Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1690
Full metadata record
DC FieldValueLanguage
dc.creatorBoričić, Marija
dc.date.accessioned2023-05-12T11:09:12Z-
dc.date.available2023-05-12T11:09:12Z-
dc.date.issued2017
dc.identifier.issn0955-792X
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1690-
dc.description.abstractIn order to treat the deduction relation proves in the context of probabilistic reasoning, we introduce a system LKprob(epsilon) making it possible to work with expressions of the form Gamma proves(n) Delta, a generalization of Gentzen's sequents Gamma proves Delta of classical propositional logic LK, with the intended meaning that 'the probability of the sequent Gamma proves Delta is greater than or equal to 1-n epsilon', for a given small real epsilon > 0 and any natural number n. The system LKprob(epsilon) can be considered a program inferring a conclusion of the form Gamma proves(n) A from a finite set of hypotheses of the same form Gamma(i) proves(ni) A(i) (1 LT = i LT = n). We prove that our system is sound and complete with respect to the Carnap-Popper-type probability models.en
dc.publisherOxford Univ Press, Oxford
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/179005/RS//
dc.rightsrestrictedAccess
dc.sourceJournal of Logic and Computation
dc.subjectsoundnessen
dc.subjectsequent calculusen
dc.subjectprobabilityen
dc.subjectDeduction relationen
dc.subjectconsistencyen
dc.subjectcompletenessen
dc.titleSuppes-style sequent calculus for probability logicen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage1168
dc.citation.issue4
dc.citation.other27(4): 1157-1168
dc.citation.rankM21
dc.citation.spage1157
dc.citation.volume27
dc.identifier.doi10.1093/logcom/exv068
dc.identifier.rcubconv_1936
dc.identifier.scopus2-s2.0-85026883488
dc.identifier.wos000405418400009
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.