Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2958
Full metadata record
DC FieldValueLanguage
dc.creatorDelibašić, Borisen_US
dc.creatorRadovanović, Sandroen_US
dc.creatorBohanec, Markoen_US
dc.creatorSuknović, Milijaen_US
dc.date.accessioned2025-12-04T09:10:38Z-
dc.date.available2025-12-04T09:10:38Z-
dc.date.issued2025-
dc.identifier.isbn978-86-7680-484-9-
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2958-
dc.description.abstractThis paper compares the accuracy and convenience of a classical machine learning algorithm, a decision tree, and a classical decision support system model, built by the DEX (Decision EXpert) multicriteria decision modelling method for categorical data, on a churn prediction data set. Decision support systems (DSS) are a technology from the 1960s that was predominantly overruled by machine learning (ML) in the 2010s due to the explosion of big data, and their cost effectiveness. Here we discuss the similar and different aspects of the two technologies, and demonstrate the performance of these different, yet intertwined technologies. We show that our proposed DSS model outperforms the ML model.en_US
dc.language.isoenen_US
dc.publisherUniverzitet u Beogradu – Fakultet organizacionih naukaen_US
dc.rightsopenAccessen_US
dc.sourceProceedings of the 11th International Conference on Decision Support System Technology (ICDSST 2025)en_US
dc.subjectChurn Predictionen_US
dc.subjectDSSen_US
dc.subjectMulti-Criteria Modelsen_US
dc.subjectDEXen_US
dc.subjectDIDEXen_US
dc.subjectDecision Treeen_US
dc.subjectMachine Learningen_US
dc.titleA comparison between DSS and ML models for churn predictionen_US
dc.typeconferenceObjecten_US
dc.citation.spage43en_US
dc.type.versionpublishedVersionen_US
item.fulltextWith Fulltext-
item.openairetypeconferenceObject-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
134_delibasic_et_al_icdsst_2025.pdf983.19 kBAdobe PDFView/Open
Show simple item record

Page view(s)

16
checked on Dec 14, 2025

Download(s)

4
checked on Dec 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.