Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2291
Full metadata record
DC FieldValueLanguage
dc.creatorZornić, Nikola
dc.creatorMarković, Aleksandar
dc.date.accessioned2023-05-12T11:40:07Z-
dc.date.available2023-05-12T11:40:07Z-
dc.date.issued2022
dc.identifier.issn0948-695X
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2291-
dc.description.abstractTraditionally, agent-based modelling and simulation relied on using utility function in agents??? decision-making process. Some drawbacks in this process are identified, and a potential remedy to the issue is proposed. This paper introduces a methodological framework for building a hybrid agent-based model that aims to overcome some of the elaborated problems related to the usage of a utility function. In the proposed approach, a machine learning algorithm substitutes the utility function, thus providing a possibility to use various algorithms. The proposed methodological framework has been applied to a case study of churn in a telecommunications company. Three models have been created and used for simulation experiments, two using the proposed methodology and one using utility function. The pros and cons of different approaches are identified and discussed.en
dc.publisherGraz Univ Technolgoy, Inst Information Systems Computer Media-Iicm, Graz
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/
dc.sourceJournal of Universal Computer Science
dc.subjectsimulationen
dc.subjectmachine learningen
dc.subjectframeworken
dc.subjectchurnen
dc.subjectagent-baseden
dc.titleA methodological framework for the integration of machine learning algorithms into agent-based simulationen
dc.typearticle
dc.rights.licenseBY-ND
dc.citation.epage562
dc.citation.issue5
dc.citation.other28(5): 540-562
dc.citation.rankM23~
dc.citation.spage540
dc.citation.volume28
dc.identifier.doi10.3897/jucs.73924
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/825/2287.pdf
dc.identifier.rcubconv_2691
dc.identifier.scopus2-s2.0-85131791069
dc.identifier.wos000806753800005
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
2287.pdf930.75 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons