Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1915
Full metadata record
DC FieldValueLanguage
dc.creatorRadovanović, Sandro
dc.creatorDelibašić, Boris
dc.creatorSuknović, Milija
dc.creatorMatović, Dajana
dc.date.accessioned2023-05-12T11:20:37Z-
dc.date.available2023-05-12T11:20:37Z-
dc.date.issued2019
dc.identifier.issn1109-2858
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1915-
dc.description.abstractSki injury is a rare event with 2 parts per thousand rate (2 injuries per 1000 skier days expected). Additionally, injuries are dispersed over a ski resort spatially and temporally, making it harder to predict where the injury will occur. In order to inspect ski-related injuries, we have developed a visual system which allows global and spatial inspection of ski lift transportation RFID data. To enrich the visual environment, we have embedded a predictive lasso regression model which predicts injury occurrence spatially and temporally over a ski resort with an AUC performance of 0.766. We propose the model which allows decision makers to make real-time decisions on allocation of rescue service capacities at a ski resort. Predictive model improves the models existing in literature as it works for various locations at a ski resort, and makes predictions of occurring injuries on an hourly basis.en
dc.publisherSpringer Heidelberg, Heidelberg
dc.rightsrestrictedAccess
dc.sourceOperational Research
dc.subjectSki injury predictionen
dc.subjectLasso logistic regressionen
dc.subjectData visualizationen
dc.titleWhere will the next ski injury occur? A system for visual and predictive analytics of ski injuriesen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage992
dc.citation.issue4
dc.citation.other19(4): 973-992
dc.citation.rankM22
dc.citation.spage973
dc.citation.volume19
dc.identifier.doi10.1007/s12351-018-00449-x
dc.identifier.rcubconv_2079
dc.identifier.scopus2-s2.0-85059856661
dc.identifier.wos000496585800007
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1911.pdf
  Restricted Access
1.74 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.