Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1782
Full metadata record
DC FieldValueLanguage
dc.creatorDelibašić, Boris
dc.creatorRadovanović, Sandro
dc.creatorJovanović, Miloš
dc.creatorBohanec, Marko
dc.creatorSuknović, Milija
dc.date.accessioned2023-05-12T11:13:57Z-
dc.date.available2023-05-12T11:13:57Z-
dc.date.issued2018
dc.identifier.issn1166-8636
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1782-
dc.description.abstractMachine learning models are often unaware of the structure that exists between attributes. Expert models, on the other hand, provide structured knowledge that is readily available, yet not often used in machine learning. This paper proposes the integration of expert knowledge, represented in the form of multi-criteria DEX (Decision EXpert) hierarchies or attributes, in a logistic regression stacking framework. We show that integrating expert knowledge into a machine learning framework can improve the quality of models. We tested our hypothesis on the problem for predicting ski injury occurrence, an important decision-support task in ski-resort management. Our results suggest that using a DEX hierarchy of attributes and stacking improves the AUC (area under the curve) compared to logistic regression models unaware of the DEX hierarchy from 1 to 4%.en
dc.publisherTaylor & Francis Ltd, Abingdon
dc.rightsrestrictedAccess
dc.sourceJournal of Decision Systems
dc.subjectski injury predictionen
dc.subjectmulti-criteria DEX modelen
dc.subjectmachine learningen
dc.subjectlogistic regression stackingen
dc.subjectDomain knowledgeen
dc.titleIntegrating knowledge from DEX hierarchies into a logistic regression stacking model for predicting ski injuriesen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage208
dc.citation.other27: 201-208
dc.citation.spage201
dc.citation.volume27
dc.identifier.doi10.1080/12460125.2018.1460164
dc.identifier.rcubconv_2051
dc.identifier.scopus2-s2.0-85045422193
dc.identifier.wos000435394900020
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1778.pdf
  Restricted Access
5.32 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

12
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.