Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2311
Full metadata record
DC FieldValueLanguage
dc.creatorPetrović, Andrija
dc.creatorBisercić, Aleksa
dc.creatorDelibašić, Boris
dc.creatorMilenković, Dimitrije
dc.date.accessioned2023-05-12T11:41:05Z-
dc.date.available2023-05-12T11:41:05Z-
dc.date.issued2022
dc.identifier.issn1820-0214
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2311-
dc.description.abstractDespite a vast application of temporal point processes in infectious disease diffusion forecasting, ecommerce, traffic prediction, preventive maintenance, etc, there is no significant development in improving the simulation and prediction of temporal point processes in real-world environments. With this problem at hand, we propose a novel methodology for learning temporal point processes based on one-dimensional numerical integration techniques. These techniques are used for linearising the negative maximum likelihood (neML) function and enabling backpropagation of the neML derivatives. Our approach is tested on two real-life datasets. Firstly, on high frequency point process data, (prediction of highway traffic) and secondly, on a very low frequency point processes dataset, (prediction of ski injuries in ski resorts). Four different point process baseline models were compared: second-order Polynomial inhomogeneous process, Hawkes process with exponential kernel, Gaussian process, and Poisson process. The results show the ability of the proposed methodology to generalize on different datasets and illustrate how different numerical integration techniques and mathematical models influence the quality of the obtained models. The presented methodology is not limited to these datasets and can be further used to optimize and predict other processes that are based on temporal point processes.en
dc.publisherComSIS Consortium
dc.relationONR/ONR Global [N62909-19-1-2008]
dc.relationcompany Saga NFG d.o.o. Belgrade
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceComputer Science and Information Systems / ComSIS
dc.subjecttemporal point processen
dc.subjectski injury predictionen
dc.subjectPoisson processen
dc.subjecthighway traffic predictionen
dc.subjectHawkes processen
dc.titleA Machine Learning Approach for Learning Temporal Point Processen
dc.typearticle
dc.rights.licenseBY-NC-ND
dc.citation.epage1022
dc.citation.issue2
dc.citation.other19(2): 1007-1022
dc.citation.rankM23
dc.citation.spage1007
dc.citation.volume19
dc.identifier.doi10.2298/CSIS210609016P
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/836/2307.pdf
dc.identifier.rcubconv_2793
dc.identifier.scopus2-s2.0-85135635747
dc.identifier.wos000878619800012
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
2307.pdf566.52 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons