Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2460
Full metadata record
DC FieldValueLanguage
dc.creatorStojanović, Milica
dc.date.accessioned2023-05-12T11:48:26Z-
dc.date.available2023-05-12T11:48:26Z-
dc.date.issued2023
dc.identifier.issn0354-5180
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2460-
dc.description.abstractIt is known that we can always 3-triangulate (i.e. divide into tetrahedra with the original vertices) convex polyhedra but not always non-convex ones. Polyhedra topologically equivalent to ball with p handles, shortly p-toroids, cannot be convex. So, it is interesting to investigate possibilities and properties of their 3-triangulations. Here we study the minimal number of necessary tetrahedra for the triangulation of a 3-triangulable p-toroid. For that purpose, we developed the concept of piecewise convex polyhedron and that of its connection graph.en
dc.publisherUniverzitet u Nišu - Prirodno-matematički fakultet - Departmant za matematiku i informatiku, Niš
dc.rightsrestrictedAccess
dc.sourceFilomat
dc.subjecttriangulation of polyhedraen
dc.subjectToroidsen
dc.subjectPiecewise convex polyhedraen
dc.titleMinimal 3-triangulations of p-toroidsen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage125
dc.citation.issue1
dc.citation.other37(1): 115-125
dc.citation.rankM22~
dc.citation.spage115
dc.citation.volume37
dc.identifier.doi10.2298/FIL2301115S
dc.identifier.rcubconv_2843
dc.identifier.scopus2-s2.0-85146814450
dc.identifier.wos000932858000010
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
2456.pdf
  Restricted Access
677.81 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.