Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1628
Full metadata record
DC FieldValueLanguage
dc.creatorMilic Marković, Ljiljana
dc.creatorMarković, Ljubo
dc.creatorĆirović, Marko
dc.creatorPamučar, Dragan
dc.date.accessioned2023-05-12T11:06:00Z-
dc.date.available2023-05-12T11:06:00Z-
dc.date.issued2017
dc.identifier.issn0350-2465
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1628-
dc.description.abstractA prognostic model for estimating investment value of reconstruction of railway lines using artificial neural networks is presented in the paper. The aim of the model is to improve the efficiency and effectiveness of decision making as related to investment in rail infrastructure projects. The model development process is presented and illustrated with an appropriate example, which points to the possibility of using the model for making a rough and rapid assessment of the investment value of railway-lines reconstruction, with a reliability of 80-85% when some input parameters are unknown.en
dc.publisherCroatian Soc Civil Engineers-Hsgi, Zagreb
dc.relationinfo:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/36017/RS//
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceGradevinar
dc.subjectreconstructionen
dc.subjectrailway infrastructureen
dc.subjectinvestment valueen
dc.subjectartificial neural networksen
dc.titleEstimating investment value in railway lines reconstruction processen
dc.typearticle
dc.rights.licenseBY
dc.citation.epage892
dc.citation.issue9
dc.citation.other69(9): 885-892
dc.citation.rankM23
dc.citation.spage885
dc.citation.volume69
dc.identifier.doi10.14256/JCE.1013.2014
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/361/1624.pdf
dc.identifier.rcubconv_1985
dc.identifier.scopus2-s2.0-85033390226
dc.identifier.wos000417398800008
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1624.pdf383.28 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons