area is selection of the best suited algorithm for data at hand. We address this problem by proposing an extended meta-learning framework for ranking and selection of algorithms for clustering gene expression microarray data. Proposed framework introduces several improvements compared to the original one: extended algorithm space, extended meta-feature space and introduction of cutting edge techniques for meta-feature selection and parameter optimisation of meta-algorithms. System was evaluated on large algorithm and problem space (504 algorithms and 30 datasets) and showed very promising results in prediction of algorithm performance for specific problems.en
dc.publisherInderscience Enterprises Ltd, Geneva
dc.relationSNSF Joint Research project (SCOPES) [IZ73Z0_152415]
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/41008/RS//
dc.rightsrestrictedAccess
dc.sourceInternational Journal of Data Mining and Bioinformatics
dc.subjectregressionen
dc.subjectmeta-learningen
dc.subjectgene expressionen
dc.subjectclusteringen
dc.titleExtending meta-learning framework for clustering gene expression data with component-based algorithm design and internal evaluation measuresen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage119
dc.citation.issue2
dc.citation.other14(2): 101-119
dc.citation.rankM23
dc.citation.spage101
dc.citation.volume14
dc.identifier.doi10.1504/IJDMB.2016.074682
dc.identifier.rcubconv_1805
dc.identifier.scopus2-s2.0-84958691761
dc.identifier.wos000373392100001
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1548.pdf
  Restricted Access
303.41 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

21
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.