Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1920
Full metadata record
DC FieldValueLanguage
dc.creatorDžamić, Dušan
dc.creatorAloise, Daniel
dc.creatorMladenović, Nenad
dc.date.accessioned2023-05-12T11:20:51Z-
dc.date.available2023-05-12T11:20:51Z-
dc.date.issued2019
dc.identifier.issn0254-5330
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1920-
dc.description.abstractIn this paper we propose a new variant of the Variable Neighborhood Decomposition Search (VNDS) heuristic for solving global optimization problems. We call it Ascent-Descent VNDS since it performs boundary effect, or local search step, even if the improvement in solving the subproblem has not been obtained. We apply it in detecting communities in large networks by modularity maximization, the criterion which is, despite of some recent criticism, most widely used. Computational analysis is performed on 22 instances from the 10th DIMACS Implementation Challenge. On 13 instances where optimal solutions were not known, we got the improved best known solutions on 9 instances and on 4 instances the solution was equal to the best known. Thus, the proposed new heuristic outperforms the current state-of-the-art algorithms from the literature.en
dc.publisherSpringer, Dordrecht
dc.relationCNPq-Brazil [308887/2014-0, 400350/ 2014-9]
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174010/RS//
dc.rightsrestrictedAccess
dc.sourceAnnals of Operations Research
dc.subjectVariable neighborhood searchen
dc.subjectModularity maximizationen
dc.subjectDecompositionen
dc.subjectCommunity detectionen
dc.subjectClusteringen
dc.titleAscent-descent variable neighborhood decomposition search for community detection by modularity maximizationen
dc.typeconferenceObject
dc.rights.licenseARR
dc.citation.epage287
dc.citation.issue1-2
dc.citation.other272(1-2): 273-287
dc.citation.rankM22
dc.citation.spage273
dc.citation.volume272
dc.identifier.doi10.1007/s10479-017-2553-9
dc.identifier.rcubconv_2134
dc.identifier.scopus2-s2.0-85020710257
dc.identifier.wos000454678900013
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1916.pdf
  Restricted Access
778.31 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

26
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.