Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2458
Full metadata record
DC FieldValueLanguage
dc.creatorDodevska, Zorica
dc.creatorRadovanović, Sandro
dc.creatorPetrović, Andrija
dc.creatorDelibašić, Boris
dc.date.accessioned2023-05-12T11:48:20Z-
dc.date.available2023-05-12T11:48:20Z-
dc.date.issued2023
dc.identifier.issn2227-7390
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2458-
dc.description.abstractWe propose introducing fairness constraints to one of the most famous multi-criteria decision-making methods, the analytic hierarchy process (AHP). We offer a solution that guarantees consistency while respecting legally binding fairness constraints in AHP pairwise comparison matrices. Through a synthetic experiment, we generate the comparison matrices of different sizes and ranges/levels of the initial parameters (i.e., consistency ratio and disparate impact). We optimize disparate impact for various combinations of these initial parameters and observed matrix sizes while respecting an acceptable level of consistency and minimizing deviations of pairwise comparison matrices (or their upper triangles) before and after the optimization. We use a metaheuristic genetic algorithm to set the dually motivating problem and operate a discrete optimization procedure (in connection with Saaty's 9-point scale). The results confirm the initial hypothesis (with 99.5% validity concerning 2800 optimization runs) that achieving fair ranking while respecting consistency in AHP pairwise comparison matrices (when comparing alternatives regarding given criterium) is possible, thus meeting two challenging goals simultaneously. This research contributes to the initiatives directed toward unbiased decision-making, either automated or algorithm-assisted (which is the case covered by this research).en
dc.publisherMDPI, Basel
dc.relationOffice of Naval Research, the United States: Aggregating computational algorithms and human decisionmaking preferences in multi-agent settings [ONR-N62909-19-1-2008]
dc.relationUniversity of Belgrade, Faculty of Organizational Sciences
dc.relationAPC
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceMathematics
dc.subjectpairwise comparison matrix (PCM)en
dc.subjectmulti-criteria decision-making (MCDM)en
dc.subjectgenetic algorithm (GA)en
dc.subjectfairnessen
dc.subjectfair rankingen
dc.subjectdiscrete optimizationen
dc.subjectdecision-making algorithmsen
dc.subjectconsistencyen
dc.subjectanalytic hierarchy process (AHP)en
dc.titleWhen Fairness Meets Consistency in AHP Pairwise Comparisonsen
dc.typearticle
dc.rights.licenseBY
dc.citation.issue3
dc.citation.other11(3): -
dc.citation.rankaM21~
dc.citation.volume11
dc.identifier.doi10.3390/math11030604
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/912/2454.pdf
dc.identifier.rcubconv_2841
dc.identifier.scopus2-s2.0-85147814556
dc.identifier.wos000929742800001
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
2454.pdf362.57 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons