Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2084
Full metadata record
DC FieldValueLanguage
dc.creatorMatcha, Wannisa
dc.creatorGašević, Dragan
dc.creatorUzir, Nora'ayu Ahmad
dc.creatorJovanović, Jelena
dc.creatorPardo, Abelardo
dc.creatorLim, Lisa
dc.creatorMaldonado-Mahauad, Jorge
dc.creatorGentili, Sheridan
dc.creatorPerez-Sanagustin, Mar
dc.creatorTsai, Yi-Shan
dc.date.accessioned2023-05-12T11:29:06Z-
dc.date.available2023-05-12T11:29:06Z-
dc.date.issued2020
dc.identifier.issn1929-7750
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2084-
dc.description.abstractGeneralizability of the value of methods based on learning analytics remains one of the big challenges in the field of learning analytics. One approach to testing generalizability of a method is to apply it consistently in different learning contexts. This study extends a previously published work by examining the generalizability of a learning analytics method proposed for detecting learning tactics and strategies from trace data. The method was applied to the datasets collected in three different course designs and delivery modalities, including flipped classroom, blended learning, and massive open online course. The proposed method combines process mining and sequence analysis. The detected learning strategies are explored in terms of their association with academic performance. The results indicate the applicability of the proposed method across different learning contexts. Moreover, the findings contribute to the understanding of the learning tactics and strategies identified in the trace data: learning tactics proved to be responsive to the course design, whereas learning strategies were found to be more sensitive to the delivery modalities than to the course design. These findings, well aligned with self-regulated learning theory, highlight the association of learning contexts with the choice of learning tactics and strategies.en
dc.publisherSoc Learning Analytics Research-Solar, Beaumont
dc.relationDireccion de Investigacion de la Universidad de Cuenca (DIUC), Cuenca-Ecuador, under the project "Analitica del aprendizaje para el estudio de estrategias de aprendizaje autorregulado en un contexto de aprendizaje hibrido" [DIUC_XVIII_2019_54]
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceJournal of Learning Analytics
dc.subjectself-regulated learningen
dc.subjectmodalityen
dc.subjectlearning tacticsen
dc.subjectLearning strategiesen
dc.subjectdata miningen
dc.subjectcourse designen
dc.titleAnalytics of Learning Strategies: Role of Course Design and Delivery Modalityen
dc.typearticle
dc.rights.licenseBY-NC-ND
dc.citation.epage71
dc.citation.issue2
dc.citation.other7(2): 45-71
dc.citation.rankM23
dc.citation.spage45
dc.citation.volume7
dc.identifier.doi10.18608/jla.2020.72.3
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/671/2080.pdf
dc.identifier.rcubconv_2382
dc.identifier.scopus2-s2.0-85103906987
dc.identifier.wos000573840100003
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
2080.pdf10.57 MBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

72
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons