Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1907
Full metadata record
DC FieldValueLanguage
dc.creatorBoričić, Marija
dc.date.accessioned2023-05-12T11:20:12Z-
dc.date.available2023-05-12T11:20:12Z-
dc.date.issued2019
dc.identifier.issn0933-5846
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1907-
dc.description.abstractGentzen's approach to deductive systems, and Carnap's and Popper's treatment of probability in logic were two fruitful ideas that appeared in logic of the mid-twentieth century. By combining these two concepts, the notion of sentence probability, and the deduction relation formalized in the sequent calculus, we introduce the notion of 'probabilized sequent' ab with the intended meaning that the probability of truthfulness of belongs to the interval [a,b]. This method makes it possible to define a system of derivations based on 'axioms' of the form iaii, obtained as a result of empirical research, and then infer conclusions of the form ab. We discuss the consistency, define the models, and prove the soundness and completeness for the defined probabilized sequent calculus.en
dc.publisherSpringer Heidelberg, Heidelberg
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174026/RS//
dc.rightsrestrictedAccess
dc.sourceArchive for Mathematical Logic
dc.subjectSoundnessen
dc.subjectSequent calculusen
dc.subjectProbabilityen
dc.subjectConsistencyen
dc.subjectCompletenessen
dc.titleSequent calculus for classical logic probabilizeden
dc.typearticle
dc.rights.licenseARR
dc.citation.epage136
dc.citation.issue1-2
dc.citation.other58(1-2): 119-136
dc.citation.rankM23
dc.citation.spage119
dc.citation.volume58
dc.identifier.doi10.1007/s00153-018-0626-3
dc.identifier.rcubconv_2143
dc.identifier.scopus2-s2.0-85046535984
dc.identifier.wos000456385500008
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextrestricted-
item.openairetypearticle-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1903.pdf
  Restricted Access
456.88 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 17, 2025

Page view(s)

14
checked on Dec 28, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.