Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2330
Full metadata record
DC FieldValueLanguage
dc.creatorDeveci, Muhammet
dc.creatorPamučar, Dragan
dc.creatorCali, Umit
dc.creatorKantar, Emre
dc.creatorKolle, Konstanze
dc.creatorTande, John O.
dc.date.accessioned2023-05-12T11:41:59Z-
dc.date.available2023-05-12T11:41:59Z-
dc.date.issued2022
dc.identifier.issn2096-0042
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2330-
dc.description.abstractUnlocking offshore wind farms' high energy generation potential requires a comprehensive multi-disciplinary analysis that consists of intensive technical, economic, logistical, and environmental investigations. Offshore wind energy projects have high investment volumes that make it essential to conduct extensive site selection to ensure feasible investment decisions that reduce the potential financial risks. Depending on the scenario and circumstances, a ranking of alternative offshore wind energy projects helps to prioritise the investment decisions. Decision-making algorithms based on expert knowledge can support the prioritisation and thus alleviate the work load for investment decisions in the future. The case study considered here is to find the best site for a floating offshore wind farm in Norway from four pre-selected alternatives: Utsira Nord, Stadthavet, Froyabanken, and Tr AE na Vest. We propose a hybrid decision-making model as a combined compromised solution (CoCoSo) based on the q-rung orthopair fuzzy sets (q-ROFSs) including the weighted q-rung orthopair fuzzy Hamacher average (Wq-ROFHA) and the weighted q-rung orthopair fuzzy Hamacher geometric mean (Wq-ROFHGM) operators. In this model, the q-ROFSs based full consistency method (FUCOM) is introduced as a new methodology to determine the weights of the decision criteria. The results of the proposed model show that the best site among the investigated four alternatives is A1: Utsira Nord. A sensitivity analysis has verified the stability of the proposed decision-making model.en
dc.publisherChina Electric Power Research Inst, Beijing
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceCsee Journal of Power and Energy Systems
dc.subjectWind turbinesen
dc.subjectWind farmsen
dc.subjectWind energyen
dc.subjectsite selectionen
dc.subjectq-rung orthopair fuzzy setsen
dc.subjectoffshore wind farmen
dc.subjectInvestmenten
dc.subjectFuzzy setsen
dc.subjectFuzzy hamacheren
dc.subjectFUCOMen
dc.subjectEuropeen
dc.subjectDecision-makingen
dc.subjectDecision makingen
dc.titleHybrid q-Rung Orthopair Fuzzy Sets Based CoCoSo Model for Floating Offshore Wind Farm Site Selection in Norwayen
dc.typearticle
dc.rights.licenseBY-NC-ND
dc.citation.epage1280
dc.citation.issue5
dc.citation.other8(5): 1261-1280
dc.citation.rankM21~
dc.citation.spage1261
dc.citation.volume8
dc.identifier.doi10.17775/CSEEJPES.2021.07700
dc.identifier.pmid36472120
dc.identifier.rcubconv_2774
dc.identifier.scopus2-s2.0-85139436190
dc.identifier.wos000863484600002
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

SCOPUSTM   
Citations

73
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons