Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2951
Full metadata record
DC FieldValueLanguage
dc.creatorZukanović, Milicaen_US
dc.creatorRadosavčević, Aleksaen_US
dc.creatorPoledica, Anaen_US
dc.creatorMilošević, Pavleen_US
dc.creatorLuković, Ivanen_US
dc.date.accessioned2025-12-04T08:19:22Z-
dc.date.available2025-12-04T08:19:22Z-
dc.date.issued2025-
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2951-
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsclosedAccessen_US
dc.source2025 20th Conference on Computer Science and Intelligence Systems (FedCSIS)en_US
dc.titleEvaluating Effectiveness of Nonlinear Feature Extraction in Hedge Funds’ Returns Forecastingen_US
dc.typeconferenceObjecten_US
dc.identifier.doi10.15439/2025F3970-
dc.type.versionacceptedVersionen_US
item.fulltextNo Fulltext-
item.openairetypeconferenceObject-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

Page view(s)

16
checked on Dec 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.