Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2149
Full metadata record
DC FieldValueLanguage
dc.creatorMilosavljević, Miloš
dc.creatorRadonovanović, Sandro
dc.creatorDelibašić, Boris
dc.date.accessioned2023-05-12T11:32:58Z-
dc.date.available2023-05-12T11:32:58Z-
dc.date.issued2021
dc.identifier.issn0424-267X
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2149-
dc.description.abstractHolding governments accountable for public procurement efficiency has been high on the agenda of public finance practitioners in the last few decades. The European Commission has developed a set of value-for-money indicators for public procurements within the Single Market Scoreboard. Although this matrix is actively used to rank countries, a number of downsides have been hitherto reported. This paper proposes preference learning (a machine learning method) for criteria weight estimation in combination with Technique for Order Performance by Similarity to Ideal Solution (as a multi criteria decision making technique) to re-evaluate the public procurement performance of the EU countries. This approach can be used for unbiased ex-post evaluations and focus of efforts and resources on critically important public procurement policies.en
dc.publisherAcad Economic Studies, Bucharest
dc.rightsopenAccess
dc.sourceEconomic Computation and Economic Cybernetics Studies and Research
dc.subjectTOPSISen
dc.subjectRankingen
dc.subjectPublic Procurementen
dc.subjectPreference Learningen
dc.titleEvaluation of public procurement efficiency of the EU countries using preference learning topsis methoden
dc.typearticle
dc.rights.licenseARR
dc.citation.epage202
dc.citation.issue3
dc.citation.other55(3): 187-202
dc.citation.rankM23
dc.citation.spage187
dc.citation.volume55
dc.identifier.doi10.24818/18423264/55.3.21.12
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/713/2145.pdf
dc.identifier.rcubconv_2556
dc.identifier.scopus2-s2.0-85117736091
dc.identifier.wos000698683400012
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
2145.pdf261.76 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.