Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1899
Full metadata record
DC FieldValueLanguage
dc.creatorRadišić, Igor
dc.creatorLazarević, Saša
dc.date.accessioned2023-05-12T11:19:49Z-
dc.date.available2023-05-12T11:19:49Z-
dc.date.issued2019
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1899-
dc.description.abstractThis paper explores the ways in which various similarity metrics can be applied in recommendation systems in machine learning that are based on collaborative filtering. It examines properties of different similarity metrics often found in recommendation systems and presents findings of tests done on data sets of different sizes and data properties where these metrics were applied. The findings presented in this paper give guidance for the appropriate application of similarity metrics in machine learning and specifically recommendation systems based on collaborative filtering.en
dc.publisherIEEE Computer Soc, Los Alamitos
dc.rightsrestrictedAccess
dc.source2019 International Conference on Artificial Intelligence: Applications and Innovations (Ic-Aiai 2019)
dc.subjectsimilarity metricsen
dc.subjectrecommendation systemen
dc.subjectmachine learningen
dc.subjectcollaborative filteringen
dc.titleApplication of Similarity Metrics in Collaborative Filtering Based Recommendation Systemsen
dc.typeconferenceObject
dc.rights.licenseARR
dc.citation.epage85
dc.citation.other: 82-85
dc.citation.spage82
dc.identifier.doi10.1109/IC-AIAI48757.2019.00024
dc.identifier.rcubconv_2346
dc.identifier.scopus2-s2.0-85081543780
dc.identifier.wos000548532600018
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1895.pdf
  Restricted Access
120.19 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.