Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2100
Full metadata record
DC FieldValueLanguage
dc.creatorRadišić, Igor
dc.creatorLazarević, Saša
dc.creatorAntović, Ilija
dc.creatorStanojević, Vojislav
dc.date.accessioned2023-05-12T11:29:54Z-
dc.date.available2023-05-12T11:29:54Z-
dc.date.issued2020
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2100-
dc.description.abstractThis paper explores prediction capabilities of similarity metrics used in machine learning algorithms. Predictive capabilities of various similarity metrics are examined based on their application on data sets of varying sizes and properties and evaluation of derived results. Predicting outcomes in machine learning is fundamental to many different machine learning algorithms and the findings in this paper will clarify how good their predictive capabilities are and under which conditions.en
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rightsrestrictedAccess
dc.source2020 24th International Conference on Information Technology, IT 2020
dc.titleEvaluation of Predictive Capabilities of Similarity Metrics in Machine Learningen
dc.typeconferenceObject
dc.rights.licenseARR
dc.identifier.doi10.1109/IT48810.2020.9070437
dc.identifier.rcubconv_3611
dc.identifier.scopus2-s2.0-85084410003
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
2096.pdf
  Restricted Access
200.5 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.