Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2363
Full metadata record
DC FieldValueLanguage
dc.creatorMilošević, Isidora
dc.creatorRuso, Jelena
dc.creatorGlogovac, Maja
dc.creatorArsić, Sanela
dc.creatorRakić, Ana
dc.date.accessioned2023-05-12T11:43:39Z-
dc.date.available2023-05-12T11:43:39Z-
dc.date.issued2022
dc.identifier.issn1478-3363
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2363-
dc.description.abstractIndustry 4.0 brings a revolution in using information and communication technologies within business activities. As such, Industry 4.0 enables important space for quality-related improvements but requires a sustained quality management system (QMS). The aim of this study is to predict the influence of ISO 9004:2018 QMS elements on Improvement, Learning, and Innovation achievements in Industry 4.0 using the SEM-ANN approach. The survey included 345 domestic and international companies of different types operating in Serbia. Conclusions demonstrate a direct positive influence between observed constructs (Leadership, Process Management, Resource Management, Performance Management) and Improvement, Learning, and Innovation. Only the Context and Identity of the organisation has a negative direction drawn from SEM analysis. Further, ANN verified SEM results, pointing out that all observed variables are seen as predictors of Improvement, Learning, and Innovation. The importance level corresponds to those elements' SEM ranking. The paper could provide a roadmap towards achieving sustainable results in quality improvement, learning, and innovation in Industry 4.0 era.en
dc.publisherRoutledge Journals, Taylor & Francis Ltd, Abingdon
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200131/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/47003/RS//
dc.rightsrestrictedAccess
dc.sourceTotal Quality Management and Business Excellence
dc.subjectSEM-ANNen
dc.subjectQMS achievementsen
dc.subjectlearningen
dc.subjectinnovationen
dc.subjectIndustry 4en
dc.subjectimprovementen
dc.titleAn integrated SEM-ANN approach for predicting QMS achievements in Industry 4.0en
dc.typearticle
dc.rights.licenseARR
dc.citation.epage1912
dc.citation.issue15-16
dc.citation.other33(15-16): 1896-1912
dc.citation.rankM22~
dc.citation.spage1896
dc.citation.volume33
dc.identifier.doi10.1080/14783363.2021.2011194
dc.identifier.rcubconv_2585
dc.identifier.scopus2-s2.0-85121432155
dc.identifier.wos000728498200001
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

SCOPUSTM   
Citations

12
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.