Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2992
Full metadata record
DC FieldValueLanguage
dc.creatorAleksić, Danijelen_US
dc.creatorMilošević, Bojanaen_US
dc.date.accessioned2025-12-09T07:51:43Z-
dc.date.available2025-12-09T07:51:43Z-
dc.date.issued2022-
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2992-
dc.description.abstractMissing data are a very common problem in practice. Therefore providing an adequate methodology for statistical inference is of great importance for a wide scientific community. We focus on the problem of testing the hypothesis of multivariate normality in the presence of different missingness mechanisms. In particular, the focus will be on the impact of different imputation algorithms on some of the popular tailor-made normality tests - heir size and powers under commonly used alternatives, and their comparison with the complete-case approach. Finally, potential directions for future research will be discussed.en_US
dc.language.isoenen_US
dc.publisherECOSTA ECONOMETRICS AND STATISTICSen_US
dc.rightsopenAccessen_US
dc.source16th International Conference on Computational and Financial Econometrics (CFE 2022); 15th International Conference of the ERCIM(European Research Consortium for Informatics and Mathematics) Working Group on Computational and Methodological Statistics (CMStatistics 2022)en_US
dc.titleTesting multivariate normality in the presence of missing dataen_US
dc.typeconferenceObjecten_US
dc.citation.epage117en_US
dc.citation.spage117en_US
dc.type.versionpublishedVersionen_US
dc.identifier.urlhttps://www.cmstatistics.org/CMStatistics2022/docs/BoACFECMStatistics2022.pdf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeconferenceObject-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

Page view(s)

14
checked on Dec 28, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.